Supporting Information

The Effect of Alkynyl Groups on Torquoselectivity. Highly Stereoselective Olefination of Alkynyl Ketones with Ynolates

Takashi Yoshikawa, Seiji Mori, Mitsuru Shindo*

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga 816-8580, Japan, Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga

816-8580, Japan

EXPERIMENTAL

Materials. tert-Butyllithium was titrated with diphenylacetic acid.
General Procedures. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were measured in CDCl_{3} solution and referenced to TMS (0.00 ppm) using JEOL JNM-LA $400(400 \mathrm{MHz})$ and JNM-ECA $600(600 \mathrm{MHz})$ spectrometers, unless otherwise noted. ${ }^{13} \mathrm{C}$-NMR spectra were measure in CDCl_{3} solution and referenced to CDCl_{3} (77.0 ppm) using JEOL JNM-LA 400 (100 MHz). IR spectra were recorded on SHIMADZU FTIR8300 spectrometer. Mass spectra were obtained on a JEOL JMS-700. Column chromatography was performed on silica gel (Kanto Chemical Co.). Thin-layer chromatography was performed on precoated plates (0.25 mm , silica gel Merck $60 \mathrm{~F}_{254}$). All reactions were performed in oven-dried glassware under positive pressure of argon, unless otherwise noted. Reaction mixtures were stirred magnetically. Solutions of alkyllithium reagents were transferred by syringe of cannula and were introduced into reaction vessels through rubber septa. The stereochemistry was determined by nOe experiments, unless otherwise noted.

The known compounds (1-phenylhept-1-yn-3-one 2a, ${ }^{[1]} 1$-(4-methoxybenzyloxy)-buty-3-yn, ${ }^{[2]}$ 1,3diphenylpropynone $\mathbf{2 h},{ }^{[4]}$ and 4,4-dimethyl-1-phenylpent-2-yn-1-one $\mathbf{2 i}{ }^{[5]}$) were prepared according to the literatures.

Preparation of alkynylketones (2) (Table 1)

General procedure for preparation of alkynyl alcohol. A solution of lithium diisopropylamide (1.1 eq) was generated in THF (12 ml) from diisopropylamine $(0.463 \mathrm{ml}, 3.3 \mathrm{mmol})$ and $n-\mathrm{BuLi}(1.33 \mathrm{ml}$, $3.3 \mathrm{mmol}, 2.48 \mathrm{M}$ in Hex.) at $-78^{\circ} \mathrm{C}$. To this solution, the alkyne ($246 \mathrm{mg}, 3.0 \mathrm{mmol}$) in HMPA $(1.96 \mathrm{ml}, 11.3 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h , at which time the aldehyde ($350 \mathrm{mg}, 3.3 \mathrm{mmol}$) in THF (3 ml) was added. The mixture was stirred at same temperature for 1.5 h , and then warmed to room temperature over 1 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with 1 M HCl solution, a saturated NaHCO_{3} solution, brine, dried over MgSO_{4}, filtered and concentrated to give residue, which was purified by column chromatography to afford the alcohol.

General procedure for oxidation of alkynyl alcohol with $\mathbf{M n O}_{2}$. A mixture of the alcohol (1.15 $\mathrm{mmol})$, manganese dioxide $(3.54 \mathrm{~g}, 34.6 \mathrm{mmol})$, and $\mathrm{CHCl}_{3}(11.5 \mathrm{ml})$ was stirred under reflux. The resulting mixture was filtered and concentrated to give a residue, which was purified by column chromatography to afford the ketone.

2,2-Dimethylnon-3-yn-5-ol : According to the preparation of alkynyl alcohol, the alkynyl alcohol (72\%) was obtained from 3,3-dimethyl-1-butyne and valeraldehyde as a colorless oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.70(\mathrm{~m}, 3 \mathrm{H}), 4.34(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.9(\mathrm{q}), 22.3(\mathrm{t}), 27.2(\mathrm{~s}), 27.3(\mathrm{t}), 30.9(\mathrm{qx} 3)$, 37.8 (t), 62.4 (d), 79.8 (s$), 93.5$ (s); IR (Neat): $3335 \mathrm{~cm}^{-1}, 2237 \mathrm{~cm}^{-1}$; MS (EI) m/z 168 (M M^{+}), 111 (100\%); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}: 168.1514$, found: 168.1516.

2,2-Dimethylnon-3-yn-5-one (2b): According to the oxidation of alkynyl alcohol with MnO_{2}, the alkynyl ketone $\mathbf{2 b}$ (47%) was obtained from the alkynyl alcohol as a pale yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.7(\mathrm{q}), 22.0(\mathrm{t}), 26.1(\mathrm{t}), 27.6(\mathrm{~s}), 30.0(\mathrm{q} \mathrm{x} \mathrm{3})$, 45.1 (t), 79.2 (s), 101.2 (s), 188.5 (s); IR (Neat): $2212 \mathrm{~cm}^{-1}, 1674 \mathrm{~cm}^{-1}$; MS (EI) m/z 166 (M M^{+}), 109 (100\%); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}: 166.1358$, found: 166.1359.

1-(4-Methoxybenzyloxy)non-3-yn-5-ol : According to preparation of alkynyl alcohol, the alkynyl alcohol (42\%) was obtained from 1-(4-methoxybenzyloxy)-buty-3-yn ${ }^{[2]}$ and valeraldehyde as a pale yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.72(\mathrm{~m}$, $3 \mathrm{H}), 2.52(\mathrm{dt}, J=2.0 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.48(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 14.0$ (q), 20.1 (t), 22.4 (t), $27.3(t), 37.7(t), 55.2(q), 62.6(d), 68.1(t), 72.6(t), 82.0(\mathrm{~s}), 82.4(\mathrm{~s}), 113.8(\mathrm{~d}$ x 2), 129.3 (d x 2), 130.1 (s), 159.2 (s) IR (Neat): $3418 \mathrm{~cm}^{-1}, 2230 \mathrm{~cm}^{-1}$; MS (EI) m/z 276 (M M^{+}), 121 (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$: 276.1725, found: 276.1723.

1-(4-Methoxybenzyloxy)non-3-yn-5-one (2c): According to oxidation of alkynyl alcohol with MnO_{2}, the alkynyl ketone 2c (53\%) was obtained from the alkynyl alcohol as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.91$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.29-1.39 (m, 2H), 1.59-1.68 (m, 2H), 2.53 (t, J $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.6(\mathrm{q}), 20.2(\mathrm{t}), 21.9(\mathrm{t})$, $25.9(\mathrm{t}), 45.0(\mathrm{t}), 55.0(\mathrm{q}), 66.7(\mathrm{t}), 72.5(\mathrm{t}), 81.2(\mathrm{~s}), 90.4(\mathrm{~s}), 113.6(\mathrm{~d}$ x 2), $114.1(\mathrm{~s}), 129.1(\mathrm{~d}$ x 2$)$, 129.6 (s), 159.2 (s), 188.0 (s); IR (Neat): $2216 \mathrm{~cm}^{-1}, 1674 \mathrm{~cm}^{-1}$; MS (EI) m/z 274 (M^{+}), 121 (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}: 274.1569$, found: 274.1571.

