Supporting Information of

Time Resolved EPR Characterization of a Folded Conformation of Photoinduced Charge-Separated State in Fullerene-Porphyrin Dyad Bridged by DiphenyIdisilane
 Yasuhiro Kobori, ${ }^{*, \dagger}$ Yuki Shibano, ${ }^{\ddagger, \delta}$ Tsubasa Endo, ${ }^{\dagger}$ Hayato Tsuji, ${ }^{\ddagger, 1}$ Hisao Murai, ${ }^{\dagger}$ and Kohei Tamao ${ }^{\text {* }}$
 Contribution from Department of Chemistry, Faculty of Science, Shizuoka University,836 Ohya Surugaku, Shizuoka 422-8529 Japan, Institute for Chemical Research, Kyoto University Uji, 611-0011 Kyoto, Japan

1. Experimental

Samples. Benzonitrile (> 98%, Wako) was used as received. The fullerene-porphyrin dyad ($\mathrm{ZnP}-\mathrm{C}_{60}$) linked with diphenyldisilane bridge was synthesized as reported previously. ${ }^{1}$ For the TREPR measurement, the concentration of $\mathrm{ZnP}-\mathrm{C}_{60}$ was $2 \times 10^{-4} \mathrm{M}$.

UV-Visible Spectroscopy.

Figure S1. Steady-state absorption spectrum of $\mathrm{ZnP}^{2}-\mathrm{C}_{60}\left(2 \times 10^{-4} \mathrm{M}\right)$ of the present system in benzonitrile at room tenperature. This spectrum is very similar to the absorption spectrum of the $\mathrm{ZnP}-\mathrm{C}_{60}$ dyad ($\mathrm{ZnP}-\mathrm{Si}_{5}-\mathrm{C}_{60}$) bridged by pentasilane. As is reported for the $\mathrm{ZnP}-\mathrm{Si}_{5}-\mathrm{C}_{60}$, a broad absorption band is observed in this system at the near infrared region (from 620 nm to 900 nm) which is characteristic of molecules that have an interaction between the ZnP and C_{60} moieties. This result supports that their exist at least two folded molecular structures with the large and the small π-orbital overlaps those of which are optically-detected and EPR conformations, respectively. (See text.)

Time-resolved EPR. The X-band TREPR measurements were carried out using a Bruker EMX system. In the microwave bridge, a modified preamplifier (ER047PH) in which the time resolution is enhanced ($\sim 60 \mathrm{~ns}$) was equipped. Light excitations were performed by the second harmonic (532 nm) of a Nd:YAG laser (Continuum, Minilite II, fwhm $\sim 5 \mathrm{~ns}$). Transient signals were averaged by a digital oscilloscope (Tektronix, TDS 520D) at 201 different external magnetic field positions and were transferred to a personal computer via a GPIB communication to obtain the 2-dimentional TREPR data. Temperature was controlled by a nitrogen-gas flow system. The nitrogen gas was flowed through a liquid-nitrogen container and was transferred to a sample dewar inserted in a microwave cavity. Temperature was controlled by the flow rate of the nitrogen gas.

2. Analysis of the TREPR spectra

2.1 Computation of the electron spin polarization by the ESPT from the excited triplet state to the CS state.

According to Scheme 1 in the manuscript, the eigenfunctions (T_{1}, T_{m} and T_{n} in Scheme 1) under the applied magnetic field in $\mathrm{ZnP}-{ }^{3} \mathrm{C}_{60}{ }^{*}$ can be obtained by the following relations.

$$
\left(\begin{array}{l}
\left|T_{l}\right\rangle \tag{S1}\\
\left|T_{m}\right\rangle \\
\left|T_{n}\right\rangle
\end{array}\right)=\boldsymbol{U}^{\mathrm{T}}\left(\begin{array}{c}
\left|T_{X}\right\rangle \\
\left|T_{Y}\right\rangle \\
\left|T_{Z}\right\rangle
\end{array}\right),
$$

