Supporting Information Cover Sheet

Physicochemical Properties of Aqueous Solutions of 2-Amino-2-hydroxymethyl-1,3propanediol

Subham Paul, Aloke K. Ghoshal, and Bishnupada Mandal*

Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.

*Corresponding author phone: +91-361-2582256; fax: +91-361-2582291; e-mail bpmandal@iitg.ernet.in

Number of pages: 10 Number of figures: 8 Figure S1 shows the variation of density of (AHPD + H_2O) solutions at various temperatures.

Figure S2 shows the variation of viscosity of (AHPD + H_2O) solutions at various temperatures.

Figure S3 shows the variation of Henry's law constant of CO₂ in water as a function of temperature.

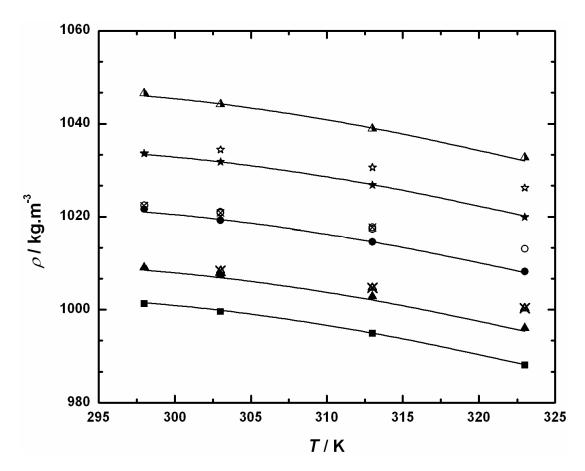

Figure S4 shows the variation of Henry's law constant of N_2O in water as a function of temperature.

Figure S5 shows the variation of Henry's law constant of N_2O in (AHPD + H_2O) solutions at various temperatures.

