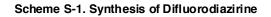
SUPPORTING INFORMATION

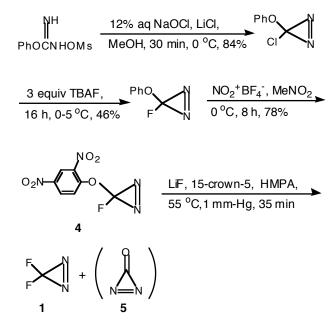
A New Synthesis of Difluorodiazirine and the Absolute Reactivity of Difluorocarbene

Robert A. Moss,* Lei Wang, Christopher Skalit, and Karsten Krogh-Jespersen*

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903

Contents	Page
Preparation of difluorodiazirine	S-2
Scheme S-1	S-3
UV spectrum of difluorodiazirine	S-3
Table S-1	S-4
Spectra of difluorocarbene ylides	S-4
CF_2 + cyclohexene, Figs. S-5 – S-16	S-6
CF ₂ + TME, Figs. S-17-S – S-28	S-8
Additional rate constant determinations	S-10
Computational details	S-11
Optimized ground state cartesian	S-12
geometries, absolute energies, and	
excited state transition energies and	
intensities	


Preparation of difluorodiazirine (4). A 25-mL flask with a tall neck bearing a side exit tube, and fitted with a pressure-equalized addition funnel and a magnetic stirring bar, was charged with a suspension of 3.0 g (71 mmol) of anhydrous LiF (Acros, used as supplied) and 1.8 g (8.0 mmol) of 15-crown-5 (Aldrich, used as supplied) in 8 mL of HMPA (Aldrich: 100 g of HMPA were dried over a mixture of 5 g of 4A molecular sieves and 10 g of 13X molecular sieves for at least a week before use.¹) The side exit tube was connected to the inlet of a trap that contained 1.5 mL of pentane. The trap was fitted with stopcocks at both inlet and outlet, and was cooled by liquid nitrogen. Then, 200 mg of 2,4-dinitrophenoxyfluorodiazirine,² dissolved in 5 mL of dry HMPA was transferred to the addition funnel. The trap outlet was connected to a vacuum manifold and the reaction train was evacuated to 1 Torr. The reaction flask was heated to 55 °C in an oil bath. When the temperature reached 55 °C, the diazirine solution was added slowly (15 min) to the stirred reaction mixture. Bubbling was observed in the reaction mixture, and its color changed from pale vellow to dark red. After completion of the addition, the reaction was continued for 20 minutes until no further effervescence was observed. Then, heating and stirring were discontinued, the outlet stopcock of the trap was closed, and nitrogen was admitted to the reaction system via the addition funnel until the systemic pressure reached atmospheric pressure. The inlet stopcock of the trap was closed and the trap was disconnected from the reaction train. An additional 1 mL of pentane was added to the trap via the stopcock, and the trap was then removed from the liquid nitrogen coolant with both stopcocks open. The contents of the trap melted as the trap warmed, and the contents were transferred to a storage flask while they were still cold.

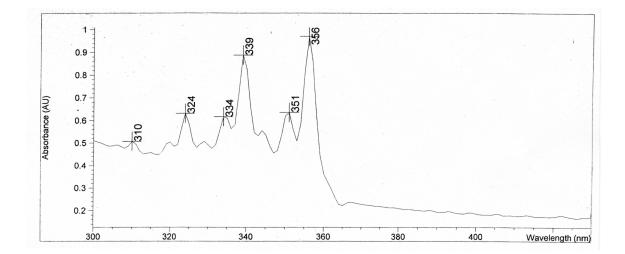

We obtained 2.5 mL of a pentane solution of difluorodiazirine (DFD) with $A_{356} =$ 1.0. The UV spectrum of DFD appears below in Figure S-1. DFD pentane solutions could be stored in the freezer or, for better preservation, in a Dewar flask over Dry Ice.

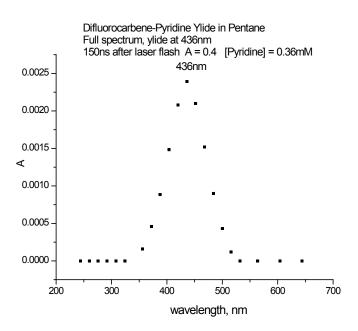
The contents of the reaction flask were analyzed by GC to obtain the ratio of 2,4dinitrophenol (partner of DFD) to 2,4-dinitrofluorobenzene (partner of diazirinone). This ratio was found to be 3:1. Table S-1, below, summarizes the ratios obtained with LiF, KF, or NaF as fluoride sources in various DFD preparations.

(1) The quality of the HMPA is critical. "Poor" quality HMPA significantly reduces the yield of DFD and raises the baseline at 300 nm. This HMPA is characterized by UV absorption at 308 nm. "Good" quality HMPA displays a maximum at 270 nm and minimal absorption at 300 nm or higher.