where \boldsymbol{U} represents the matrix composed of the eigenvectors that diagonalize the spin Hamiltonian $\boldsymbol{H}_{\mathrm{T}}$ of the excited triplet state of ${ }^{3} \mathrm{C}_{60}{ }^{*}$ under the applied magnetic field B_{0} so that the diagonal matrix of $\boldsymbol{\varepsilon}$ composed of the eigenvalues $\varepsilon_{\mathrm{l}}, \varepsilon_{\mathrm{m}}$ and ε_{n} is represented as $\boldsymbol{\varepsilon}=\boldsymbol{U}^{-1} \boldsymbol{H}_{\mathrm{T}} \boldsymbol{U}$. The population $\boldsymbol{\rho}_{\mathrm{T}}$ of the $T_{\mathrm{l}}, T_{\mathrm{m}}$ and T_{n} levels in Scheme 1 can be obtained as follows,

$$
\begin{equation*}
\boldsymbol{\rho}_{T}=\boldsymbol{U}^{-1} \boldsymbol{\rho}_{X Y Z} \boldsymbol{U} \tag{S2}
\end{equation*}
$$

where ρ_{XYZ} denotes the population for the zero-field donor sublevels in a molecular frame by the $\mathrm{S}_{1}-\mathrm{T}_{1}$ intersystem crossing represented as follows,

$$
\boldsymbol{\rho}_{X Y Z}=\left(\begin{array}{lll}
p_{X} & & \tag{S3}\\
& p_{Y} & \\
& & p_{Z}
\end{array}\right)
$$

with $p_{\mathrm{X}}+p_{\mathrm{Y}}+p_{\mathrm{Z}}=1$. In eq. (S2), it is noted that the off-diagonal terms in ρ_{T} can be set to zero when the lifetime ($\sim 0.3 \mu \mathrm{~s}$ for $\mathrm{ZnP-}^{3} \mathrm{C}_{60}{ }^{*}$ in the present study) of the donor triplet state is much longer than the phase memory time ($\mathrm{T}_{2}<10 \mathrm{~ns}$ in typical excited triplet EPR spectra) under the external magnetic field; i.e. $\rho_{\mathrm{T}}\left(T_{1}, T_{\mathrm{m}}\right)=\rho_{\mathrm{T}}\left(T_{\mathrm{l}}, T_{\mathrm{n}}\right)=\rho_{\mathrm{T}}\left(T_{\mathrm{m}}, T_{\mathrm{l}}\right)=\rho_{\mathrm{T}}\left(T_{\mathrm{m}}, T_{\mathrm{n}}\right)=\rho_{\mathrm{T}}\left(T_{\mathrm{n}}, T_{\mathrm{l}}\right)=\rho_{\mathrm{T}}\left(T_{\mathrm{n}}, T_{\mathrm{m}}\right)=0$ in eq.(S2).

When the hyperfine coupling is negligibly smaller than the spin dipolar interaction in the CS state, the eigenfunctions (T_{+}, T_{0} and T_{-}in Scheme 1) under the applied magnetic field in the CS state $\left(\mathrm{ZnP}^{+}-\mathrm{C}_{60}{ }^{--}\right)$ can be obtained by the following relations using basis wavefunctions ($T_{\mathrm{X}}{ }^{\prime}, T_{\mathrm{Y}}{ }^{\prime}$ and $T_{\mathrm{Z}}{ }^{\prime}$) that diagonalize the dipolar interaction of the RP at the zero-field.

$$
\left(\begin{array}{l}
\left|T_{+}\right\rangle \tag{S4}\\
\left|T_{0}\right\rangle \\
\left|T_{-}\right\rangle
\end{array}\right)=\boldsymbol{V}^{\mathrm{T}}\left(\begin{array}{l}
\left|T_{X}^{\prime}\right\rangle \\
\left|T_{Y}\right\rangle \\
\left|T_{Z}{ }^{\prime}\right\rangle
\end{array}\right),
$$

where \boldsymbol{V} represents the matrix composed of the eigenvectors that diagonalize the spin Hamiltonian $\boldsymbol{H}_{\mathrm{RP}}$ (vide infra) of the triplet CS state under the applied magnetic field B_{0}.
During the charge separation process, the characters of the $T_{\mathrm{X}}, T_{\mathrm{Y}}$ and T_{Z} wavefunctions in the excited triplet are conserved in the T_{+}, T_{0} and T_{-}wavefunctions of the triplet CS states. The probability of finding the $T_{i}(i=X, Y$ and $Z)$ character in the $T_{j}\left(j=X^{\prime}, Y^{\prime}\right.$ and $\left.Z^{\prime}\right)$ is represented as $\left\langle T_{i} \mid T_{j}\right\rangle^{2}=\cos ^{2} \theta_{i j}$ where $\theta_{i j}$ is the angle between the principal axis of the excited triplet state and the principal axis of the CS state. Thus, the population ρ_{RP} of the T_{+}, T_{0} and T_{-}levels created by the ESPT from the excited triplet state to the CS state can be obtained as follows, ${ }^{2}$

