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Sample preparation 

Whole individual fluid catalytic cracking (FCC) equilibrium catalyst (ECAT) particles were 

fixed in a gel cap with Epofix™ resin and allowed to harden overnight in an oven at 60°. The 

hardened samples were then cut into 500 nm thin sections using an Ultracut E Reichert-Jung 

microtome (Leica) equipped with a glass knife. The samples were collected and placed on to a 

previously glow-discharged, Formvar coated copper electron microscopy (EM) grid with 50-

mesh size.  
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Ptychography 

Ptychography is a coherent diffraction imaging technique in which extended samples can be 

studied by raster scanning the sample through the incident coherent X-ray beam, recording the 

far-field diffraction pattern at each sample position. Iterative phase reconstruction algorithms are 

then employed to reconstruct the complex index of refraction of the material, generating high-

resolution images utilizing the phase and absorption contrast. Each sample position overlaps with 

its neighbor, providing the real-space constraint required to reconstruct the phase.
1,2

  

Ptychography data were collected at the bending magnet beamline 5.3.2.1 of the Advanced 

Light Source, Lawrence Berkeley National Laboratory. Beamline 5.3.2.1 is a scanning 

transmission X-ray microscope beamline
3
 which has been adapted to enable the collection of 

ptychographic data by the installation of a custom developed high frame rate CCD camera. All 

data, both scanning transmission X-ray microscopy (STXM) and ptychography, were recorded 

using a zone plate with 100 nm outer zone width to define a beam size of 100 nm on the sample. 

STXM data were collected with a dwell time of 5 ms, whereas a 500 ms exposure time was used 

for the collection of each scattering pattern for ptychography. A step size of 70 nm was used for 

ptychography to provide sufficient overlap of the sample positions for the reconstruction. 

Scattering patterns were processed as described previously
4
 and data were reconstructed to 

obtain images with a pixel size of 4.6 nm using the SHARP-CAMERA software package.
5
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Elemental Distribution 

Ptychography images recorded over a 7 µm x 7 µm region at the La M5 and Fe L3 absorption 

edges were aligned using the StackReg
6
 plugin in ImageJ.

7
 The images were converted from 

absorption intensity to optical density (OD), where the OD is a product of the linear absorption 

coefficient and the sample thickness. Difference maps were created to identify the location of La 

and Fe by subtracting the pre-edge image from the post-edge image (710 eV – 704 eV to isolate 

Fe, 834.5 eV – 830 eV for La). The difference maps were then combined to create the La and Fe 

distribution map using the RGBT_PhaseMap feature in TXMWizard.
8
  

Image Resolution 

The resolution of the reconstructed ptychography images was estimated by fitting a Gaussian 

curve to a lineout across a high contrast feature. The full width at half maximum (FWHM) of the 

Gaussian fit was taken as the resolution. Because the image of a feature is the convolution of the 

imaging point spread function with the feature, this method of determining the resolution is very 

conservative and the true imaging resolution could be much smaller. Since the resolution is 

dependent on the energy, an estimate was calculated at the La edge (Figure S1) and the Fe edge 

(Figure S2). The resolution at the La edge is estimated to be 12. 6 nm and 12.5 nm at the Fe 

edge.  
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Figure S1. Resolution at the La edge (834.5 eV) is estimated to be 12.6 nm or better. It was 

calculated fitting a Gaussian curve (right) to a lineout (left, yellow line) across a high contrast 

feature. 

 

Figure S2. Resolution at the Fe edge (710 eV) is estimated to be 12.5 nm or better. It was 

calculated fitting Gaussian curves (right) to lineouts (left, yellow line) across two different high 

contrast features. 
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An alternative method of estimating the imaging resolution employs the Fourier ring 

correlation (FRC), also called spatial frequency correlation function. Here the normalized cross-

correlation coefficient between two 2D images is calculated. The two images were reconstructed 

from two independent datasets by taking data from every other column.
9
 Since only half the data 

is used for each independent reconstruction, the overlap between data spots is reduced. Thus the 

quality of the two reconstructed images is lower. Determining the cutoff frequency to establish 

the imaging resolution is rather arbitrary; however, we have chosen halfway between the 0.5 and 

half-bit thresholds. This gives a spatial resolution of 12.2 nm at the La edge (Figure S3) and 14.2 

nm at the Fe edge (Figure S4), which are in good agreement with the previous resolution 

estimates.  