1-(tert-Butyldimethylsilanyl)hept-1-yn-3-ol : According to preparation of alkynyl alcohol, the alkynyl alcohol (90\%) was obtained from tert-butyldimethylsilyl acetylene and valeraldehyde as a pale yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H})$, 1.31-1.55 (m, 4H), 1.64-1.77 (m, 3H), $4.36(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta:-4.7(q \times 2), 13.9(q), 16.4(\mathrm{~s}), 22.3(\mathrm{t}), 26.0(\mathrm{q} \mathrm{x} \mathrm{3}), 27.3(\mathrm{t}), 37.5(\mathrm{t}), 62.8(\mathrm{~d}), 87.4(\mathrm{~s}), 107.7(\mathrm{~s}) ;$ IR (Neat): $3323 \mathrm{~cm}^{-1}, 2172 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 226\left(\mathrm{M}^{+}\right), 75$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{OSi}: 226.1753$, found: 226.1756 .

1-(tert-Butyldimethylsilanyl)hept-1-yn-3-one (2d): According to oxidation of alkynyl alcohol with MnO_{2}, the alkynyl ketone $\mathbf{2 d}(77 \%)$ was obtained from the alkynyl alcohol as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.41(\mathrm{~m}, 2 \mathrm{H})$,
1.63-1.70 (m, 2H), $2.55(\mathrm{q}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-5.2(\mathrm{q} \times 2), 13.7(\mathrm{q})$, $16.5(\mathrm{~s}), 22.0(\mathrm{t}), 25.9(\mathrm{q} \mathrm{x} \mathrm{3}), 26.1(\mathrm{t}), 45.1(\mathrm{t}), 96.4(\mathrm{~s}), 102.8(\mathrm{~s}), 187.9(\mathrm{~s}) ;$ IR (Neat): $2151 \mathrm{~cm}^{-1}$, $1682 \mathrm{~cm}^{-1}$; MS (EI) m/z $224\left(\mathrm{M}^{+}\right), 168$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{OSi}$: 224.1596, found: 224.1595.

Synthesis of acylsilane $2 \mathbf{f}^{[3]}$

3-(tert-Butyldimethylsilanyl)-1-trimethylsilanylprop-2-yn-1-ol : To a solution of oxalyl chloride $(0.456 \mathrm{ml}, 5.25 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was added dimethyl sulfoxide $(0.390 \mathrm{ml}, 5.5 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $-40^{\circ} \mathrm{C}$ and stirred for 0.5 h . The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$, and (trimethylsilyl)methanol ($0.631 \mathrm{ml}, 5.0 \mathrm{mmol}$) was added dropwise. The mixture was warmed to $-40^{\circ} \mathrm{C}$ and stirred for 1.5 h . After cooling to $-78{ }^{\circ} \mathrm{C}$, triethylamine $(3.48 \mathrm{ml}$, 25 mmol) was added dropwise. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and warmed to $0{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$, and 10 mmol of lithium tert-butyldimethylsilyl acetylide (prepared from tert-butyldimethylsilyl acetylene and lithium diisopropylamide) was added. After the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}, 30 \mathrm{ml}$ of water and ether were added and the mixture was allowed to warm to room temperature. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with brine, dried over MgSO_{4}, filtered and concentrated to give a residue, which was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=85 / 15$) to afford the alcohol $(809 \mathrm{mg}, 67 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.11(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-4.5$ (q), -4.5 (q), -4.3 (q x 3), 16.5 (s), 26.1 (q x 3), 57.2 (d), 90.4 (s), 107.3 (s); IR (Neat): $3383 \mathrm{~cm}^{-1}, 2154 \mathrm{~cm}^{-1}$; MS (EI) m/z 242 $\left(\mathrm{M}^{+}\right), 73(100 \%) ;$ HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{OSi}_{2}$: 242.1522, found: 242.1516 .

3-(tert-Butyldimethylsilanyl)-1-trimethylsilanylpropynone (2f): To a solution of oxalyl chloride ($0.395 \mathrm{ml}, 4.55 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added dimethyl sulfoxide ($0.366 \mathrm{ml}, 5.15 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$. After $0.5 \mathrm{~h}, 3$-(tert-butyldimethylsilanyl)-1-trimethylsilanylprop-2-yn-1-ol (736, 3.03 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added dropwise. The mixture was stirred for 0.5 h , triethylamine
$(2.11 \mathrm{ml}, 15.2 \mathrm{mmol})$ was added dropwise. After the mixture was stirred for 4 h at $-78^{\circ} \mathrm{C}$, water was added and the mixture was allowed to warmed to room temperature. The solution was concentrated in vacuo and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a residue, which was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=90 / 10$) to afford the ketone $2 \mathrm{f}(565 \mathrm{mg}, 78 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $\delta: 0.19(\mathrm{~s}, 6 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-5.1(\mathrm{q} \times 2),-3.7$ (q x 3), $16.5(\mathrm{~s}), 26.0(\mathrm{q} \times 3), 105.5(\mathrm{~s}), 106.0(\mathrm{~s}), 227.0(\mathrm{~s}) ;$ IR (Neat): $2131 \mathrm{~cm}^{-1}, 1601 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI) $m / z 240\left(\mathrm{M}^{+}\right), 155(100 \%)$; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{OSi}_{2}$: 240.1366, found: 240.1363 .

5-(tert-Butyldimethylsilanyl)-1-phenylpent-1-en-4-yn-3-ol : To a tert-butyldimethylsilyl acetylene ($982 \mathrm{mg}, 7.0 \mathrm{mmol}$) in THF (15 ml) was added $n-\mathrm{BuLi}(2.82 \mathrm{ml}, 7.0 \mathrm{mmol}, 2.48 \mathrm{M}$ in Hex.) at $78{ }^{\circ} \mathrm{C}$. After 1.5 h , trans-cinnamaldehyde $(925 \mathrm{mg}, 7.0 \mathrm{mmol})$ in THF (3 ml) was added. The mixture was stirred at same temperature for 1.5 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the mixture was allowed to warmed to room temperature. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine, dried over MgSO_{4}, filtered and concentrated to give residue, which was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=90 / 10$) to afford the alcohol $(1.69 \mathrm{~g}, 89 \%)$ as a pale yellow needle: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.15(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-$ $7.42(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-4.7(\mathrm{q} \times 2), 16.4$ (s), $26.0(\mathrm{q} \times 3), 63.2$ (d), 89.6 (s$)$, 104.9 (s), 126.8 (d), 127.9 (d), 128.0 (d), 128.6 (d), 132.0 (d), 136.1 (s$) ;$ IR (KBr): $3281 \mathrm{~cm}^{-1}, 2168$ cm^{-1}; MS (EI) $\mathrm{m} / \mathrm{z} 272\left(\mathrm{M}^{+}\right), 215$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{OSi}$ 272.1596, found: 272.1600 .

5-(tert-Butyldimethylsilanyl)-1-phenylpent-1-en-4-yn-3-one (2g): According to oxidation of alkynyl alcohol with MnO_{2}, the alkynyl ketone $\mathbf{2 g}$ (86\%) was obtained from the alkynyl alcohol as a green oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.25(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-$ $7.57(\mathrm{~m}, 5 \mathrm{H}), 7.88(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-5.1(\mathrm{q} \times 2), 16.6(\mathrm{~s}), 26.0$ ($\mathrm{q} \times 3$), 97.4 (s), 101.2 (s$), 128.3$ (d), 128.6 (d), 129.0 (d), 131.2 (d), 133.9 (s), 148.9 (d), 177.9 (s$)$; IR (KBr): $2154 \mathrm{~cm}^{-1}, 1636 \mathrm{~cm}^{-1}$; MS (EI) m/z $270\left(\mathrm{M}^{+}\right), 213$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{OSi}: 270.1440$, found: 270.1441 .