$$
\begin{equation*}
\rho_{R P_{, k} k^{\prime}}=\sum_{k} \sum_{i} \sum_{j}|\boldsymbol{U}(i, k)|^{2}\left|\boldsymbol{V}\left(j, k^{\prime}\right)\right|^{2}\left\langle T_{i} \mid T_{j}\right\rangle^{2} \rho_{T}\left(T_{k}, T_{k}\right) \tag{S5}
\end{equation*}
$$

where $k^{\prime}(=+, 0$, and -$)$ specifies T_{+}, T_{0} and T_{-}in the CS state under the applied magnetic field in Scheme 1. When the CS state undergoes the $S-\mathrm{T}_{0}$ mixing to create the spin-correlated RP , the four eigenstates are obtained as, $\left.{ }^{3} \quad|\mathbf{a}\rangle=\left|\mathbf{T}_{+}\right\rangle, \quad|\mathbf{b}\rangle=\cos \mu|\mathbf{S}\rangle+\sin \mu\left|\mathbf{T}_{\mathbf{0}^{0}}, \quad\right| \mathbf{c}\right\rangle=-\sin \mu|\mathbf{S}\rangle+\cos \mu\left|\mathbf{T}_{\mathbf{0}}\right\rangle$ and $|\mathbf{d}\rangle=\left|\mathbf{T}_{>}\right\rangle$, where the spin Hamiltonian $\boldsymbol{H}_{\mathrm{RP}}$ composed of Zeeman interaction, the dipolar interaction and the hyperfine interaction is diagonalized under the high \boldsymbol{B}_{0} limit. From eq. (S5), the initial populations of the CS state $\left(\rho_{\mathrm{aa}}{ }^{0}, \rho_{\mathrm{bb}}{ }^{0}, \rho_{\mathrm{cc}}{ }^{0}\right.$ and $\left.\rho_{\mathrm{dd}}{ }^{0}\right)$ in |a>, lb>, |c> and |d> can be computed as,

$$
\begin{align*}
& \rho_{a a}^{0}=\rho_{R P,+} \tag{S6}\\
& \rho_{b b}^{0}=\rho_{R P, 0} \cdot \sin ^{2} \mu \tag{S7}\\
& \rho_{c c}^{0}=\rho_{R P, 0} \cdot \cos ^{2} \mu \tag{S8}\\
& \rho_{d d}^{0}=\rho_{R P,-} \tag{S9}
\end{align*}
$$

Here, the angle μ is related as follows, ${ }^{4}$

$$
\begin{equation*}
\cos \mu=\frac{2 Q_{-}}{\sqrt{2 \omega_{2}\left(\omega_{2}-2 J-2 d\right)}}, \quad \sin \mu=\sqrt{\frac{\omega_{2}-2 J-2 d}{2 \omega_{2}}} \tag{S10}
\end{equation*}
$$

with $\omega_{2}=\left[(2 J+2 d)^{2}+4 Q_{-}^{2}\right]^{1 / 2}$, where Q. denotes the Lamor frequency difference between ZnP^{+}and $\mathrm{C}_{60}{ }^{-\cdots}$ and is represented using the g factors and hyperfine coupling constants (a) as,

$$
\begin{equation*}
Q_{-}=\frac{1}{2}\left\{\left(g_{Z n P, e f f}-g_{C 60, e f f}\right) \beta B_{0}+\sum_{m} a_{Z n P, m} M_{Z n P, m}-\sum_{n} a_{C 60, m} M_{C 60, m}\right\} . \tag{S11}
\end{equation*}
$$