 

Figure S3. Plot of the Fourier ring correlation function at the La edge (834.5 eV). If the cutoff 

frequency is chosen to be halfway between the 0.5 and half-bit threshold, the estimated 

resolution is 12.2 nm.  
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Figure S4. Plot of the Fourier ring correlation function at the Fe edge (710 eV). If the cutoff 

frequency is chosen to be halfway between the 0.5 and half-bit threshold, the estimated 

resolution is 14.2 nm.  
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La Domain Size Analysis 

 

Figure S5 shows the La M5 edge map with each zeolite domains visible. Green markers are 

overlaid to indicate the centroid, or geometrical center of the zeolite domains. The unique 

domains were determined by performing a watershed algorithm on the masked La edge map. The 

result from the watershed algorithm was further refined manually to concatenate zones that were 

over-segmented.  

 

 

Figure S5. La zeolite domains with green markers indicating the centroid of the domains. 
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Fe L3 NEXAFS Data Processing 

Intensity stacks at the Fe L3 edge were aligned using the aXis 2000 software package. 

Alignment was performed iteratively using a Fourier transform cross-correlation algorithm in 

order to align each preceding image in the stack until the resulting alignment correction was at 

the sub-pixel level.  The images were converted from absorption intensity (A) in to optical 

density (OD), where the OD is a product of the linear absorption coefficient and the sample 

thickness.  

 

Principle Component Analysis and Clustering of the Spectromicroscopic Data Set 

To study possible differences in Fe chemical states and their spatial distribution we performed 

principal component analysis (PCA) and subsequent clustering.
10-13

 The recorded data set 

consisted of 41 images (41 energies) of 436 x 488 pixels. The data matrix therefore contained 

212768 single pixel X-ray absorption spectra consisting of 41 energy points, i.e. every pixel 

represents a data point in 41-dimensional space. 

In the first step, to minimize any influence of differences in the average intensity of the pre-

edge region on PCA and clustering, a simple offset correction was applied to each single pixel 

NEXAFS. In this procedure, the average pre-edge intensity in the energy interval 700.0 eV to 

704.0 eV was determined and subtracted from each NEXAFS individually. 

In the second step, to remove spectra showing no or very low relative Fe concentrations (i.e. 

absorption edge-jumps), the data set was filtered using the relative Fe concentration map (the Fe 

edge jump map, Figure S6a). The relative Fe concentration map was determined by integrating 

the recorded X-ray intensities in the energy interval from 707.3 eV to 711.3 eV. Then pixels with 
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integrated intensities of smaller or equal to zero were removed. (Negative values originated from 

the offset correction performed in step 1). 

In the third step PCA
14,15

 using singular value decomposition (SVD) of the offset corrected, 

filtered, and mean centered data matrix A was employed to reduce the data set from 41 to 3 

dimensions, using the first 3 principal components (PCs). This can be done without losing 

significant information because the first few principal components explain most of the data's 

variance. For SVD the so called economy sized decomposition was used, saving both calculation 

time and computer storage by calculating only the first E columns of U and producing the same 

matrix V but the matrix S with reduced dimensions E x E: 

‘regular’ SVD:    Ap x E = Up x p · Sp x E · V
T

E x E   [1] 

‘economy sized’ SVD:   Ap x E = Up x E · SE x E · V
T

E x E   [2] 

where the indices p and E indicate number of pixels and energies respectively. 

Here, the matrix U has orthogonal columns, the matrix V has orthonormal rows, and the matrix 

S is a diagonal matrix containing the singular values. When using SVD for PCA, the eigenvalues 

of the data matrix A are given by λ1..E = S
2
, and the eigenvectors are the columns of V. When 

working with spectroscopic image data these eigenvectors are commonly called eigenspectra. 

Correspondingly, the columns of U can be reshaped into images and are called eigenimages. 

In our case, the first 3 PCs explained more than 81% of the cumulative variance in the data 

(Figure S4a). The choice of using the first 3 PCs was further based on the inspection of the 

eigenspectra and eigenimages (Figure S6b, c), which showed that only the first two eigenimages 

showed spatial pattern with significant intensities. Correspondingly, eigenspectra above the 3
rd

 

PC contained mainly noise and were therefore not used for clustering. As a result each data point 

(pixel) was described by 3 PCs (parameters), i.e. projected to 3-dimensional principal component 
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space (called ‘score plot’ in the following). Because the PCs are oriented to best describe the 

spread in the data this projection highlights the pattern explained by the captured variance and 

effectively reduces noise, which is described by PCs having indices larger than 3. The distance 

between data points in the score plot is a direct measure of the similarity of the NEXAFS, i.e. the 

chemical phase, and can be used to cluster pixels according to their (Euclidean) distances from 

cluster centers, for example by using the centroid linkage method for k-means clustering.
16,17

 

Such clustering therefore results in an image segmentation into k regions of similar NEXAFS, 

i.e. Fe chemical state. 
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Figure S6. Principal component analysis of the spectromicroscopic data set. In (a) the 

percent cumulative variance explained (CVE) is plotted for all 41 principal components (PC). 