Olefination of alkynylketones with lithium ynolate

General procedure for the olefination of alkynylketone (preparation of ynolate by lithium-halogen exchange using tert-butyllithium). To a solution of ethyl 2,2-dibromopropionate ($156 \mathrm{mg}, 0.6$ mmol) in THF (3 ml), cooled to $-78{ }^{\circ} \mathrm{C}$ under argon, was added dropwise a solution of tertbutyllithium ($1.53 \mathrm{~mL}, 2.4 \mathrm{mmol}, 1.57 \mathrm{M}$ in pentane). The yellow solution was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and allowed to warm to $0^{\circ} \mathrm{C}$. After 30 min , a solution of the alkynylketone (0.5 mmol) in THF (1 ml) was added. After 0.5 h , the solution was concentrated in vacuo, and then diluted with hexane. The resulting solution was washed with water (x 3). The combined water phase was acidified with 1 M HCl solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x 3). The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated to give residue, which was purified by column chromatography to afford the carboxylic acid.
General procedure for esterification of the carboxylic acid. To a solution of the carboxylic acid (1.0 eq.) and MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added EDC (1.2 eq.) and DMAP (0.1 eq.) at room temperature. After 20 h , a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated to give a residue, which was purified by column chromatography followed by HPLC to afford the methyl ester.

3-Butyl-2-methyl-5-phenylpent-2-en-4-ynoic acid (3a): According to the general procedure for the olefination of alkynylketon, the pentenynoic acid 3a (69\%) was obtained from 2a as a pale yellow needle: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.67(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~s}$, $3 \mathrm{H}), 2.71(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.

(E)-Methyl 3-butyl-2-methyl-5-phenylpent-2-en-4-ynoate : According to the general procedure for esterification of the carboxylic acid, the methyl pentenynoate (86%) was obtained from 3a as a colorless oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.66$ $(\mathrm{m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 7.32-7.47(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) ~ \delta: 13.9(\mathrm{q}), 18.9(\mathrm{q}), 22.4(\mathrm{t}), 31.1(\mathrm{t}), 33.5(\mathrm{t}), 51.5(\mathrm{q}), 89.2(\mathrm{~s}), 98.8(\mathrm{~s}), 123.0(\mathrm{~s}), 128.3(\mathrm{~d})$, 128.6 (d), 131.5 (d), 132.1 (s), 133.5 (s), 168.7 (s); IR (Neat): $2191 \mathrm{~cm}^{-1}, 1715 \mathrm{~cm}^{-1}$; MS (EI) m / z $256\left(\mathrm{M}^{+}\right), 227$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}: 256.1463$, found: 256.1465.

(Z)-Methyl 3-butyl-2-methyl-5-phenylpent-2-en-4-ynoate : colorless oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.67(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 7.31-7.48(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 14.0(\mathrm{q}), 15.4$ (q), 22.4 (t), 30.1 (t), 34.1 (t), $51.7(\mathrm{q}), 89.6(\mathrm{~s}), 96.3(\mathrm{~s}), 123.5(\mathrm{~s}), 128.3(\mathrm{~d}), 128.4(\mathrm{~d}), 130.8(\mathrm{~s}), 131.7(\mathrm{~d})$, 132.4 (s), 168.6 (s); IR (Neat): $2195 \mathrm{~cm}^{-1}, 1705 \mathrm{~cm}^{-1}$; MS (EI) m/z 256 (M ${ }^{+}$), 199 (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}: 256.1463$, found: 256.1461 .

3-Butyl-2,6,6-trimethylhept-2-en-4-ynoate (3b): According to the general procedure for the olefination of alkynylketone, the heptenynoic acid $\mathbf{3 b}$ (88%) was obtained from $\mathbf{2 b}$ as a pale yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.50-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.

(E)-Methyl 3-butyl-2,6,6-trimethylhept-2-en-4-ynoate : According to the general procedure for esterification of the carboxylic acid, the methyl heptenynoate (77\%) was obtained from $\mathbf{3 b}$ as a pale yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.38(\mathrm{~m}, 2 \mathrm{H})$, 1.49-1.55 (m, 2H), $2.06(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 13.9 (q), 18.6 (q), $22.4(\mathrm{t}), 28.4(\mathrm{~s}), 30.9(\mathrm{q} \mathrm{x} \mathrm{3)}, 30.9(\mathrm{t}), 33.7(\mathrm{t}), 51.4$ (q), 79.1 (s), 109.1 (s), 130.4 (s), 134.4 (s), 169.0 (s); IR (Neat): $2203 \mathrm{~cm}^{-1}, 1717 \mathrm{~cm}^{-1}$; MS (EI) m/z 236 (M^{+}), 179 (100\%); HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$: 236.1776, found: 236.1780.

3-Butyl-7-(4-methoxybenzyloxy)-2-methyl-hept-2-en-4-ynoic acid (3c): To a solution of ethyl 2,2-dibromopropionate ($156 \mathrm{mg}, 0.6 \mathrm{mmol}$) in THF (3 ml), cooled to $-78^{\circ} \mathrm{C}$ under argon, was added dropwise a solution of tert-butyllithium ($1.58 \mathrm{~mL}, 2.4 \mathrm{mmol}, 1.52 \mathrm{M}$ in pentane). The yellow solution was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and allowed to warm to $0^{\circ} \mathrm{C}$. After 30 min , a solution of the alkynylketone 2c $(137 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF $(1 \mathrm{ml})$ was added. After 0.5 h , the solution was concentrated in vacuo, and then diluted with hexane. The resulting solution was washed with water (x 3). The combined water phase was acidified with 1 M HCl solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x 3). The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated to give residue, which was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=70 / 30$ to $50 / 50$) to afford the carboxylic acid $3 \mathrm{c}(141.2 \mathrm{mg}, 85 \%)$ as a pale brown solid: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.68(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8$ Hz, 2H).

(E)-3-Butyl-7-(4-methoxybenzyloxy)-2-methylhept-2-en-4-yn-1-ol : To a solution of the carboxylic acid 3c $(140 \mathrm{mg})$ and $\mathrm{MeOH}(0.1 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ was added EDC $(97.5 \mathrm{mg}, 0.508$ mmol) and DMAP ($5.2 \mathrm{mg}, 0.0424 \mathrm{mmol}$) at room temperature. After 13 h , a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated to give a residue, which was purified by column chromatography (silica gel, hexane/AcOEt $=80 / 20$) to afford the methyl ester ($123 \mathrm{mg}, 84 \%$).