2.2 Time dependence of the spin-state populations.

In the limit of the fast spin-spin relaxation in the zero-quantum coherences for the off-diagonal terms (ρ_{bc} and ρ_{cb}), the time-evolution of the SCRP populations (ρ_{kk}) simplifies to a set of coupled time-differential equations ${ }^{5}$ in ρ_{abcd}

$$
\left(\begin{array}{c}
\dot{\rho}_{\mathrm{aa}} \tag{S12}\\
\dot{\rho}_{\mathrm{bb}} \\
\dot{\rho}_{\mathrm{cc}} \\
\dot{\rho}_{\mathrm{dd}}
\end{array}\right)=\left(\begin{array}{cccc}
-w_{a b}-w_{a c} & w_{b a} & w_{c a} & 0 \\
w_{a b} & -w_{b a}-w_{b c}-w_{b d}-k_{C R 2} \cos ^{2} \mu & w_{c b} & w_{d b} \\
w_{a c} & w_{b c} & -w_{c a}-w_{c b}-w_{c d}-k_{C R 2} \sin ^{2} \mu & w_{d c} \\
0 & w_{b d} & w_{c d} & -w_{d b}-w_{d c}
\end{array}\right)\left(\begin{array}{c}
\rho_{\mathrm{aa}} \\
\rho_{\mathrm{bb}} \\
\rho_{\mathrm{cc}} \\
\rho_{\mathrm{dd}}
\end{array}\right)
$$

where w_{ij} denotes the spin-lattice relaxation rate constant between the i and j states in $\left.\left.|\mathrm{a}\rangle, \mathrm{Ib}\right\rangle, \mathrm{Ic}\right\rangle$ and Id. The relaxation rate constants can be related as follows,

$$
\begin{equation*}
w_{a c}=w_{c a} \exp \left(\frac{\hbar v_{\mathrm{MW}}}{k_{B} T}\right), w_{b d}=w_{d b} \exp \left(\frac{\hbar v_{\mathrm{MW}}}{k_{B} T}\right), w_{a b}=w_{b a} \exp \left(\frac{\hbar v_{\mathrm{MW}}}{k_{B} T}\right), w_{c d}=w_{d c} \exp \left(\frac{\hbar v_{\mathrm{MW}}}{k_{B} T}\right), \tag{S13}
\end{equation*}
$$

where v_{MW} denotes the microwave frequency ($=9.4 \mathrm{GHz}$ in the present study). In this study, $w_{\mathrm{ac}}=w_{\mathrm{bd}}=$ $w_{\mathrm{ab}}=w_{\mathrm{cd}}$ and $w_{\mathrm{ca}}=w_{\mathrm{db}}=w_{\mathrm{ba}}=w_{\mathrm{dc}}$ are assumed and a single spin lattice relaxation time $\left(T_{1}=10 \mu \mathrm{~s}\right)$ was set as follows,

$$
\begin{equation*}
T_{1}=\frac{1}{w_{a c}+w_{c a}}=\frac{1}{w_{a b}+w_{b a}}=\frac{1}{w_{b d}+w_{d b}}=\frac{1}{w_{c d}+w_{d c}} \tag{S14}
\end{equation*}
$$

The relaxation times ($T_{\mathrm{bc}}=1 / w_{\mathrm{bc}}=1 / w_{\mathrm{cb}}$) between $\mathrm{lb}>$ and $\mathrm{Ic}>$ states correspond to the dephasing time between the S and T_{0} states induced by fluctuations of the exchange and dipolar interactions. ${ }^{6} T_{\mathrm{bc}}=3.0$ $\mu \mathrm{s}$ was considered as described in the manuscript. The sublevel-selective spin relaxation between lb> and Ic> states is very consistent with the small exchange interaction obtained in this study.

Time-evolution of the matrix of $\boldsymbol{\rho}_{\mathrm{ab} c \mathrm{~d}}$ composed of $\rho_{\mathrm{aa}}, \rho_{\mathrm{bb}}, \rho_{\mathrm{cc}}$ and ρ_{dd} in eq. (S12) was calculated by solving eq. (S12) as $\boldsymbol{\rho}_{\text {abca }}(t)=\boldsymbol{S} \cdot \exp (\boldsymbol{\eta} t) \cdot \boldsymbol{S}^{-1} \cdot \boldsymbol{\rho}_{\text {abcd }}(t=0)$ where \boldsymbol{S} and $\boldsymbol{\eta}$ are the matrices of eigenvectors and eigenvalues of the relaxation matrix in eq. $(\mathrm{S} 12) . \boldsymbol{\rho}_{\mathrm{abcd}}(t=0)$ denotes initial populations in eqs. (S6)-(S9). For the EPR transitions among the four levels, the transition intensities are represented as, ${ }^{3}$ $I_{\mathrm{ab}}(t)=\left[\rho_{\mathrm{bb}}(t)-\rho_{\mathrm{aa}}(t)\right] \sin ^{2} \mu, I_{\mathrm{ac}}(t)=\left[\rho_{\mathrm{cc}}(t)-\rho_{\mathrm{aa}}(t)\right] \cos ^{2} \mu, I_{\mathrm{bd}}(t)=\left[\rho_{\mathrm{dd}}(t)-\rho_{\mathrm{bb}}(t)\right] \sin ^{2} \mu$ and $I_{\mathrm{cd}}(t)=\left[\rho_{\mathrm{dd}}(t)-\right.$ $\left.\rho_{\mathrm{cc}}(t)\right] \cos ^{2} \mu . \rho_{\mathrm{abcd}}(t)$ and were used for the computations of the TREPR spectrum.

