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SUPPLEMENTARY MATERIAL

Here we elaborate on our equilibrium and time depen-
dent DFT calculations.

A. The electronic structure calculation

The electronic structure for the metallic dimers was
computed with a jellium pseudo-potential. For a metallic
structure of given shape and volume, the jellium pseudo-
potential is chosen as constant V0 inside that volume and
zero outside. The value of V0 = −0.1 Hartree was chosen
so that the Fermi level of the electrons is 4.0 eV below the
vacuum level. The Fermi level is computed by requiring
that the number of electrons be equal to vol/vs, with
the radius of the Wigner-Seitz sphere vs taken as rs =
3.0 Bohr.

Due to the cylindrical symmetry of the system, the
Kohn-Sham orbitals can be written as ψnm(ρ, z)eimφ,
where ψnm(ρ, z) satisfy the reduced self-consistent Kohn-
Sham equations (in units m = h̄ = e = 1):
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ψnm = εnmψnm.

(1)
Here, Veff[n] includes the jellium pseudo-potential, the
Hartree and exchange-correlation potentials:

Veff[n] = V0 + vH[n− n0] + vXC[n]. (2)

Here, n0 is the positive pseudo-ionic charge, which in the
jellium approximation is a uniform density of 1/vs. For
the exchange-correlation part, we use the LDA version of
Ref.1. The electron density was calculated from:

n(ρ, z) =
∑

n,m

|ψnm(ρ, z)|2

1 + eβ(εnm−εF )
, (3)

where β = 1/kT was chosen much smaller than the typ-
ical energy level spacings seen during the calculations.
The terms for which 1/(1 + eβ(εnm−µ)) < 10−8 are dis-
carded in the above summation.

The reduced Kohn-Sham equations were implemented
using a standard finite differences approach in 2 dimen-
sions, with special care given to the boundary conditions
at ρ = 0, where the centrifugal potential becomes ex-
tremely singular. The Hartree potential is computed di-
rectly from the Poisson equation: ∇2vH=4π(n−n0). The
electronic structure code was tested on several systems
where the exact solution is known.

B. The Optical Absorption Calculation

The frequency dependent optical absorption calcula-
tion was completed within the Time Dependent Adi-
abatic Local Density Approximation (TDLDA) frame-
work. The linear response equation for the frequency

dependent density perturbation ∆n is given by:

∆n(~r, ω) =

∫

d~r′χ0(~r, ~r′;ω) (4)

×

[

v0(~r′, ω) +
δVeff

δn
∆n(~r′, ω)

]

,

where Veff is the same effective potential appearing in the
equilibrium electronic structure calculation and v0(~r, ω)
is the external driving potential. In the dipole approxi-

mation, v0(~r, t) = ~E0 · ~r eiωt. From the perturbed den-

sity we compute the induced dipole moment ~P (ω) =
∫

~r∆n(~rω)d3~r. In the linear response regime, ~P (ω) is

proportional to the driving field ~E0: ~P (ω) = α̂(ω) ~E0,
where α̂(ω) is the frequency dependent polarizability ten-
sor of the system. The total optical absorption cross sec-
tion σ(ω) is directly related to the imaginary part of the
polarizability. For a driving field oriented along the z
direction, σ(ω) = ω

c Im[αzz(ω)].
The independent-electron density-density correlation

function χ0(~r, ~r′;ω) can be computed using a Green’s
function expansion:2

χ0(~r, ~r′;ω) =
∑

i

fi[φi(~r′)φ
∗
i (~r)G(~r, ~r′; εi + h̄ω + iδ)

+φ∗i (
~r′)φi(~r)G(~r′, ~r; εi − h̄ω − iδ)],

(5)
where {φ, εi} are the Kohn-Sham orbitals and the corre-

sponding energies, G(~r, ~r′, ε) is the Green’s function for
the Kohn-Sham Hamiltonian and fi’s are the finite tem-
perature occupation numbers.