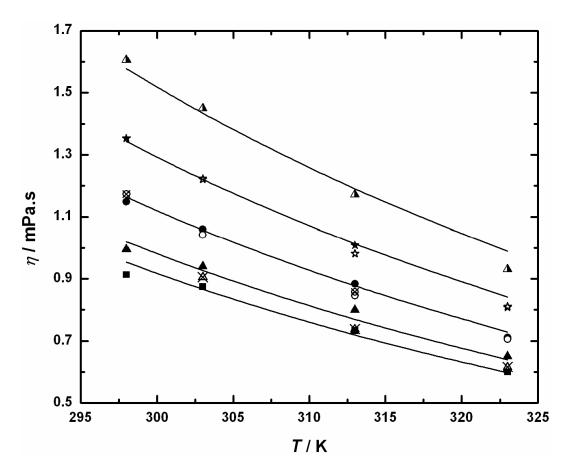
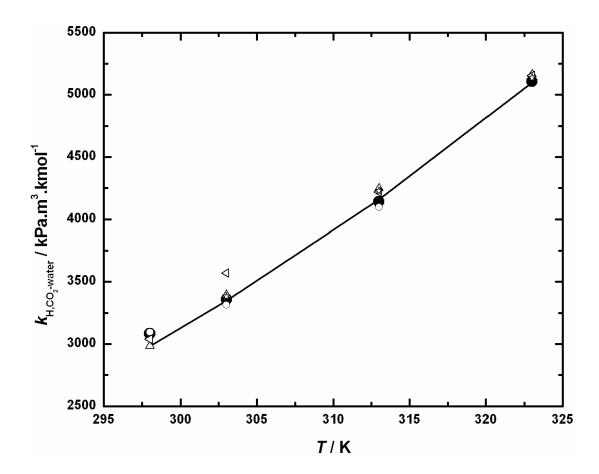
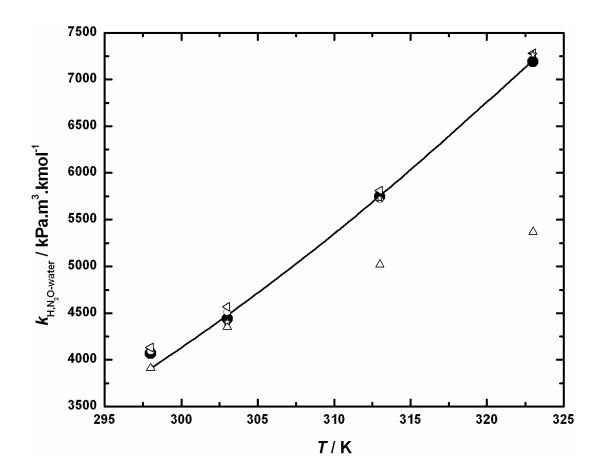
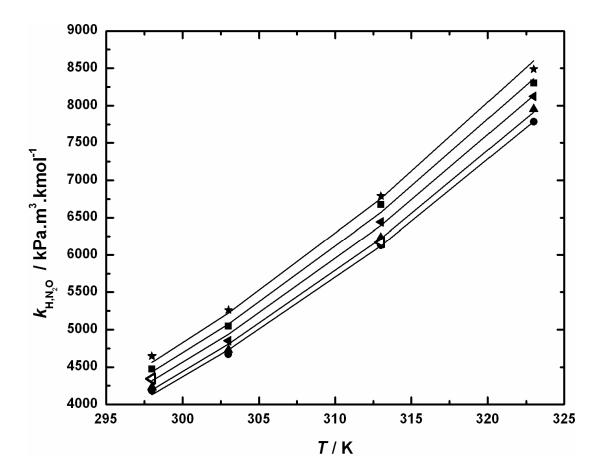
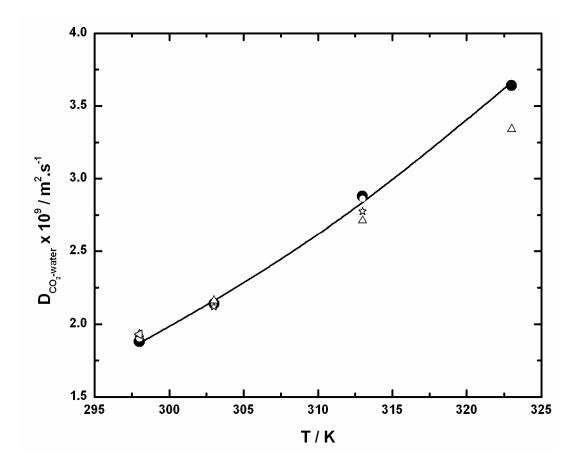

Figure S6 shows the variation of diffusivity of CO₂ in water as a function of temperature.

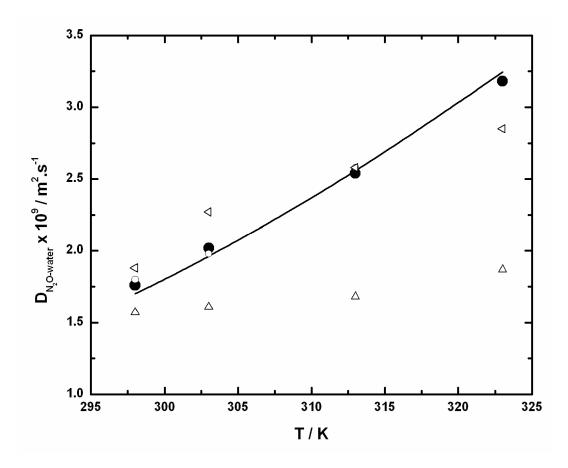
Figure S7 shows the variation of diffusivity of N₂O in water as a function of temperature.


Figure S8 shows the variation of diffusivity of N_2O in (AHPD + H_2O) solutions at various temperatures.