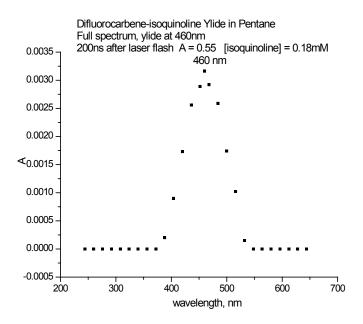
(2) Experimental details for the preparation of 2,4-dinitrophenoxyfluorodiazirine from *N*-methanesulfonyloxy-*O*-phenylisourea are given in Moss, R.A.; Tian, J., Sauers, R.R.: Skalit, C.; Krogh-Jerspersen, K. *Org. Lett.* **2007**, *9*, 4053, and its Supporting Information. A "complete" reaction scheme for the preparation of DFD appears below in Scheme S-1.

(This Scheme also appears in the Communication, designated Scheme 1.)

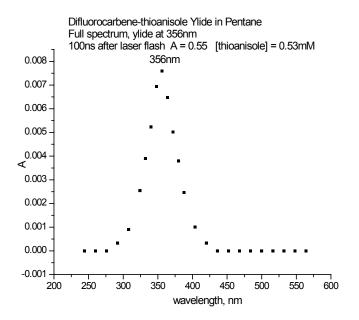


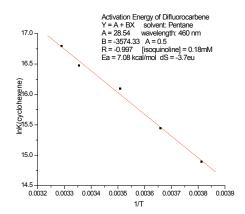

Figure S-1. UV spectrum of difluorodiazirine in pentane.

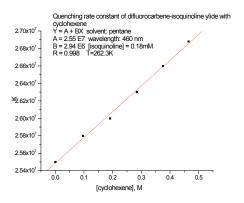
Reagent	2,4-Dinitrophenol:2,4-Dinitrofluorobenzene ^b
NaF/18-crown-6	1:2
NaF/15-crown-5	1:5
KF	1:13.5
CsF/18-crown-6 ^c	d
LiF/12-crown-4	1:2.7
LiF/15-crown-5	3:1
LiF/18-crown-6	1.1:1

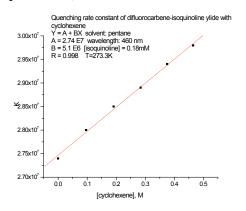

Table S-1. Product Ratios for Various Difluorodiazirine Preparations^a

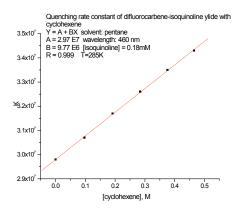
^a The reactions were performed as described above, unless otherwise indicated. ^b Analyzed by GC (detector not calibrated): column: 30 m x 0.53 mm x 1.5 μ m (film thickness) 5% phenylmethylsiloxane; temperature: 50 °C for 3 min, programmed to 260 °C at 30 °C/min. ° The reaction was carried out at ambient temperature. ^dOnly 2,4-dinitrofluorobenzene formed in this case.

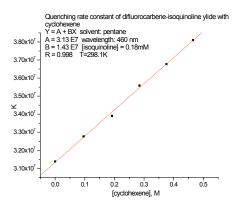

Spectra of Difluorocarbene Ylides


Figure S-2. LFP-UV spectrum of difluorocarbene-pyridine ylide (8) in pentane; λ_{max} at 436 nm.


Figure S-3. LFP-UV spectrum of difluorocarbene-isoquinoline ylide (9) in pentane; λ_{max} at 460 nm.


Figure S-4. LFP-UV spectrum of difluorocarbene-thioanisole ylide (10) in pentane; λ_{max} at 356 nm.


Figure S-5. Activation energy for addition of CF₂ to cyclohexene: Ea = 7.08 kcal/mol, $A = 2.48 \text{ exp } 12 \text{ M}^{-1}\text{s}^{-1}$, R = -0.997.


Figure S-6. Rate constant for addition of CF₂ to cyclohexene at 262.3 K: k = 2.94 exp 6 M⁻¹s⁻¹, R = 0.998.

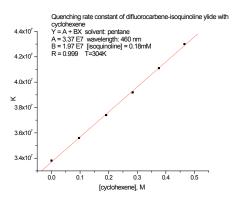
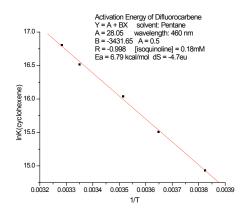
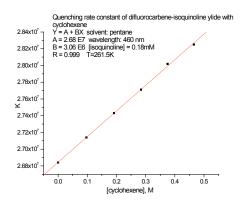
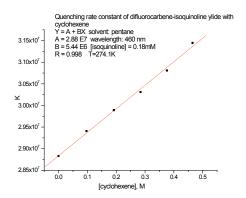
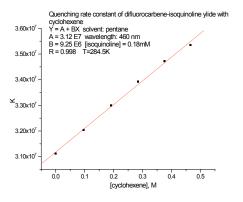

Figure S-7. Rate constant for addition of CF₂ to cyclohexene at 273.3 K: k = 5.10 exp 6 M⁻¹s⁻¹, R = 0.998.