2.3 Angle settings.

In the molecular frame (X^{\prime}, Y^{\prime} and Z^{\prime}) of the zero-field splitting interaction, the spin Hamiltonian of the triplet CS state is expressed as follows,

$$
\begin{align*}
\hat{\boldsymbol{H}}_{R P}(\boldsymbol{\Omega})= & g \beta \boldsymbol{B}_{0}(\boldsymbol{\Omega}) \hat{\boldsymbol{S}}-X^{\prime} \hat{\boldsymbol{S}}_{X}^{2}-Y^{\prime} \hat{\boldsymbol{S}}_{\boldsymbol{Y}}^{2}-Z^{\prime} \hat{\boldsymbol{S}}_{Z}^{2}+\sum_{m} a_{Z n P, m} \hat{\boldsymbol{S}}_{1} \hat{\boldsymbol{I}}_{Z n P, m}+\sum_{n} a_{C 60, m} \hat{\boldsymbol{S}}_{2} \hat{\boldsymbol{I}}_{C 60, m} \tag{S14}\\
& -2 J\left(1 / 2+\hat{\boldsymbol{S}}_{1} \hat{\boldsymbol{S}}_{2}\right)
\end{align*}
$$

where g represents the effective g value in the CS state and is assumed to be isotropic since the D anisotropy is much larger than the anisotropy in the g factor in this system. On the basis of the $T_{\mathrm{X}}{ }^{\prime}, T_{\mathrm{Y}}$, and $T_{\mathrm{Z}}{ }^{\prime}$ functions, eq. (S14) is expressed as follows under the high-field approximation. ($g \beta B_{0} »\left|a_{i}\right|$)

$$
\hat{\boldsymbol{H}}_{R P}(\Omega)=\begin{array}{ccc}
\left\langle T_{X}^{\prime} '\right| \tag{S15}\\
\left\langle T_{Y}^{\prime}\right| \\
\left\langle T_{Z}^{\prime} '\right.
\end{array}\left(\begin{array}{ccc}
D / 3-J & -i g \beta B_{0} \cos \theta_{B} & i g \beta B_{0} \sin \phi_{B} \sin \theta_{B} \\
i g \beta B_{0} \cos \theta_{B} & D / 3-J & -i g \beta B_{0} \cos \phi_{B} \sin \theta_{B} \\
-i g \beta B_{0} \sin \phi_{B} \sin \theta_{B} & i g \beta B_{0} \cos \phi_{B} \sin \theta_{B} & -2 D / 3-J
\end{array}\right),
$$

where θ_{B} and ϕ_{B} are the polar angles of the external magnetic field B_{0} with respect to the Z^{\prime} and X^{\prime} principal axes, respectively, in the zero-field splitting interaction of the CS state. \boldsymbol{V} in eq. (S4) was obtained as the eigenvectors that diagonalize the spin Hamiltonian $\boldsymbol{H}_{\mathrm{RP}}$ of eq. (S15).