To a solution of diisobutyl alminium hydride ($1.54 \mathrm{ml}, 1.50 \mathrm{mmol}, 0.97 \mathrm{M}$ in hexane) in THF (1.5 $\mathrm{ml})$, cooled to $-78^{\circ} \mathrm{C}$, was added a solution of the methyl ester $(103 \mathrm{mg})$ in THF $(1.5 \mathrm{ml})$. After 1.5 h , the mixture was added water and allowed to warm to room temperature over 1 h . The mixture was filtered through celite and concentrated to give a residue, which was purified by column chromatography (silica gel, hexane/ $\mathrm{AcOEt}=70 / 30$ to 50/50) followed by HPLC (hexane/AcOEt $=$ $77 / 23$) to afford the alcohol ($90.6 \mathrm{mg}, 96 \%$) as a pale yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$, $2.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 13.9(\mathrm{q}), 19.2(\mathrm{q}), 20.9(\mathrm{t}), 22.3(\mathrm{t}), 31.3(\mathrm{t}), 31.6(\mathrm{t}), 55.2(\mathrm{q}), 62.2(\mathrm{t}), 68.5(\mathrm{t}), 72.6(\mathrm{t})$, 81.7 (s), 90.4 (s), 113.7 (d), 121.3 (s), 129.3 (d), 130.2 (s), 139.9 (s), 159.2 (s); IR (Neat): $3404 \mathrm{~cm}^{-1}$, $2214 \mathrm{~cm}^{-1}$; MS (EI) m/z $316\left(\mathrm{M}^{+}\right), 121$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}: 316.2038$, found: 316.2035 .

3-Butyl-5-(tert-butyldimethylsilanyl)-2-methylpent-2-en-4-ynoic acid (3d): According to the general procedure for the olefination of alkynylketone, the pentenynoic acid $3 \mathbf{d}(69 \%)$ was obtained from 2d as a yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.16(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97$ (s, 9H), 1.32-1.41 (m, 2H), 1.53-1.59 (m, 2H), $2.15(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.

(E)-Methyl 3-butyl-5-(tert-butyldimethylsilanyl)-2-methylpent-2-en-4-ynoate : According to the general procedure for esterification of the carboxylic acid, the methyl pentenynoate (72\%) was obtained from 3d as a colorless oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.15(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 1.29-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.58(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-4.7(\mathrm{q} \times 2), 13.9(\mathrm{q}), 15.4(\mathrm{q}), 16.6(\mathrm{~s}), 22.3(\mathrm{t}), 26.1(\mathrm{q} \times 3)$, 30.0 (t), 33.8 (t), 51.6 (q), 99.9 (s), 104.9 (s), 129.7 (s), 133.6 (s), 168.9 (s); IR (Neat): $2141 \mathrm{~cm}^{-1}$, $1732 \mathrm{~cm}^{-1}$; MS (EI) m/z $294\left(\mathrm{M}^{+}\right), 237$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2}$ Si: 294.2015, found: 294.2019.

(Z)-Methyl 3-butyl-5-(tert-butyldimethylsilanyl)-2-methylpent-2-en-4-ynoate : colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.41(\mathrm{~m}, 2 \mathrm{H})$, 1.53-1.62 (m, 2H), $1.94(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 105.0 (s), 133.1 (s), 133.1 (s), 168.8 (s); IR (Neat): $2139 \mathrm{~cm}^{-1}, 1717 \mathrm{~cm}^{-1}$; MS (EI) m/z $294\left(\mathrm{M}^{+}\right)$, 237 (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2}$ Si: 294.2015, found: 294.2017.

3-Butyl-5-(tert-butyldimethylsilanyl)-2-phenylpent-2-en-4-ynoic acid (3e): To a solution of ethyl dibromophenylacetate ($193 \mathrm{mg}, 0.6 \mathrm{mmol}$) in THF (3 ml), cooled to $-78{ }^{\circ} \mathrm{C}$ under argon, was added dropwise a solution of tert-butyllithium ($1.55 \mathrm{~mL}, 2.4 \mathrm{mmol}, 1.55 \mathrm{M}$ in pentane). The yellow solution was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and allowed to warm to $0^{\circ} \mathrm{C}$. After 30 min , a solution of the alkynylketone $\mathbf{2 d}(112 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF (1 ml) was added. After 0.5 h , the solution was concentrated in vacuo, and then diluted with hexane. The resulting solution was washed with water (x 3). The combined water phase was acidified with 1 M HCl solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x 3). The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated to afford the carboxylic acid $3 \mathbf{e}(196 \mathrm{mg})$ as a orange oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-0.03(\mathrm{~s}, 6 \mathrm{H}), 0.78$ $(\mathrm{s}, 9 \mathrm{H}), 0.84-1.70(\mathrm{~m}, 7 \mathrm{H}), 2.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 5 \mathrm{H})$.

(E)-Methyl 3-butyl-5-(tert-butyldimethylsilanyl)-2-phenylpent-2-en-4-ynoate : To a solution of the carboxylic acid $3 \mathbf{e}(190 \mathrm{mg})$ in acetonitrile $(3 \mathrm{ml})$ was added DBU $(0.248 \mathrm{ml}, 1.66 \mathrm{mmol})$ and iodomethane ($0.103 \mathrm{ml}, 1.66 \mathrm{mmol}$) at room temperature. After 12.5 h , the reaction mixture was concentrated to give a residue, which was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=95 / 5$ to $90 / 10$) followed by HPLC (hexane $/ \mathrm{AcOEt}=99 / 1$) to afford the methyl ester ($89 \mathrm{mg}, 50 \%$ over 2 steps) as a yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-0.01(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H})$, $0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, 7.27-7.33 (m, 3H), $7.44(\mathrm{dd}, J=1.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-5.0(\mathrm{q} \mathrm{x} 2)$,
 127.8 (d), 129.0 (d), 131.0 (s), 136.8 (s), 138.6 (s), 168.6 (s); IR (Neat): $2143 \mathrm{~cm}^{-1}, 1732 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z} 356\left(\mathrm{M}^{+}, 100 \%\right)$; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: 356.2172$, found: 356.2177.

(Z)-Methyl 3-butyl-5-(tert-butyldimethylsilanyl)-2-phenylpent-2-en-4-ynoate : pale yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.19-1.28(\mathrm{~m}$, $2 \mathrm{H}), 1.52-1.59(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.38(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: -4.6 ($\mathrm{q} \times 2$), 13.8 (q), 16.7 (s), 22.1 (t), 26.1 (qx 3), $30.4(\mathrm{t})$, 33.3 (t), 52.1 (q), 101.7 (s), 104.0 (s), 127.9 (d), 128.3 (d), 128.9 (d), 130.2 (s), 135.5 (s), 139.4 (s), 168.1 (s); IR $\left(\mathrm{CHCl}_{3}\right): 2139 \mathrm{~cm}^{-1}, 1719 \mathrm{~cm}^{-1}$; MS (EI) m/z 356 (M ${ }^{+}$), 299 (100\%); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$: 356.2172 , found: 356.2164 .

3-Butyl-2-tert-butyl-5-(tert-butyldimethylsilanyl)-pent-2-en-4-ynoic acid (3f): According to the general procedure for the olefination of alkynylketone, the pentenynoic acid $\mathbf{3 f}$ was obtained from 2d as a yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.86-0.92(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 1.23-$ $1.30(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.50-1.70(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$

(E)-Methyl 3-butyl-2-tert-butyl-5-(tert-butyldimethylsilanyl)-pent-2-en-4-ynoate : According to the general procedure for esterification of the carboxylic acid, the methyl pentenynoate (39\% over 2 steps) was obtained from 3 f as a colorless oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.50-1.57(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2 H), $3.72(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-4.9(\mathrm{q} \times 2), 13.9(\mathrm{q}), 16.8(\mathrm{~s}), 21.9(\mathrm{t}), 26.1(\mathrm{q} \times$ 3), 29.1 ($\mathrm{q} \times 3$), 30.6 (t), 34.3 (s$), 36.0(\mathrm{t}), 51.2$ (q), 103.4 (s), 104.3 (s), 121.5 (s), 149.1 (s$), 170.4$ (s); IR (Neat): $2141 \mathrm{~cm}^{-1}, 1732 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 336\left(\mathrm{M}^{+}\right), 279$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{2}$ Si: 336.2485 , found: 336.2481 .