Figure S1. Density of (AHPD + H₂O) solutions at various temperatures: \blacksquare , $w_1 = 2.17$, this study; \triangle , $w_1 = 5.10$, this study; \triangle , $w_1 = 5.00$, Park et al.⁹; \bullet , $w_1 = 10.3$, this study; \circ , $w_1 = 10.0$, Park et al.⁹; \triangle , $w_1 = 10.0$, Tourneux et al.¹⁰; \bigstar , $w_1 = 15.8$, this study; \bigstar , $w_1 = 15.0$, Park et al.⁹; \triangle , $w_1 = 21.7$, this study; —, calculated by eq 3.


Figure S2. Viscosity of (AHPD + H₂O) solutions at various temperatures: \blacksquare , $w_1 = 2.17$, this study; \triangle , $w_1 = 5.10$, this study; \triangle , $w_1 = 5.00$, Park et al.⁹; \bullet , $w_1 = 10.3$, this study; \circ , $w_1 = 10.0$, Park et al.⁹; \triangle , $w_1 = 15.0$, Park et al.⁹; \triangle , $w_1 = 15.0$, Park et al.⁹; \triangle , $w_1 = 21.7$, this study; —, calculated by eq 4.


Figure S3. Henry's law constant of CO_2 in water as a function of temperature: •, this study; \circ , Mandal et al.; 16 \triangle , Al-Ghawas et al.; 17 \triangleleft , Versteeg and van Swaaij; 18 \bigstar , Li and Lai; 19 —, calculated by eq 5.


Figure S4. Henry's law constant of N_2O in water as a function of temperature: •, this study; \circ , Mandal et al.; 16 \triangle , Al-Ghawas et al.; 17 \triangleleft , Versteeg and van Swaaij; 18 \bigstar , Li and Lai; 19 —, calculated by eq 6.

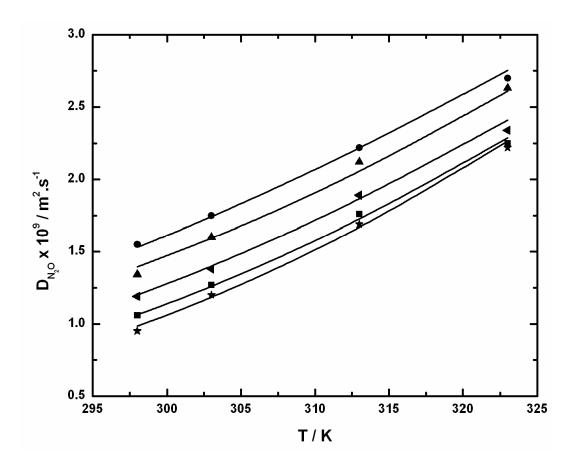

Figure S5. Henry's law constant of N₂O in (AHPD + H₂O) solutions at various temperatures: •, $w_1 = 2.17$, this study; ▲, $w_1 = 5.10$, this study; ◄, $w_1 = 10.3$, this study; \triangleleft , $w_1 = 10.0$, Tourneux et al.¹⁰; ■, $w_1 = 15.8$, this study; ★, this study; $w_1 = 21.7$, this study; —, calculated by eq 7.

Figure S6. Diffusivity of CO_2 in water as a function of temperature: \bullet , this study; \circ , Mandal et al.; 16 \triangle , Al-Ghawas et al.; 17 \triangleleft , Versteeg and van Swaaij; 18 \bigstar , Li and Lai; 19 —, calculated by eq 8.

Figure S7. Diffusivity of N_2O in water as a function of temperature: •, this study; O, Mandal et al.; 16 \triangle , Al-Ghawas et al.; 17 \triangleleft , Versteeg and van Swaaij; 18 —, calculated by eq 9.

Figure S8. Diffusivity of N₂O in (AHPD + H₂O) solutions at various temperatures: •, $w_1 = 2.17$; \blacktriangle , $w_1 = 5.10$; \blacktriangleleft , $w_1 = 10.3$; \blacksquare , $w_1 = 15.8$; \bigstar , $w_1 = 21.7$; —, calculated by eq 10.