In the CS state, the energy levels have been approximated under the high-field limit as follows, ${ }^{4}$

$$
\begin{align*}
& \omega_{a}=Q_{+}+d-J \\
& \omega_{b}=-d+\frac{\omega_{2}}{2} \tag{S16}\\
& \omega_{c}=-d-\frac{\omega_{2}}{2} \\
& \omega_{d}=-Q_{+}+d-J
\end{align*}
$$

where

$$
\begin{equation*}
Q_{+}=\frac{1}{2}\left\{\left(g_{Z n P, e f f}+g_{C 60, e f f}\right) \beta B_{0}+\sum_{m} a_{Z n P, m} M_{Z n P, m}+\sum_{n} a_{C 60, m} M_{C 60, m}\right\} \tag{S17}
\end{equation*}
$$

with

$$
\begin{equation*}
d=\frac{D}{2}\left(\cos ^{2} \theta_{B}-\frac{1}{3}\right) \tag{S18}
\end{equation*}
$$

In $\mathrm{ZnP}^{+\cdot}$, hyperfine couplings $\left(a_{\mathrm{N}}=0.22 \mathrm{mT}\right)^{5}$ from the four nitrogen atoms were considered in the CS state. In $\mathrm{C}_{60}{ }^{-\cdots}$, the hyperfine coupling is negligibly small.

In the $X Y Z$ coordinate system of the excited triplet molecule, the magnetic field \boldsymbol{B}_{0} can be expressed using the angles of $\theta, \phi, \theta_{\mathrm{B}}$ and ϕ_{B} as follows,

$$
\left(\begin{array}{l}
B_{X} \tag{S19}\\
B_{Y} \\
B_{Z}
\end{array}\right)=B_{0}\left(\begin{array}{ccc}
\sin \phi & \cos \theta \cos \phi & \sin \theta \cos \phi \\
-\cos \phi & \cos \theta \sin \phi & \sin \theta \sin \phi \\
0 & -\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{c}
\cos \phi_{B} \sin \theta_{B} \\
\sin \phi_{B} \sin \theta_{B} \\
\cos \theta_{B}
\end{array}\right) .
$$

The spin Hamiltonian $\boldsymbol{H}_{\mathrm{T}}$ of the excited triplet state of ${ }^{3} \mathrm{C}_{60}{ }^{*}$ is expressed as follows,

$$
\left.\hat{\boldsymbol{H}}_{T}(\Omega)=\begin{array}{c}
\left\langle T_{X}\right| \tag{S20}\\
\left\langle T_{Y}\right| \\
\left\langle T_{Z}\right|
\end{array} \left\lvert\, \begin{array}{ccc}
X & -i g \beta B_{Z} & i g \beta B_{Y} \\
i g \beta B_{Z} & Y & -i g \beta B_{X} \\
-i g \beta B_{Y} & i g \beta B_{X} & Z
\end{array}\right.\right),
$$

where $X=D_{\mathrm{T}} / 3-E_{\mathrm{T}}, Y=D_{\mathrm{T}} / 3+E_{\mathrm{T}}$, and $Z=-2 D_{\mathrm{T}} / 3 . \boldsymbol{H}_{\mathrm{T}}$ of the excited triplet state has been diagonalized to compute \boldsymbol{U} in eqs. (S1), (S2) and (S5).
In this study, the principal axes of the g tensors of the $\mathrm{C}_{60}{ }^{-{ }^{-}}$and ZnP^{++}were assumed to be collinear with the X, Y and Z axes. Thus the effective g values in eq. (S17) can be obtained as follows,

$$
\begin{equation*}
g_{i, e f f}=\frac{\sqrt{g_{i, x}^{2} B_{X}{ }^{2}+g_{i, y}^{2} B_{Y}{ }^{2}+g_{i, z}^{2} B_{Z}{ }^{2}}}{B_{0}} . \tag{S21}
\end{equation*}
$$

$g_{\mathrm{C} 60, \mathrm{x}}=2.00085, g_{\mathrm{C} 60, \mathrm{y}}=2.00038$ and $g_{\mathrm{C} 60, \mathrm{z}}=1.99925$ were used from reported study. ${ }^{7} g_{\mathrm{ZnP}, \mathrm{x}}=2.00265$, $g_{\mathrm{ZnP}, \mathrm{y}}=2.00265$ and $g_{\mathrm{ZnP}, \mathrm{z}}=2.0022$ were used as reported previously. ${ }^{8}$
In eq. (S5), direction cosines between the principal axes are represented from Figure 2 b as follows,