Panel (b) shows the first 6 eigenspectra and panel (c) reports the first 4 eigenimages after PCA. 
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In k-means clustering the number of clusters k has to be assigned manually and has to be equal 

or larger to the number of PCs used (here 3). However, in order to exploit all the information 

provided by the reduced PC space, the data was, in the fourth step, intentionally over-clustered 

using k = 6. This typically results in a more sensitive image segmentation that is able to capture 

gradual changes in chemistry, i.e. phase gradients in the sample. The result of the image 

segmentation by k-means clustering is reported in Figure S7a. It is obvious from the segmented 

score plot (Figure S7b) that k-means clustering is not able to effectively segment areas of 

different point density in the score plot. Cluster 2 (red), for example, contains pixels of very low 

Fe concentrations, which are expected to be located mainly in the lower right corner of the 

image, i.e. outside the sample. However, this cluster also contains many pixels located in the 

body of the particle, and the average NEXAFS of this cluster (Figure S7c) shows that these 

pixels still produce a weak but appreciable signal.  
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Figure S7. Result of k-means clustering in PC space. Panel (a) reports the resulting image 

segmentation based on the k-means clustering of the score plot using 6 clusters (b). In (c) the 

average NEXAFS of each cluster is plotted, showing significant differences in the Fe chemical 

state of different clusters. 
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In the fifth and final step, in order to improve the k-means clustering, we therefore performed a 

density based clustering of the reduced data set using the k-means result as an initial guess for a 

Gaussian Mixture Model (GMM) and employing an expectation-maximization (EM) algorithm 

to iteratively refine the solution.
18

 The result of this clustering refinement provides the same 

number of clusters but is based on the point density in PC space (i.e. in the score plot). 

Furthermore, because the distribution is now described by set of overlapping Gaussians, each 

data point (pixel) is assigned a class membership value, indicating the degree (or weight) to 

which it belongs to a certain cluster. The latter is especially useful when calculating the (now 

weighted) average NEXAFS of each cluster, where this class membership value can be used as a 

weight for each pixel, determining how much each pixel contributes to the average NEXAFS of 

the cluster. 

The result of the GMM clustering refinement is reported in Figure S8. It is clear from both the 

segmentation of the score plot and the image that this approach improved the segmentation 

significantly.  
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Figure S8. Result of density based clustering in PC space. Panel (a) reports the final image 

segmentation based on the density based clustering of the score plot (b) using a Gaussian 

Mixture Model (GMM) and the k-means clustering reported in Figure S7 as initial guess. In (c) 

the weighted average NEXAFS of each cluster is plotted, using the class membership values 

obtained from GMM as weights.  
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Linear Combination Fitting  

To estimate the amount of Fe
2+

 and Fe
3+

 present in the FCC particle sample, a linear least 

squares fit at each pixel in the Fe L3 image stack (700 – 716.9 eV) was performed. Reference 

spectra for FeO and Fe2O3 
19

 were used to estimate the ratio of Fe
2+

 and Fe
3+

 in each pixel by 

minimizing the difference between the left-hand side and right-hand side of the equation at each 

pixel (i, j): 

G(i, j) = a0(i, j) + Σn an(i, j) x Gn [1] 

Where G(i, j) the raw intensity at each pixel, ai is the effective thickness of the reference 

spectrum Gn and a0 is a constant background.  

The results of the LCF were used to generate maps of Fe
2+

 and Fe
3+

 intensity (Figure 5, A and 

B), which were rescaled and combined to create the phase map (Figure 5C) showing the 

distribution of Fe species. The quality of the fit at each pixel was assessed using an R-squared 

value, with 1 corresponding to a perfect fit. The resulting map of R-squared values is shown in 

Figure S9. As can be seen from the map, the goodness-of-fit decreases towards the center of the 

particle – this is due to the lower concentration of Fe present in this region. The spectra of pixels 

identified as predominantly Fe
2+

 or Fe
3+

 are shown in Figure S10, along with the FeO and Fe2O3 

reference spectra, with good agreement seen between peak positions.  
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Figure S9. Map of R-squared values relating to the goodness-of-fit of the linear combination 

fitting of Fe species. 