Due to the cylindrical symmetry, the Green’s function
and the independent-electron response function factorize
as

G(~r, ~r′; ε) =
∑

M

GM (ρ, z, ρ′, z′; ε)e−iM(φ−φ′)

χ0(~r, ~r′;ω) =
∑

M

χ0
M (ρ, z, ρ′, z′;ω)eiM(φ−φ′)

(6)

with

χ0
M = 1

2π

∑

n,m
fnmψnm(ρ, z)ψnm(ρ′, z′)

×
[

GM−m(ρ, z, ρ′, z′; εnm + h̄ω + iδ)

+GM−m(ρ, z, ρ′, z′; εnm − h̄ω − iδ)
]

.

(7)

The self-consistent equation for ∆n is a linear equa-
tion, which can be written in an operator form as

[I − χ̂0 ∗ δnVeff]∆n = χ̂0v0. (8)

We use the Biconjugate Gradient Algorithm3 to solve this
linear equation. Note that we use the Biconjugate and
not the simpler Conjugate Algorithm since the operator
multiplying ∆n is not symmetric. In this algorithm, the
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only thing that we need to supply is an efficient subrou-
tine that applies χ̂0 on a general function V (ρ, z). The
action of δVeff/δn is trivial to compute.

In the following we elaborate on how we constructed
this subroutine. We consider the case when the field E0 is
oriented along the symmetry axis of the system, in which
case we can restrict to the sector M = 0. We have:

(χ̂0
M=0V )(ρ, z) =

∑

n,m
fnmψnm(ρ, z)

×
∫

dρ′dz′
[

Gm(ρ, z, ρ′, z′; εnm + h̄ω + iδ)

+Gm(ρ, z, ρ′, z′; εnm − h̄ω − iδ)
]

ψnm(ρ′, z′)V (ρ′, z′).

(9)
Note that we used Gm instead of G−m because the re-
duced Kohn-Sham Hamiltonian depends only on m2.
Now, the key observation is that the above integral is
equal to

U+
nm(ρ, z;ω) + U−

nm(ρ, z;ω), (10)

where U±
nm(ρ, z) are the solutions to the equations:
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U±
nm(ρ, z) = ψnm(ρ, z)V (ρ, z).

(11)

The conclusion is,

(χ̂0
0V )(ρ, z) =

∑

n,m
fnmψnm(ρ, z)

×[U+
nm(ρ, z;ω) + U−

nm(ρ, z;ω)].
(12)

Thus, to compute the action of χ̂0
0 on an arbitrary func-

tion V (ρ, z), we solve the linear equation Eq. (11) for all
(n,m) indices of the occupied states and each time we
update the sum in Eq. (12). Eq. (11) is solved using the
same Biconjugate Gradient Algorithm as before, where
the action of the reduced Kohn-Sham Hamiltonian on a
function ψ(ρ, z) is implemented on a grid, using a finite
difference expression for the kinetic part.

The convergence of the Biconjugate Gradient Algo-
rithm depends crucially on the initial guess. One impor-
tant aspect of the present calculations is that we compute
the optical spectrum for a sequence of frequencies and
the computed ∆n for one frequency can be used as the
starting point in the Biconjugate Gradient Algorithm for
the next frequency. Thus, excepting the first frequency,
the iteration in the Biconjugate Gradient Algorithm con-
verges extremely fast, typically in less than 4 steps.

The code was tested on spheres and spherical
nanoshells that were considered in several of our past
works. In these past works, the electronic structure and
optical absorption of the systems were computed with a
code that took advantage of the spherical symmetry. Us-
ing the new code that we just described above, we were
able to reproduce with great accuracy both the electronic
structures and optical absorption spectra for these sys-
tems.

1. Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048–

5079.

2. Zangwill, A.; Soven, P. Phys. Rev. A 1980, 21, 1561–1572.

3. Saad, Y. Iterative Methods for Sparse Linear Systems;

SIAM: Philadelphia, USA, 2003.