2,3-Dimethylpent-2-en-4-ynoic acid (3g): To a solution of ethyl 2,2-dibromopropionate (312 mg , 1.2 mmol) in THF (6 ml), cooled to $-78^{\circ} \mathrm{C}$ under argon, was added dropwise a solution of tertbutyllithium ($3.16 \mathrm{~mL}, 4.8 \mathrm{mmol}, 1.52 \mathrm{M}$ in pentane). The yellow solution was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and allowed to warm to $0{ }^{\circ} \mathrm{C}$. After 30 min , the mixture was recooled to $-78{ }^{\circ} \mathrm{C}$ and added a solution of the alkynylketone $\mathbf{2 e}(1.0 \mathrm{mmol})$ in THF (2 ml). After 0.5 h , the solution was allowed to warm to room temperature. After 0.5 h , concentrated in vacuo, and then diluted with hexane. The resulting solution was washed with water (x 3). The combined water phase was acidified with 1 M HCl solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x 3). The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated to afford the carboxylic acid $\mathbf{3 g}$ ($89 \mathrm{mg}, 72 \%$) as a yellow solid; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.16(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H})$.

(E)-1-(tert-Butyldiphenylsiloxy)-2,3-dimethylpent-2-en-4-yn : To a solution of the carboxylic acid $(93.5 \mathrm{mg}, 0.735 \mathrm{mmol})$ and triethylamine $(0.331 \mathrm{ml}, 2.37 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(7.5 \mathrm{ml})$, cooled to $0{ }^{\circ} \mathrm{C}$, was added isobutyl chloroformate $(0.294 \mathrm{ml})$. After 0.5 h , the mixture was filtered, and then washed with 1 M HCl solution, water, a saturated NaHCO_{3} solution, brine, dried over MgSO_{4}, filtered and concentrated to afford the mixed anhydride (205 mg).

To a solution of the mixed anhydride (205 mg) in ethanol $(3.8 \mathrm{ml})$ was added $\mathrm{NaBH}_{4}(74.1 \mathrm{mg}, 1.96$ mmol) at room temperature. After 0.5 h , the mixture was concentrated in vacuo. The residue was diluted with water, extracted CHCl_{3}, dried over MgSO_{4}, filtered and concentrated to afford the alkynyl alcohol (115 mg).

To a solution of the alkynyl alcohol $(115 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{ml})$ was added imidazole $(123 \mathrm{mg}, 1.81$ mmol), a solution of tert-butyldiphenylsilyl chloride ($414 \mathrm{mg}, 1.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and

DMAP ($9.2 \mathrm{mg}, 0.0753 \mathrm{mmol}$) at room temperature. After 0.5 h , the mixture was added water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, filtered and concentrated to give a residue, which was purified by column chromatography (silica gel, hexane/AcOEt $=100 / 0$ to 99/1) followed by HPLC (hexane) to afford the silyl ether ($152 \mathrm{mg}, 58 \%$ over 3 steps) as a pale yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 7.38-7.69(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 17.8$ (q), 18.7 (q), 19.3 (s), 26.7 ($\mathrm{q} \times 3$), 26.8 (s), 63.2 (d), 79.3 (s), 85.2 (s), 112.3 (s), 127.7 (d), 129.7 (d), 133.5 (s), 135.6 (d), 144.0 (s); IR (Neat): $2091 \mathrm{~cm}^{-1}$; MS (EI) m/z $348\left(\mathrm{M}^{+}\right), 199$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{OSi}$: 348.1909, found: 348.1913.

5-(tert-Butyldimethylsilanyl)-2-methyl-3-trimethylsilanylpent-2-en-4-ynoic acid
(3h):
According to the general procedure for the olefination of alkynylketone, the pentenynoic acid $\mathbf{3 h}$ (75\%) was obtained from $2 \mathbf{f}$ as a orange oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.16(\mathrm{~s}, 6 \mathrm{H}), 0.23(\mathrm{~s}$, $9 \mathrm{H}), 0.97$ (s, 9H), 2.24 (s, 3H).

(E)-Methyl 5-(tert-butyldimethylsilanyl)-2-methyl-3-trimethylsilanylpent-2-en-4-ynoate : According to the general procedure for esterification of the carboxylic acid, the methyl pentenynoate (65%) was obtained from 3 h as a orange oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.15(\mathrm{~s}$, $6 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-4.5(\mathrm{q} \mathrm{x}$ 2), -0.0 (qx3), 16.6 (s), 19.7 (q), 26.1 ($q \times 3$), 51.8 (q), 106.8 (s$), 109.9$ (s$), 137.2$ (s$), 147.6$ (s$), 168.7$ (s); IR (Neat): $2120 \mathrm{~cm}^{-1}, 1717 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 310\left(\mathrm{M}^{+}\right), 295$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}_{2}: 310.1784$, found: 310.1780 .

3-[(tert-Butyldimethylsilanyl)-ethynyl]-2-methyl-5-phenylpenta-2,4-dienoic acid (3i): According to the general procedure for the olefination of alkynylketone, the heptenynoic acid $\mathbf{3 i}(81 \%)$ was obtained from 2 g as a pale yellow needle: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.24(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 7.23-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$.

(E)-Methyl 3-[(tert-butyldimethylsilanyl)-ethynyl]-2-methyl-5-phenylpenta-2,4-dienoate : According to the general procedure for the olefination of alkynylketone and esterification of the carboxylic acid the methyl heptenynoate (72%) was obtained from $3 \mathbf{i}$ as a pale yellow needle: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 0.26(\mathrm{~s}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 2 \mathrm{H})$, $7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) $\delta:-4.6(\mathrm{q} \times 2), 16.7(\mathrm{~s}), 19.5(\mathrm{q}), 26.2(\mathrm{q} \times 3), 51.9(\mathrm{q}), 101.4(\mathrm{~s}), 104.9(\mathrm{~s}), 124.8(\mathrm{~d}), 127.3$ (d), 128.3 (d), 128.6 (d), 130.7 (s), 132.5 (s), 136.6 (d), 136.8 (s), 168.3 (s); IR (KBr): $2149 \mathrm{~cm}^{-1}$, $1701 \mathrm{~cm}^{-1}$; MS (EI) m/z $340\left(\mathrm{M}^{+}\right), 283$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$ Si: 340.1859, found: 340.1859.

2-Methyl-3,5-diphenylpent-2-en-4-ynoic acid (3j): According to the general procedure for the olefination of alkynylketone, the pentenynoic acid $\mathbf{3 j}$ (98%) was obtained from $\mathbf{2 h}$ as a orange oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 7.26-7.48(\mathrm{~m}, 10 \mathrm{H})$.