 

Figure S10. NEXAFS spectra from pixels identified as predominantly Fe
2+

 or Fe
3+

 compared 

with the FeO and Fe2O3 reference spectra. 



 18

References: 

 

(1) Thibault, P.; Dierolf, M.; Menzel, A.; Bunk, O.; David, C.; Pfeiffer, F. Science 2008, 321, 

379-382. 

(2) Rodenburg, J. M.; Hurst, A. C.; Cullis, A. G.; Dobson, B. R.; Pfeiffer, F.; Bunk, O.; 

David, C.; Jefimovs, K.; Johnson, I.; Phys. Rev. Lett. 2007, 98, 034801, 1-4. 

(3) Kilcoyne, A. L. D.; Tyliszczak, T.; Steele, W. F.; Fakra, S.; Hitchcock, P.; Franck, K.; 

Anderson, E.; Harteneck, B.; Rightor, E. G.; Mitchell, G. E.; Hitchcock, A. P.; Yang, L.; 

Warwick, T.; Ade, H. J. Synchrotron Radiat. 2003, 10, 125-136. 

(4) Shapiro, D. A.; Yu, Y.-S.; Tyliszczak, T.; Cabana, J.; Celestre, R.; Chao, W.; 

Kaznatcheev, K.; Kilcoyne, A. L. D.; Maia, F.; Marchesini, S.; Meng, Y. S.; Warwick, 

T.; Yang, L. L.; Padmore, H. A. Nat. Photonics 2014, 8, 765-769. 

(5) Marchesini, S.; Schirotzek, A.; Yang, C.; Wu, H.-t.; Maia, F. Inverse Probl. 2013, 29, 

115009. 

(6) Thevenaz, P.; Ruttimann, U. E.; Unser, M. IEEE Trans. Image Process. 1998, 7, 27-41. 

(7) Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. Nat. Meth. 2012, 9, 671-675. 

(8) Liu, Y.; Meirer, F.; Williams, P. A.; Wang, J.; Andrews, J. C.; Pianetta, P. J. Synchrotron 

Radiat. 2012, 19, 281-287. 

(9) Deng,  J.; Vine, D. J.; Chen, S.; Nashed, Y. S. G.; Jin, Q.; Phillips, N. W.; Peterka, T.; 

Ross, R.; Vogt, S.; Jacobsen, C. J. Proc. Natl. Acad. Sci. 2015, 112, 2314-2319. 

(10) Lerotic, M.; Jacobsen, C.; Schäfer, T.; Vogt, S.; Ultramicroscopy 2004, 100, 35-57. 

(11) Boesenberg, U.; Meirer, F.; Liu, Y. J.; Shukla, A. K.; Dell'Anna, R.; Tyliszczak, T.;  

Chen, G. Y.; Andrews, J. C.; Richardson, T. J.; Kostecki, R.; Cabana, J. Chem. Mater. 

2013, 25, 1664–1672. 

(12) Meirer, F.; Liu, Y.; Pouyet, E.; Fayard, B.; Cotte, M.; Sanchez, C.; Andrews, J. C.; 

Mehta, A.; Sciau, P. J. Anal. At. Spectrom. 2013, 28, 1870–1883. 

(13) Lerotic, M.; Mak, R.; Wirick, S.; Meirer, F.; Jacobsen, C. J. Synchrotron Radiat. 2014, 

21, 1206-1212. 

(14) Joliffe, I. T. Principal Component Analysis, 2
nd

 ed.; Springer-Verlag: New York, 2002. 

(15) Jackson, J. E. A User's Guide to Principal Components; Wiley: Chichester, 2004. 

 (16) MacQueen, J. B. Some Methods for Classification and Analysis of Multivariate 

Observations, Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., Univ. of Calif. 

Press 1967, 1, 281-297. 

(17) Johnson R. A.;Wichern, D. W. Applied Multivariate Statistical Analysis, 5
th

 ed.; Pearson: 

Upper Saddle River, NJ, 2002. 

(18) Bishop, C. Pattern Recognition and Machine Learning; Springer-Verlag: New York, 

2006. 

(19) Regan, T. J.; Ohldag, H.; Stamm, C.; Nolting, F.; Lüning, J.; Stöhr, J.; White, R. L. Phys. 

Rev. B 2001, 64, 214422. 

 