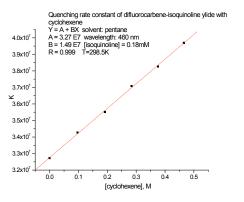
Figure S-8. Rate constant for addition of CF₂ to cyclohexene at 285 K: k =9.77 exp 6 M⁻¹s⁻¹, R = 0.999.

Figure S-9. Rate constant for addition of CF₂ to cyclohexene at 298.1 K: k =1.43 exp 7 M⁻¹s⁻¹, R = 0.998.

Figure S-10. Rate constant for addition of CF₂ to cyclohexene at 304 K: k =1.97 exp 7 M⁻¹s⁻¹, R = 0.999.


Figure S-11. Activation energy for addition of CF₂ to cyclohexene: Ea = 6.79 kcal/mol, A = 1.52 exp 12 M⁻¹s⁻¹, R = -0.998.


Figure S-12. Rate constant for addition of CF₂ to cyclohexene at 261.5 K: k =3.06 exp 6 M⁻¹s⁻¹, R = 0.999.

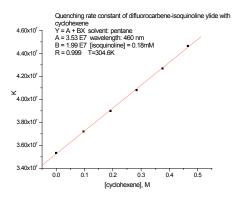
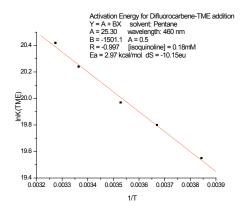
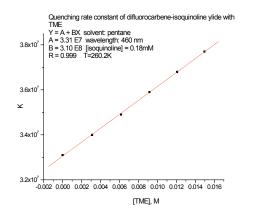
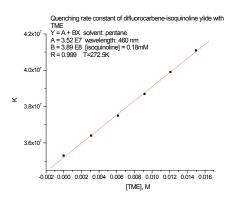
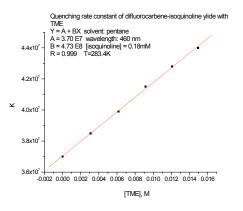

Figure S-13. Rate constant for addition of CF₂ to cyclohexene at 274.1 K: $k = 5.44 \text{ exp } 6 \text{ M}^{-1} \text{s}^{-1}$, R = 0.998.

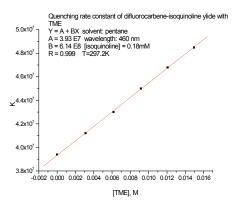
Figure S-14. Rate constant for addition of CF₂ to cyclohexene at 284.5 K: $k = 9.25 \exp 6 \text{ M}^{-1}\text{s}^{-1}$, R = 0.998.

Figure S-15. Rate constant for addition of CF₂ to cyclohexene at 298.5 K: k =1.49 exp 7 M⁻¹s⁻¹, R = 0.999.

Figure S-16. Rate constant for addition of CF₂ to cyclohexene at 304.6 K: k =1.99 exp 7 M⁻¹s⁻¹, R = 0.999.


Figure S-17. Activation energy for addition of CF₂ to TME: Ea = 2.97 kcal/mol, A =9.72 exp 10 M⁻¹s⁻¹, R = -0.997.


Figure S-18. Rate constant for addition of CF₂ to TME at 260.2 K: k = 3.10 exp 8 M⁻¹s⁻¹, R = 0.999.

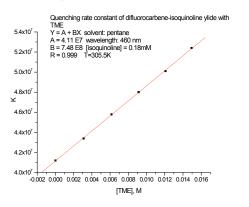

Figure S-19. Rate constant for addition of CF₂ to TME at 272.5 K: k = 3.89 exp 8 M⁻¹s⁻¹, R = 0.999.

Figure S-20. Rate constant for addition of CF₂ to TME at 283.4 K: k = 4.73 exp 8 M⁻¹s⁻¹, R = 0.999.

Figure S-21. Rate constant for addition of CF₂ to TME at 297.2 K: k = 6.14 exp 8 M⁻¹s⁻¹, R = 0.999.

Figure S-22. Rate Constant for addition of CF₂ to TME at 305.5 K: $k = 7.48 \text{ exp} 8 \text{ M}^{-1}\text{s}^{-1}$, R = 0.999.