$$
\begin{align*}
& \left\langle T_{X} \mid T_{X^{\prime}}\right\rangle^{2}=\sin ^{2} \phi,\left\langle T_{Y} \mid T_{X^{\prime}}\right\rangle^{2}=\cos ^{2} \phi,\left\langle T_{Z} \mid T_{X^{\prime}}\right\rangle^{2}=0, \\
& \left\langle T_{X} \mid T_{Y^{\prime}}\right\rangle^{2}=\cos ^{2} \theta \cos ^{2} \phi,\left\langle T_{Y} \mid T_{Y^{\prime}}\right\rangle^{2}=\cos ^{2} \theta \sin ^{2} \phi,\left\langle T_{Z} \mid T_{Y^{\prime}}\right\rangle^{2}=\sin ^{2} \theta, \tag{S22}\\
& \left\langle T_{X} \mid T_{Z^{\prime}}\right\rangle^{2}=\sin ^{2} \theta \cos ^{2} \phi,\left\langle T_{Y} \mid T_{Z^{\prime}}\right\rangle^{2}=\sin ^{2} \theta \sin ^{2} \phi,\left\langle T_{Z} \mid T_{Z^{\prime}}\right\rangle^{2}=\cos ^{2} \theta .
\end{align*}
$$

The time-dependent EPR spectra were computed by summing the above four $i-j$ transitions of $\boldsymbol{a}-\boldsymbol{b}, \boldsymbol{a}-\boldsymbol{c}$, $\boldsymbol{b} \boldsymbol{- c}$ and $\boldsymbol{b}-\boldsymbol{d}$ obtained at all possible equally distributed molecular orientations of $\boldsymbol{\Omega}$ with respect to the direction of \boldsymbol{B}_{0}. The powder pattern $\operatorname{SP}(t)$ of the EPR spectrum is thus represented by the sum of the Lorentzian shape functions as follows,

$$
\begin{equation*}
S P(t)=\int_{0}^{2 \pi} \int_{0}^{\pi} \sum_{i, j} \operatorname{Im} \frac{I_{i j}(t)}{\omega_{i}-\omega_{j}+\omega_{0}-\frac{i}{T_{2}}} \sin \theta_{B} d \varphi_{B} d \theta_{B} \tag{S23}
\end{equation*}
$$

where ω_{i} denotes the energy levels in the unit of angular frequency of the $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and \boldsymbol{d} levels in the CS state. (eq. S16) ω_{0} is the angular frequency of the microwave.

Figure S2. Comparison of the TREPR spectra at two time windows obtained by the photolysis of the $\mathrm{ZnP}-\mathrm{C}_{60}$. It is obvious that the peak positions (red arrows) at the early time are different from the positions (blue arrows) at the later time, indicating that the spectrum obtained at $9 \mu \mathrm{~s}$ is from different species from the excited triplet of ${ }^{3} \mathrm{C}_{60} *$. From the midpoint field value (336.565 mT) from the red arrows, $g_{\mathrm{av}}=2.0013$ was obtained. This is consistent with $g_{\mathrm{av}}=2.0014$ reported for the excited triplet state of fulleropyrollidine molecule. ${ }^{7}$ The TREPR spectrum at 9μ s is also consistent with the simulation of the EPR spectrum for the charge-separated state calculated by the g-factors of $\mathrm{C}_{60}{ }^{-}$and of $\mathrm{ZnP}^{+\bullet}$ $\left(g_{\mathrm{C} 60, \mathrm{x}}=2.00085, g_{\mathrm{C} 60, \mathrm{y}}=2.00038, g_{\mathrm{C} 60, \mathrm{z}}=1.99925, g_{\mathrm{ZnP}, \mathrm{x}}=2.00265, g_{\mathrm{ZnP}, \mathrm{y}}=2.00265\right.$ and $\left.g_{\mathrm{ZnP}, \mathrm{Z}}=2.0022\right)$ as described above.
In the optically-detected folded conformation, the CS rate constant is reported to be $\sim 4 \times 10^{9} \mathrm{~s}^{-1}$ which was obtained from the fluorescence decays of the excited singlet states of ZnP in a frozen media. ${ }^{9}$ If the optically-detected conformations were detected by the TREPR measurement, quick rise components of the CS state should be seen. We did not see any signal contributions from the CS state at the early time region ($<300 \mathrm{~ns}$) as shown in Figure 2a, indicating that the optically-detected folded conformation is not detectable by the TREPR. By using the relation $2 J=|V|^{2} / \Delta E$ as described in the manuscript, $2 J=5 \mathrm{~T}$ is calculated as the singlet-triplet energy gap when $|V|=200 \mathrm{~cm}^{-1}$ is used as reported in an optically-detected CS state of a compact $\mathrm{ZnP}-\mathrm{C}_{60}$ system. ${ }^{10}$ Under this condition that the exchange coupling is extremely larger than the Zeeman energy, no EPR transition is possible for the optically-detected CS state because of the absence of the singlet-triplet mixing. Therefore, even when the singlet RP is created in the optically detected folded conformation, the CS state cannot be detected by the TREPR and is quickly deactivated due to the fast CR process through the singlet manifold. Above arguments strongly support that the EPR conformation obtained in this study is totally different from the
optically detected conformation and that, in the CS state of the EPR conformation, the SOMO-SOMO orbitals are orthogonal, as shown in Figure 2b.