(E)-Methyl 2-methyl-3,5-diphenylpent-2-en-4-ynoate: According to the general procedure for esterification of the carboxylic acid, the methyl pentenynoate (52% over 2 steps) was obtained from 3j as a yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 7.26-7.48(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 19.6$ (q), 51.7 (q), 88.3 (s), 99.3 (s), 122.8 (s), 127.8 (d), 128.0 (d), 128.1 (d), 128.4 (d), 128.8 (d), 129.1 (s), 131.6 (d), 135.3 (s), 138.6 (s), 169.8 (s); IR (Neat): 2201 $\mathrm{cm}^{-1}, 1715 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 276\left(\mathrm{M}^{+}, 100 \%\right)$; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2}: 276.1150$, found: 276.1150.

(Z)-Methyl 2-methyl-3,5-diphenylpent-2-en-4-ynoate: yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $2.01(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 7.28-7.46(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 19.6$ (q), 51.7 (q), 88.3 (s), 99.3 (s), 122.8 (s$), 127.8$ (d), 128.0 (d), 128.1 (d), 128.4 (d), 128.8 (d), 129.1 (s), 131.6 (d),
135.3 (s), 138.6 (s), 169.8 (s); IR (Neat): $2197 \mathrm{~cm}^{-1}, 1717 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 276\left(\mathrm{M}^{+}\right), 205(100 \%)$; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2}: 276.1150$, found: 276.1151 .

2,6,6-Trimethyl-3-phenylhept-2-en-4-ynoic acid (3k): According to the general procedure for the olefination of alkynylketone, the heptenynoic acid $\mathbf{3 k}$ (97%) was obtained from $\mathbf{2 i}$ as a yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.28(\mathrm{~s}, 9 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 7.22-7.40(\mathrm{~m}, 5 \mathrm{H})$.

(E)-Methyl 2,6,6-trimethyl-3-phenylhept-2-en-4-ynoate: According to the general procedure for esterification of the carboxylic acid, the methyl heptenynoate (66\%) was obtained from $3 \mathbf{k}$ as a pale yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.28(\mathrm{~s}, 9 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 7.26-7.33(\mathrm{~m}$, 5 H) ; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ : 19.3 (q), 28.4 (s), 30.8 (q x 3), 51.5 (q), 78.4 (s), 109.3 (s), 127.7 (d), 127.8 (d), 127.9 (d), 129.5 (s), 133.9 (s), 139.2 (s), 170.2 (s); IR (Neat): $2212 \mathrm{~cm}^{-1}, 1732$ cm^{-1}; MS (EI) $\mathrm{m} / \mathrm{z} 256\left(\mathrm{M}^{+}\right), 199$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}: 256.1463$, found: 256.1468 .

(Z)-Methyl 2,6,6-trimethyl-3-phenylhept-2-en-4-ynoate: pale yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 7.24-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס: 17.1 (q), 28.3 (s), 30.7 ($q \times 3$), 51.7 (q), 79.3 (s), 106.6 (s), 127.8 (d), 128.1 (d), 128.6 (d), 129.4 (s), 133.3 (s), 139.0 (s), 169.5 (s); IR (Neat): $2208 \mathrm{~cm}^{-1}, 1732 \mathrm{~cm}^{-1}$; MS (EI) m/z $256\left(\mathrm{M}^{+}\right), 199$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}: 256.1463$, found: 256.1465 .

Reduction of the triple bond of the conjugate enyne compounds ${ }^{[6],[7]}$

Methyl 3-butyl-2-methyl-5-phenylpenta-2,4-dienoante: To a solution of alkyne (7.7 mg, 0.030 $\mathrm{mmol})$ in hexane $(0.3 \mathrm{ml})$ at room temperature was added quinoline $(0.77 \mu \mathrm{l})$ and Pd on $\mathrm{CaCO}_{3} /$ poisoned with lead (1.9 mg). The atmosphere was purged with hydrogen gas and the reaction was stirred under a hydrogen balloon for 45 min . Upon completion, the reaction was filtered and concentrated in vacuo. Purification of the residue by column chromatography (silica gel, hexane/AcOEt $=90 / 10)$ provided the diene $(7.0 \mathrm{mg}, 90 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 6.11(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.35(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.9$ (q), 16.9 (q), 23.0 (t), 31.3 (t), 34.0 (t), 51.4 (q), 124.2 (s$)$, 127.5 (d), 128.3 (d), 128.4 (d), 130.1 (d), 130.7 (d), 136.9 (s), 147.3 (s), 169.7 (s); IR (Neat): 1717 cm^{-1}; MS (EI) m/z $258\left(\mathrm{M}^{+}\right), 143$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}: 258.1620$, found: 258.1619.

Methyl 3-butyl-7-(4-methoxybenzyloxy)-2-methylhepta-2,4-dienoate: To a solution of alkyne $(21.2 \mathrm{mg}, 0.0615 \mathrm{mmol})$ in hexane $(1.6 \mathrm{ml})$ at room temperature was added quinoline $(2.1 \mu \mathrm{l})$ and Pd on CaCO_{3} / poisoned with lead $(5.3 \mathrm{mg})$. The atmosphere was purged with hydrogen gas and the reaction was stirred under a hydrogen balloon for 45 min . Upon completion, the reaction was filtered and concentrated in vacuo. Purification of the residue by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=85 / 15$) provided the diene $(18.9 \mathrm{mg}, 89 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{dq}, J=1.2 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 5.60(\mathrm{dt}, J=$ $7.2 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.9(\mathrm{q}), 17.2(\mathrm{q}), 22.8(\mathrm{t}), 29.8(\mathrm{t}), 30.5(\mathrm{t}), 34.1(\mathrm{t}), 51.3(\mathrm{q}), 55.2$ (q), 69.1 (t), 72.5 (t), 113.7 (d), 124.0 (s$), 128.8$ (d), 129.2 (d), 130.4 (d), 130.4 (s$), 146.5$ (s$), 159.1$ (s), 169.9 (s); IR (Neat): $1717 \mathrm{~cm}^{-1}$; MS (FAB) m/z $346\left(\mathrm{M}^{+}\right), 121$ (100\%); HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}: 346.2144$, found:346.2141.

Methyl 3-ethyl-2-methylhept-2-enoate: A thick-walled pressure tube was charged with alkyne $(14.0 \mathrm{mg}, 0.0777 \mathrm{mmol})$ and 0.9 ml of a $2: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ solution. To this mixture were added p toluenesulfonyl hydrazide ($54.0 \mathrm{mg}, 0.290 \mathrm{mmol}, 3.7 \mathrm{eq}$.) and sodium acetate ($38.1 \mathrm{mg}, 0.464 \mathrm{mmol}$, 6.0 eq.). After sealing the tube with a threaded Teflon stopper, the reaction vessel was submerged in an oil bath preheated to $100{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h then cooled to room
temperature prior to removing carefully the Teflon plug. A second portion of p-toluenesulfonyl hydrazide ($54.0 \mathrm{mg}, 0.290 \mathrm{mmol}, 3.7 \mathrm{eq}$.) and sodium acetate ($38.1 \mathrm{mg}, 0.464 \mathrm{mmol}, 6.0 \mathrm{eq}$.) were added, the reaction vessel was sealed, and the solution was stirred at $100^{\circ} \mathrm{C}$. Following a 1 h period, the contents were cooled to room temperature and the Teflon stopper was carefully removed. A third portion of p-toluenesulfonyl hydrazide ($54.0 \mathrm{mg}, 0.290 \mathrm{mmol}, 3.7 \mathrm{eq}$.) and sodium acetate (38.1 mg , $0.464 \mathrm{mmol}, 6.0 \mathrm{eq}$.) were added, the reaction vessel was sealed, and the solution was stirred at 100 ${ }^{\circ} \mathrm{C}$ for 1 h . Upon cooling to room temperature, the reaction mixture was quenched with a saturated NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated to give a residue, which was purified by column chromatography (silica gel, hexane $/ \mathrm{AcOEt}=90 / 10$) to afford the alkene $(9.1 \mathrm{mg}, 64 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{~s}$, $3 \mathrm{H}), 2.14(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 12.1$ (q), 14.0 (q), 15.2 (q), $23.0(\mathrm{t}), 26.7(\mathrm{t}), 31.0(\mathrm{t}), 33.8(\mathrm{t}), 51.2$ (q), 121.9 (s$), 152.6(\mathrm{~s}), 170.3$ (s) ; IR (Neat): $1717 \mathrm{~cm}^{-1}$; MS (EI) m/z 184 ($\mathrm{M}^{+}, 100 \%$); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$:184.1463, found:184.1469.