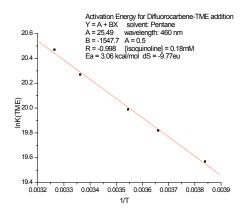
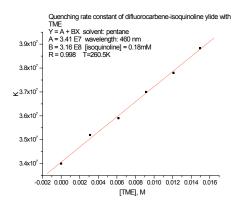
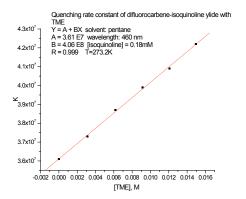
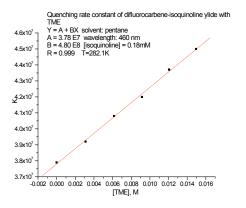


Figure S-23. Activation energy for addition of CF₂ to TME; Ea = 3.06 kcal/mol, A =1.18 exp 11 M⁻¹s⁻¹, R = -0.998.

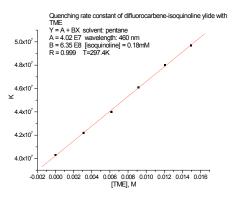

Figure S-24. Rate constant for addition of CF₂ to TME at 260.5 K: k = 3.16 exp 8 M⁻¹s⁻¹, R = 0.998.

Figure S-25. Rate constant for addition of CF₂ to TME at 273.2 K: $k = 4.06 \exp 8$ M⁻¹s⁻¹, R = 0.999.

Figure S-26. Rate constant for addition of CF₂ to TME at 282.1 K: k = 4.80 exp8 M⁻¹s⁻¹, R = 0.999.

Figure S- 27. Rate constant for addition of CF₂ to TME at 297.4 K: k = 6.35 exp 8 M⁻¹s⁻¹, R = 0.999.

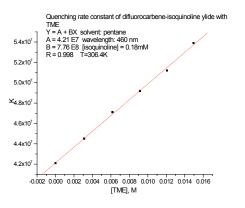
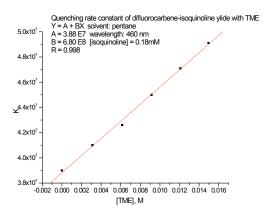
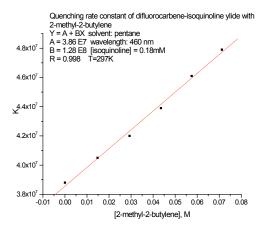
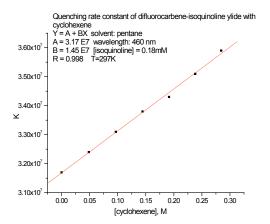
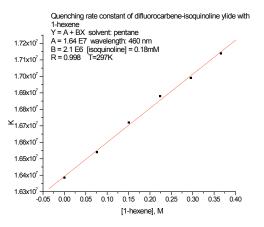
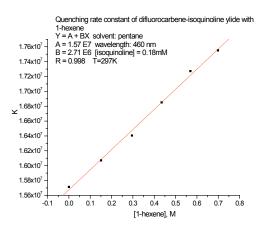




Figure S-28. Rate constant for addition of CF₂ to TME at 306.4 K: k = 7.76 exp 8 M⁻¹s⁻¹, R = 0.998.


Additional rate constant determinations


Figure S-29. Rate constant for addition of CF₂ to TME at 297 K: k = 6.80 exp 8 M⁻¹s⁻¹, R = 0.998.


Figure S-30. Rate constant for addition of CF₂ to 2-methyl-2-butene at 297 K: $k = 1.28 \text{ exp } 8 \text{ M}^{-1} \text{s}^{-1}$, R = 0.998.

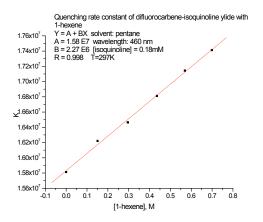

Figure S-31. Rate constant for addition of CF₂ to cyclohexene at 297 K: k = 1.45 exp 7 M⁻¹s⁻¹, R = 0.998.

Figure S-32. Rate constant for addition of CF₂ to 1-hexene at 297 K: k = 2.10 exp 6 M⁻¹s⁻¹, R = 0.998.

Figure S-33. Rate constant for addition of CF₂ to 1-hexene at 297 K: $k = 2.71 \exp 6$ M⁻¹s⁻¹, R = 0.998.

Figure S-34. Rate constant for addition of CF₂ to 1-hexene at 297 K: k = 2.27 exp 6 M⁻¹s⁻¹, R = 0.998.