Figure S3. Time profiles of the TREPR signals at 334.1 and 338.1 mT . Initial quick decays $\left(>10^{6} \mathrm{~s}^{-1}\right)$ of the A / E signals are attributed to the decays of the $\mathrm{ZnP}-{ }_{-}^{3} \mathrm{C}_{60}{ }^{*}$ by the photoinduced CS. The rises of the initial CS state polarization (A/E) by the ESPT are hidden by the decays of to the $\mathrm{ZnP}^{-}{ }^{3} \mathrm{C}_{60}$ * signals. The slower rises $\left(\sim 2 \times 10^{5} \mathrm{~s}^{-1}\right)$ of the components of the E and the A signals are seen in this figure and are explained by the singlet $C R$ reaction to create the correlated RP spin polarization with $\mathrm{A} / \mathrm{E} / \mathrm{A} / \mathrm{E}$ pattern that is due to the $\mathrm{S}-\mathrm{T}_{0}$ mechanism. The slow decays $\left(\sim 1 \times 10^{5} \mathrm{~s}^{-1}\right)$ of the signals are attributable to the spin-lattice relaxation ($T_{1}=10 \mu$ as described in page 5) in the correlated RP. Since the singlet CR reaction is faster than the spin-lattice relaxation under the applied magnetic field, the decays of the CS state must be governed by the spin-lattice relaxation. Above data ambiguously support the kinetic data ($T_{\mathrm{bc}}=3.0 \mu \mathrm{~s}$ and $k_{\mathrm{CR}}=2.0 \times 10^{5} \mathrm{~s}^{-1}$) presented in the manuscript.

References

1. Sasaki, M.; Shibano, Y.; Tsuji, H.; Araki, Y.; Tamao, K.; Ito, O., J. Phys. Chem. A 2007, 111, 2973-2979.
2. Akiyama, K.; Tero-Kubota, S.; Ikoma, T.; Ikegami, Y., J. Am. Chem. Soc. 1994, 116, 5324-5327.
3. Closs, G. L.; Forbes, M. D. E.; Norris, J. R., J. Phys. Chem. 1987, 91, 3592-3599.
4. Morris, A. L.; Snyder, S. W.; Zhang, Y. N.; Tang, J.; Thurnauer, M. C.; Dutton, P. L.; Robertson, D. E.;

Gunner, M. R., J. Phys. Chem. 1995, 99, 3854-3866.
5. Kobori, Y.; Yamauchi, S.; Akiyama, K.; Tero-Kubota, S.; Imahori, H.; Fukuzumi, S.; Norris, J. R., Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10017-10022.
6. Fukuju, T.; Yashiro, H.; Maeda, K.; Murai, H.; Azumi, T., J. Phys. Chem. A 1997, 101, 7783-7786.
7. Bortolus, M.; Prato, M.; van Tol, J.; Maniero, A. L., Chem. Phys. Lett. 2004, 398, 228-234.
8. Fuhs, M.; Elger, G.; Mobius, K.; Osintsev, A.; Popov, A.; Kurreck, H., Mol. Phys. 2000, 98, 1025-1040.
9.Tsuji, H.; Sasaki, M.; Shibano, Y.; Toganoh, M.; Kataoka, T.; Araki, Y.; Tamao, K.; Ito, O., Bull. Chem. Soc. Jpn. 2006, 79, 1338-1346.
10. Imahori, H.; Tkachenko, N. V.; Vehmanen, V.; Tamaki, K.; Lemmetyinen, H.; Sakata, Y.; Fukuzumi, S., J. Phys. Chem. A 2001, 105, 1750-1756.