NOE experiments

Computational Details

All calculations in the present study were performed with the Gaussian 03 program (Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, revision D.02; Gaussian Inc.: Wallingford, CT, 2004.) and by using the restricted Becke-three-parameter plus Lee-Yang-Parr (B3LYP) DFT method with the 6-31G(d) basis set (Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley; New York, 1986. References cited therein.). Stationary points were optimized without any symmetry assumption unless noted otherwise.

Normal coordination analyses were performed for all transition states, and one imaginary frequency was confirmed at each optimized structure.

The origin of the stereoelectronic effects of the ring-opening of the β-lactone enolate derivative was examined with the aid of Natural Bond Orbital (NBO) analysis. The transition states of the ring opening are reactant-like rather than product-like by the optimal Lewis structure search. Secondorder perturbation analysis of bonding NBOs and antibonding NBOs was carried out for these transition states. The second order interaction energy is expressed as follows.

$$
E_{\phi \phi^{*}}^{(2)}=-2 \frac{\langle\phi| F\left|\phi^{*}\right\rangle^{2}}{\varepsilon_{\phi^{*}}-\varepsilon_{\phi}}=-2 \frac{F_{i j}^{2}}{\Delta \varepsilon}
$$

The ϕ / ϕ^{*} and F refer to the filled/vacant NBO and Fock matrices, respectively. The ε_{ϕ} and $\varepsilon_{\phi^{*}}$ refer to the NBO energies of the bonding/lone pair and those of antibonding/Rydberg, respectively. NBOs are mutually orthogonal.

Cartesian coordinates of TSE and TSZ

TSE1

$E(R B+H F-L Y P)=-778.288356382$ A.U.
Value of imaginary frequency $=517.0465 i \mathrm{~cm}^{-1}$

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-0.267276	-0.983541	0.733221
2	6	0	-2.035056	-0.976281	-0.468843
3	6	0	-3.074471	0.007367	-0.538648
4	8	0	-0.210122	-0.345900	-0.487522
5	3	\bigcirc	1.620987	0.111061	0.135583
6	8	\bigcirc	0.777888	-0.991292	1.452155
7	1	0	-2.890503	-2.706360	2.034409
8	1	0	-3.193065	-0.977007	2.230663
9	1	0	-1.748159	-1.712071	2.947233
10	8	0	1.795572	2.066526	0.183495
11	6	0	0.555781	2.777922	0.137719
12	6	0	2.805667	2.749108	0.913314
13	6	0	-1.891112	-1.827859	-1.716755
14	1	0	-2.797494	-2.443611	-1.815800
15	1	0	-1.030500	-2.492253	-1.621236
16	1	0	-1.799272	-1.219414	-2.622916
17	8	0	3.342819	-0.657727	-0.397794
18	6	0	4.096214	-0.335857	-1.557406
19	6	0	3.534245	-2.003196	0.049064
20	6	0	-1.582704	-1.419260	0.849570
21	6	0	-2.397743	-1.721865	2.064623
22	6	0	-3.924146	0.875865	-0.572851
23	6	0	-4.959142	1.901991	-0.610278
24	1	0	-5.057036	2.340529	-1.610859
25	1	0	-5.933641	1.475210	-0.340564
26	1	0	-4.749851	2.713390	0.097717
27	1	0	-0.166123	2.107354	-0.330180
28	1	0	0.220385	3.027248	1.153500
29	1	0	0.668810	3.701827	-0.445890
30	1	0	3.827671	-0.994433	-2.395191
31	1	0	3.860342	0.698241	-1.819269
32	1	0	5.173962	-0.426846	-1.361788
33	1	0	2.818528	-2.162324	0.857022
34	1	0	3.332349	-2.708992	-0.768087
35	1	0	4.564191	-2.143298	0.404385
36	1	0	2.489542	2.923347	1.951164
37	1	0	3.693822	2.113232	0.906962
38	1	0	3.042272	3.713826	0.442924

TSE2

$\begin{aligned} & E(R B+H F-L Y P)=-778.287980383 \mathrm{~A} . \mathrm{U} . \\ & \text { Value of imaginary frequency }=515.5331 i \mathrm{~cm}^{-1} \end{aligned}$					
Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	\bigcirc	-0.338160	-0.575398	1.101443
2	6	0	-2.077006	-0.998082	-0.066157
3	6	0	-3.018987	-0.087796	-0.644105
4	8	0	-0.200849	-0.590517	-0.270741
5	3	\bigcirc	1.621395	0.066531	0.178131
6	8	\bigcirc	0.687037	-0.313209	1.801426
7	1	0	-3.134398	-1.277491	2.901482
8	1	0	-3.265348	0.360327	2.251741
9	1	0	-1.909838	-0.069716	3.310193
10	8	0	2.172079	1.947413	0.129747
11	6	0	2.541925	2.672089	-1.034328
12	6	0	1.534353	2.756767	1.122170
13	1	0	2.999815	1.960804	-1.725606
14	1	0	3.265928	3.461896	-0.789244
15	1	0	1.661808	3.127131	-1.509603
16	1	0	0.672217	3.282999	0.690616
17	1	0	1.193729	2.073157	1.901298
18	1	0	2.243785	3.490878	1.527789
19	6	0	-1.994816	-2.344502	-0.762136
20	1	0	-2.953845	-2.863379	-0.616415
21	1	0	-1.205194	-2.949964	-0.313173
22	1	0	-1.830685	-2.243008	-1.840542
23	8	0	3.024463	-1.000041	-0.682327
24	6	0	4.396347	-0.984830	-0.311844
25	6	0	2.574548	-2.280766	-1.130314
26	1	0	4.626080	0.026223	0.031761
27	1	0	4.590623	-1.699172	0.500014
28	1	0	5.035142	-1.233704	-1.170794
29	1	0	1.494526	-2.196026	-1.259006
30	1	0	2.796703	-3.050445	-0.378900
31	1	0	3.060985	-2.545836	-2.078902
32	6	0	-1.689314	-0.808573	1.331311
33	6	0	-2.546473	-0.438365	2.497755
34	6	0	-3.787026	0.721902	-1.125283
35	6	0	-4.719214	1.689288	-1.691268
36	1	0	-5.020639	1.418319	-2.710356
37	1	0	-5.627952	1.755167	-1.079719
38	1	0	-4.276532	2.692688	-1.725325