Computational details

Electronic structure calculations, based on density functional theory (DFT), were carried out with the Gaussian 03 suite¹ of programs. We employed both the PBE and B3LYP exchange and correlation functionals^{2,3} with 6-311+G(d) basis sets.⁴ The PBE functionals were used in ground state geometry optimizations (PBEPBE/6-311+G(d)), whereas excited state properties (transition energies (λ) and oscillator strengths (f)) were calculated at the optimized ground state geometries using time-dependent density functional theory and the B3LYP functionals (TD-B3LYP/6-311+G(d)//PBEPBE/6-311+G(d)).⁵ General solvent effects were incorporated with the polarizable conductor self-consistent reaction field model (CPCM).⁶ Solute molecular cavities were generated using explicit hydrogen atoms and Pauling atomic radii. The hydrocarbon solvent used experimentally (pentane) was simulated with heptane parameters. (1) Gaussian 03, Revision C.02. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Ivengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;

Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.;

Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;

Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;

Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain,

M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;

Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;

Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,

M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;

Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

(2) Perdew, J.P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

(3) Becke, A.D. J. Chem. Phys. 1993, 98, 5648; Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B. 1988, 37, 785.

(4) Ditchfield, R.; Hehre, W.J.; Pople, J.A. J. Chem. Phys. 1971, 54, 721. Hariharan,

P.C.; Pople, J.A. Mol. Phys. 1974, 27, 209. Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople,

J.A. J. Chem. Phys. 1980, 72, 650. McLean, A.D.; Chandler, G.S. J. Chem. Phys. 1980,

72, 5639. Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.v.R. J. Comp. Chem. **1983**, *4*, 294.

(5) Casida, M.E.; Jamorski, C.; Casida, K.C.; Salahub, D.R. *J. Chem. Phys.* **1998**, *108*, 4439.

(6) Cossi, M.; Barone, V. J. Phys. Chem. A 1998, 102, 1995.

Optimized ground state cartesian geometries (Å), absolute energies (a.u.), and excited state transition energies and intensities.

PBEPBE/6-311+G(d) geometry optimization data for CF₂ C,0,-0.4967270355,0.,-0.3512390552 F,0,-0.4378742798,0.,0.9704868003 F,0,0.7690256368,0.,-0.7363274301 SCF Done: E(RPBE-PBE) = -237.544581731 A.U. after 1 cycles

Zero-point correction=	0.006419 (Hartree/Particle)
Thermal correction to Energy=	0.009445
Thermal correction to Enthalpy=	0.010390
Thermal correction to Gibbs Free Energy	gy= -0.017032
Sum of electronic and zero-point Energ	ies= -237.538163
Sum of electronic and thermal Energies	-237.535136
Sum of electronic and thermal Enthalpi	es= -237.534192
Sum of electronic and thermal Free Ene	ergies= -237.561614

TD-B3LYP/6-311+G(d)//PBEPBE/6-311+G(d), excited state data, CF₂ in vacuum

Excited State	1: Singlet-B1	4.7091 eV 263.29 nm f=0.0344
12 -> 13	0.61517	
Excited State	2: Singlet-A2	7.7300 eV 160.39 nm f=0.0000
11 -> 13	0.70111	
Excited State	3: Singlet-A1	8.7174 eV 142.23 nm f=0.0383
12 -> 14	0.68401	
12 -> 16	-0.11434	

TD-B3LYP/6-311+G(d)//PBEPBE/6-311+G(d), excited state data, CPCM: CF₂ in heptane solvent

Excited State	1: Singlet-B1	4.6284 eV 267.88 nm f=0.0431
12 -> 13	0.63200	
Excited State	2: Singlet-A2	7.8028 eV 158.90 nm f=0.0000
11 -> 13	0.70139	
Excited State	3: Singlet-A1	8.6687 eV 143.03 nm f=0.0585
12 -> 14	0.67788	
12 -> 16	-0.16492	

PBEPBE/6-311+G(d) geometry optimization data for pyridine (C₅H₅N)

C,0,-1.1419440583,0.0520198395,0.4600399661 C,0,-1.1904302152,0.0254282003,1.859181448 C,0,0.0154401917,0.0000552446,2.5666785219 C,0,1.2129790637,0.0019946294,1.844702181 C,0,1.1481883101,0.0296927106,0.4462592326 N,0,-0.0009834306,0.0550449207,-0.2505972432 H,0,-2.0682365279,0.072151596,-0.1262730587 H,0,-2.1528710931,0.0244033284,2.378022112 H,0,2.1813835701,-0.0178623082,2.3519386996 H,0,2.0675573841,0.0318358723,-0.1511831587 H,0,0.0218271273,-0.0216824926,3.6603699464

· · · · ·	
Zero-point correction=	0.086054 (Hartree/Particle)
Thermal correction to Energy=	0.090476

SCF Done: E(RPBE-PBE) = -248.023283559 A.U. after 1 cycles

Thermal correction to Energy=	0.0904/6
Thermal correction to Enthalpy=	0.091420
Thermal correction to Gibbs Free Energy=	0.058569
Sum of electronic and zero-point Energies=	-247.937229
Sum of electronic and thermal Energies=	-247.932807
Sum of electronic and thermal Enthalpies=	-247.931863
Sum of electronic and thermal Free Energie	es= -247.964715

TD-B3LYP/6-311+G(d)//PBEPBE/6-311+G(d), excited state data, CPCM: pyridine (C₅H₅N) in heptane holvent

Excited State	1: Singlet-A	4.9354 eV	251.22 nm f=0.0062
	0.68675		
20 -> 22	0.08073		
Excited State	2: Singlet-A	5 3088 eV	233.54 nm f=0.0000
	U	0.00000	255.5 1 1111 1 0.0000
20 -> 23	0.70465		
Excited State	3: Singlet-A	5 3600 aV	230.89 nm f=0.0838
	U	5.509960	230.89 IIII 1-0.0838
19 -> 23	0.32887		
21 > 22	0 (2222		
21 -> 22	0.62232		
Excited State	4: Singlet-A	6 1127 eV	202.83 nm f=0.0349
	-	0.112/01	202.05 IIII 1 0.05 17
19 -> 22	-0.37504		
21 -> 23	0.55759		
21 -> 23	0.55/59		

PBEPBE/6-311+G(d) geometry optimization data for isoquinoline (C₉H₇N)

C,0,-0.7002310227,0.0118292639,-0.6513703308 C,0,-0.7398731633,0.059631584,0.7723359505 C,0,0.5132426194,0.0778127419,1.4712030775 C,0,1.6950483043,0.0468841786,0.6830494572 C,0,1.592757682,0.0017419184,-0.69412192 H,0,-2.9058626203,0.0753512436,0.9661509596 H,0,-1.6470661218,-0.0025835839,-1.2086557395

C,0,-1.9547479689,0.0894654056,1.5082039082 C,0,0.5053132391,0.1253186526,2.8925197476 H,0,2.6772309085,0.0588599768,1.1658679675 H,0,2.4912480629,-0.0226148907,-1.3198390761 C,0,-0.692575204,0.1534020594,3.5833630636 C,0,-1.9312384637,0.1355119097,2.8898285083 H,0,1.4580527961,0.1393305305,3.4310872916 H,0,-0.6897771583,0.1899231081,4.6765896737 H,0,-2.8669651716,0.1584060898,3.4552920817 N,0,0.4081964568,-0.016510494,-1.3736750522

SCF Done: E(RPBE-PBE) = -401.504943495 A.U. after 2 cycles

Zero-point correction=	0.131547 (Hartree/Particle)
Thermal correction to Energy=	0.138509
Thermal correction to Enthalpy=	0.139454
Thermal correction to Gibbs Free Ener	rgy= 0.100178
Sum of electronic and zero-point Ener	gies= -401.373397
Sum of electronic and thermal Energie	es= -401.366434
Sum of electronic and thermal Enthalp	oies= -401.365490
Sum of electronic and thermal Free Er	nergies= -401.404765

TD-B3LYP/6-311+G(d)//PBEPBE/6-311+G(d), Excited State Data, CPCM: isoquinoline (C₉H₇N) in heptane solvent

		4 1 50 6 37	200 72	C 0 1040
Excited State	1: Singlet-A	4.1506 eV	298.72 nm	1=0.1048
32 -> 35	0.10982			
32 -> 36	0.15788			
34 -> 35	0.63374			
34 -> 36	-0.14136			
Excited State	2: Singlet-A	4.4624 eV	277.84 nm	f=0.0019
33 -> 35	0.68842			
Excited State	3: Singlet-A	4.5478 eV	272.63 nm	f=0.0248
32 -> 35	-0.44342			
34 -> 35	0.15594			
34 -> 36	0.52620			
Excited State	4: Singlet-A	5.2312 eV	237.01 nm	f=0.0016
33 -> 36	0.69363			

PBEPBE/6-311+G(d) Geometry Optimization Data for thioanisole (C₇H₈S)

C,0,1.2896422828,-0.7138650119,-1.1102425822 C,0,2.5373788894,-1.1938893215,-0.7101301165 C,0,3.2077701487,-0.6171533065,0.3779064483 C,0,2.6105789318,0.4471739405,1.0593683596

C,0,1.3581959973,0.9378423723,0.667018549 C,0,0.6861562113,0.3597192243,-0.4236317848 H,0,0.7753453314,-1.1716417217,-1.9609758369 H,0,2.9899006692,-2.0276265663,-1.2550007395 H,0,4.185086324,-0.9952945318,0.6890647382 H,0,3.1200712968,0.9087666351,1.9105913358 H,0,0.9171919081,1.7703676678,1.218939855 S,0,-0.9048895448,0.8880830481,-1.0214622592 C,0,-1.3429802761,2.2560279059,0.0925605786 H,0,-2.3256055119,2.6082515537,-0.2495186251 H,0,-1.4351505543,1.9216685365,1.1357246109 H,0,-0.6285691039,3.0884125754,0.0202554688