TSZ1

$E(R B+H F-L Y P)=-778.283847051$ A.U.
Value of imaginary frequency $=518.5337 i \mathrm{~cm}^{-1}$

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	0.382517	-0.970349	-0.758942
2	6	0	2.182658	-0.916953	0.417291
3	6	0	2.728403	0.412370	0.446647
4	8	\bigcirc	0.315614	-0.324462	0.453260
5	3	0	-1.526857	0.094701	-0.162713
6	8	0	-0.656277	-0.987987	-1.486892
7	1	0	3.140409	-2.422834	-2.137526
8	1	0	2.414956	-3.541821	-0.978319
9	1	0	1.465664	-2.948828	-2.347269
10	8	0	-1.839878	2.026619	-0.274422
11	6	0	-0.635777	2.795555	-0.349189
12	6	0	-2.927333	2.621473	-0.969013
13	1	0	0.147010	2.190661	0.110740
14	1	0	-0.759480	3.746835	0.186405
15	1	0	-0.375691	2.997631	-1.396864
16	1	0	-2.687744	2.753628	-2.033206
17	1	0	-3.781033	1.947056	-0.870668
18	1	0	-3.180479	3.598284	-0.533544
19	6	0	2.677095	-1.798445	1.545961
20	1	0	2.077856	-2.710110	1.613797
21	1	0	3.721337	-2.081910	1.353097
22	1	0	2.654322	-1.265669	2.500887
23	8	0	-3.146388	-0.782068	0.502254
24	6	0	-3.851048	-0.469813	1.694916
25	6	0	-3.243559	-2.159651	0.129518
26	1	0	-3.471442	-1.059372	2.541040
27	1	0	-4.926204	-0.664648	1.576064
28	1	0	-3.694080	0.592754	1.894424
29	1	0	-4.278065	-2.408125	-0.143971
30	1	0	-2.922055	-2.803708	0.959232
31	1	0	-2.573252	-2.293706	-0.720990
32	6	0	1.669152	-1.498311	-0.816903
33	6	0	2.208443	-2.652294	-1.598075
34	6	0	3.336334	1.464070	0.462424
35	6	0	4.052205	2.735748	0.458590
36	1	0	4.129553	3.152446	-0.553417
37	1	0	3.548194	3.481209	1.087631
38	1	0	5.071689	2.618910	0.847649

$\begin{aligned} & E(R B+H F-L Y P)=-778.283623731 \text { A.U. } \\ & \text { Value of imaginary frequency }=512.0443 i \mathrm{~cm}^{-1} \end{aligned}$					
Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-0.497642	-0.730563	0.970829
2	6	0	-2.284502	-0.766480	-0.227960
3	6	0	-2.646382	0.559509	-0.640344
4	8	0	-0.350064	-0.467448	-0.370826
5	3	0	1.517298	-0.052828	0.182446
6	8	0	0.533083	-0.676713	1.708794
7	1	0	-3.422107	-1.363697	2.607674
8	1	0	-2.846927	-2.848160	1.840639
9	1	0	-1.828900	-2.011230	3.018339
10	8	0	2.315475	1.690939	0.593641
11	6	0	2.797435	2.640538	-0.345388
12	6	0	1.803804	2.287238	1.789997
13	6	0	-2.898759	-1.859870	-1.078329
14	1	0	-2.386653	-2.810867	-0.908655
15	1	0	-3.953727	-1.982811	-0.795966
16	1	0	-2.870690	-1.603661	-2.141180
17	8	0	2.756775	-1.069170	-0.945640
18	6	0	2.156957	-2.154104	-1.657261
19	6	0	4.133144	-1.275848	-0.661343
20	6	0	-1.843729	-1.042779	1.134582
21	6	0	-2.527691	-1.850983	2.189566
22	6	0	-3.103443	1.637030	-0.965165
23	6	0	-3.626931	2.947015	-1.336990
24	1	0	-3.850941	3.558082	-0.453525
25	1	0	-2.904208	3.502974	-1.948499
26	1	0	-4.550163	2.857966	-1.923345
27	1	0	3.635885	3.214478	0.073917
28	1	0	3.139963	2.084997	-1.221627
29	1	0	2.000866	3.336265	-0.643731
30	1	0	1.038969	3.036347	1.544853
31	1	0	1.352775	1.477980	2.366271
32	1	0	2.616326	2.766093	2.353232
33	1	0	4.480221	-0.406127	-0.098999
34	1	0	4.276802	-2.182073	-0.056746
35	1	0	4.714055	-1.367561	-1.589837
36	1	0	1.088980	-1.935960	-1.702744
37	1	0	2.583326	-2.230289	-2.666861
38	1	0	2.318531	-3.099337	-1.121452

References

[1] Shen, H-C.; Su, H-L.; Hsueh, Y-C.; Liu, R-S. Organometallics 2004, 23, 4332-4334.
[2] Tang, M.; Pyne, S. G. J. Org. Chem. 2003, 68, 7818-7824.
[3] Linderman, R. J.; Suhr, Y. J.Org. Chem. 1988, 53, 1569-1572.
[4] Chen, L.; Li, C-J. Org. Lett. 2004, 6, 3151-3153.
[5] Smith, A. B. III; Levenberg, P. A.; Suits, J. Z. Synthesis 1986, 184-189.
[6] Belardi, J. K.; Micalizio, G. C. Angew. Chem. Int. Ed. 2008, 47, 4005-4008.
[7] Fleming, J. J.; McReynolds, M. D.; Du Bios, J. J. Am. Chem. Soc. 2007, 129, 9964-9975.

$\underset{\sim}{\infty}$

MPMO

2c

$\stackrel{\infty}{\infty}$

2d
(

$\stackrel{\oplus}{\oplus}$

$\stackrel{\oplus}{\oplus}$
(2)

$\stackrel{\oplus}{\oplus}$
(10)

ㅁ
2g

LZO．とて।

Me

Abstract

<

MPMO
cose
Nose

N-N

TBS
TBS

O－
앙
in
$99^{\prime \prime} \cdot 5$

8

○

8
$\angle 89.9 L$
000 KL $000^{\circ} \angle L$
$1 Z \varepsilon^{\circ} \angle L$

0
8
으
은
110
구
웅
LIG＊IZI
ZLE\＆O1
61どちO1

140
$\stackrel{8}{2}$
$981 \% \mathrm{bl}$
160
웅
$0 \varepsilon \vdash^{\circ} 0<1$

OTBDPS

S70

N
CBS
TBS
－융
of
$\varepsilon G s^{\circ} \angle b 1$
\＆ฤでしદ

160

170
$\downarrow \downarrow<89 \downarrow$

TBS

$\stackrel{\oplus}{\oplus}$

ع89.91 \downarrow \&G 61

90

100
$\varepsilon \varepsilon \varepsilon 101$
8\&6'৮O1

120
130

움
g

150
091
091
$0<1$
408
081
061
061
002
012
~ิ

- \%

Men
$00 \angle \angle Z$
$00 \angle L Z 1$
$7 \angle L \angle Z 1$
$188 \angle Z 1$
$188^{\circ} \angle Z 1$
$88 \nabla^{\circ} 6 Z 1$
188とを
역
としで 6 に

[^0]은
6 brOLL

061
$061 \quad 002$

$\underset{\sim}{\infty}$
$\mathrm{Me} \mathrm{CO}_{2} \mathrm{Me}$

	S92		

[^0]: in