SCF Done: E(RPBE-PBE) = -669.281787524 A.U. after 1 cycles

Zero-point correction=	0.125460 (Hartree/Particle)
Thermal correction to Energy=	0.133291
Thermal correction to Enthalpy=	0.134235
Thermal correction to Gibbs Free Ener	-gy= 0.092412
Sum of electronic and zero-point Ener	gies= -669.156328
Sum of electronic and thermal Energie	s= -669.148497
Sum of electronic and thermal Enthalp	ies= -669.147552
Sum of electronic and thermal Free Er	ergies= -669.189375

TD-B3LYP/6-311+G(d)//PBEPBE/6-311+G(d), excited state data, CPCM: thioanisole in heptane solvent

Excited State	1: Singlet-A	4.5755 eV 270.97 nm f=0.0317
32 -> 34	-0.10890	
32 -> 35	0.19616	
33 -> 34	0.62702	
33 -> 35	0.22297	
Excited State	2: Singlet-A	4.8785 eV 254.14 nm f=0.3382
32 -> 34	-0.13296	
33 -> 34	-0.22869	
33 -> 35	0.61593	
Excited State	3: Singlet-A	4.9680 eV 249.57 nm f=0.0002
33 -> 36	0.65720	
33 -> 37	-0.20209	
Excited State	4: Singlet-A	5.2894 eV 234.40 nm f=0.0052
33 -> 36	0.22603	
33 -> 37	0.64263	
33 -> 39	0.11641	

PBEPBE/6-311+G(d) geometry optimization data for CF₂:pyridine ylide C,0,-1.1868698139,0.047882808,0.4719382349 C,0,-1.187594969,0.0242724876,1.8535997933 C,0,0.0156399902,0.0138491102,2.5755258015 C,0,1.2102176753,0.0008190619,1.8390825617 C,0,1.1932685666,0.0247136418,0.4577249198 N,0,-0.0006184202,0.0927007009,-0.2401084375 H,0,-2.0918114656,0.0640781093,-0.130968264 H,0,-2.1529574702,-0.0016025487,2.3641913876 H,0,2.1809108076,-0.0440243474,2.3381159484 H,0,2.0908359221,0.0235007024,-0.1563017879 C,0,-0.0059832424,0.376302305,-1.6323669948 H,0,0.021889499,0.0068918149,3.6663384893 F,0,-1.1275596465,-0.1899610496,-2.2040717676 F,0,1.0968254697,-0.2127928531,-2.217444078

SCF Done: E(RPBE-PBE) = -485.594964624 A.U. after 1 cycles

Zero-point correction=	0.096616 (Hartree/Particle)
Thermal correction to Energy=	0.104056
Thermal correction to Enthalpy=	0.105000
Thermal correction to Gibbs Free Ener	-gy= 0.064457
Sum of electronic and zero-point Energy	gies= -485.498349
Sum of electronic and thermal Energie	s= -485.490909
Sum of electronic and thermal Enthalp	ies= -485.489965
Sum of electronic and thermal Free En	ergies= -485.530507

TD-B3LYP/6-311+G(d)//PBEPBE/6-311+G(d), excited state data, CPCM: CF₂:pyridine ylide in heptane solvent

Excited State	1: Singlet-A	2.9411 eV 421.56 nm f=0.3283
33 -> 34	0.58665	
Excited State	2: Singlet-A	3.1422 eV 394.57 nm f=0.0103
32 -> 34	-0.12428	
33 -> 35	0.68725	
Excited State	3: Singlet-A	4.5952 eV 269.81 nm f=0.0174
33 -> 36	0.69942	
Excited State	4: Singlet-A	5.0843 eV 243.86 nm f=0.0035
32 -> 34	-0.11252	
33 -> 37	0.68692	
33 -> 40	-0.11735	
Excited State	5: Singlet-A	5.2984 eV 234.00 nm f=0.1526
31 -> 35	-0.18245	
32 -> 34	0.63301	
33 -> 37	0.12936	

PBEPBE/6-311+G(d) geometry optimization data for CF₂:isoquinoline ylide C,0,-0.7430587934,-0.0028882821,-0.6433241671 C.0.-0.7474406093.0.0677615781.0.7624309437 C,0,0.5028300819,0.083942131,1.4720142917 C,0,1.6913274401,0.0345434944,0.6801832551 C,0,1.6398084598,0.0085896388,-0.6809962511 H,0,-2.9161154141,0.0765780578,0.9781470043 H,0,-1.6600651362,-0.0278085392,-1.2288888216 C,0,-1.9601596492,0.0918515103,1.5098701987 C,0,0.5037738671,0.1344180492,2.8832624151 H,0,2.6713569721,0.0140354495,1.1639610557 H,0,2.5191369535,-0.0048841497,-1.3213025424 C.0.-0.6926846863.0.1592277763.3.5881534281 C,0,-1.9262039564,0.1345207792,2.8929815745 H,0,1.4604471761,0.1485084751,3.4148449988 H,0,-0.6850878315,0.1940751276,4.6805449621 H,0,-2.8631243096,0.152333314,3.4566974124 N,0,0.4180126099,0.0169552838,-1.3607501895 C,0,0.439117203,0.2434043041,-2.7690264388 F,0,-0.7493161811,-0.1994873331,-3.3067389862 F,0,1.4497058673,-0.5120405112,-3.3368219296

SCF Done: E(RPBE-PBE) = -639.078490637 A.U. after 2 cycles

Zero-point correction=	0.142070 (Hartree/Particle)
Thermal correction to Energy=	0.152183
Thermal correction to Enthalpy=	0.153127
Thermal correction to Gibbs Free Ener	-gy= 0.106264
Sum of electronic and zero-point Energy	gies= -638.936420
Sum of electronic and thermal Energie	es= -638.926308
Sum of electronic and thermal Enthalp	-638.925364
Sum of electronic and thermal Free En	ergies= -638.972227

TD-B3LYP/6-311+G(d)//PBEPBE/6-311+G(d), excited state data, CPCM: CF₂:isoquinoline ylide in heptane solvent

Excited State	1: Singlet-A	2.5957 eV 477.64 nm f=0.2123
46 -> 47	0.53029	
46 -> 48	-0.35188	
Excited State	2: Singlet-A	2.9142 eV 425.44 nm f=0.2681
46 -> 47	0.26647	
46 -> 48	0.58693	
Excited State	3: Singlet-A	4.0146 eV 308.83 nm f=0.1072
44 -> 48	0.12524	
45 -> 47	0.65749	

Excited State	4: Singlet-A	4.1006 eV 302.35 nm f=0.0027
46 -> 49	0.68873	
Excited State	5: Singlet-A	4.6305 eV 267.75 nm f=0.0060
46 -> 50	0.68233	
46 -> 52	-0.13448	

The isoquinoline-CF₂ ylide has an intense transition computed at 478 nm and a second transition at 425 nm of similar intensity. Together, they should yield a strong (broad) absorption around 450 nm. The overall intensity should be $\sim (0.212 + 0.268) \sim 0.48$.

PBEPBE/6-311+G(d) Geometry Optimization Data for CF₂:thioanisole ylide

C.0.-1.0667449118.-1.0778281341.1.3785048171 C,0,-0.9426295027,-0.9056652084,2.7596968291 C,0,0.2329866052,-0.37227472,3.3032928403 C,0,1.2815286943,-0.0004999908,2.4544091357 C,0,1.1639509805,-0.1538589605,1.068293629 C,0,-0.0100404906,-0.7041233509,0.5295446556 H,0,-1.9783168234,-1.5106199156,0.9565034985 H,0,-1.7671383289,-1.2009288976,3.4146677486 H,0,0.3305022175,-0.2462948313,4.3848969871 H,0,2.1992768986,0.4254705874,2.8698892963 H,0,1.9769812683,0.1683112204,0.4150913727 S,0,-0.2787526356,-0.8884828025,-1.2235874969 C,0,1.4006063335,-1.0852859646,-1.8896736353 H,0,1.2787949597,-1.4125582969,-2.9309815011 H,0,1.9275554654,-0.1207753,-1.8735971558 H,0,1.9468721366,-1.8539248611,-1.3278426834 C,0,-0.0220799525,1.6638717328,-1.6644560505 F,0,-0.5455967576,1.7920476338,-2.9055257967 F,0,-0.9743979268,2.1836226677,-0.8687965297

SCF Done: E(RPBE-PBE) = -906.835193726 A.U. after 2 cycles

0.133361 (Hartree/Particle)
0.145612
0.146556
-gy= 0.092286
gies= -906.701833
-906.689582
ies= -906.688638
ergies= -906.742907

TD-B3LYP/6-311+G(d)//PBEPBE/6-311+G(d), excited state data, CPCM: CF₂:thioanisole ylide in heptane solvent

Excited State	1: Singlet-A	3.7778 eV 328.19 nm f=0.3266
45 -> 46	0.63662	
Excited State	2: Singlet-A	4.6252 eV 268.06 nm f=0.0007
44 -> 46	0.56609	
45 -> 47	-0.31758	
45 -> 48	-0.25635	
Excited State	3: Singlet-A	4.7660 eV 260.14 nm f=0.0297
43 -> 46	0.44743	
44 -> 46	0.25900	
45 -> 47	0.42411	