Ionic Liquid-Supported (ILS) (S)-Pyrrolidine Sulfonamide, a Recyclable Organocatalyst for the Highly Enantioselective Michael Addition to Nitroolefins

Bukuo Ni,* Qianying Zhang, Kritanjali Dhungana, and Allan D. Headley* Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429-

3011, USA

bukuo_ni@tamu-commerce.edu

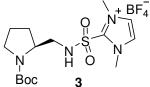
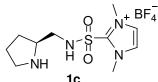

Supporting Information

Table of contents	
Synthesis of catalyst 1c	S2-S3
The data of Michael addition reaction	
References	
Spectra of chiral pyridinium ionic liquids	
Spectra of chiral HPLC for compounds 4a-4m	

General Information: Commercial reagents were used as received, unless otherwise stated. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with fluorescence UV₂₅₄ were used for thin-layer chromatography (TLC) analysis. ¹H and ¹³C NMR spectra were recorded on the Bruker Avance 400. The data of Elemental Analysis were obtained from Quantitative Technologies INC.

All the compounds synthesized (shown in Table 3) in the manuscript are known compounds.²⁻⁷ Their relative and absolute configurations of the products were determined by comparison with the known ¹H and ¹³C NMR, chiral HPLC analysis, and optical rotation values.

1. Synthesis of compound 3



Boc 3 To a solution of (S)-2-amino-1-N-Boc-pyrrolidine (660 mg, 3.3 mmol) and Et₃N (364 mg, 3.6 mmol) in CH₂Cl₂ (5 mL) was added 1-methyl-2-sufonylchlorideimidazole¹ (596 mg, 3.3 mmol) in CH₂Cl₂ (2 mL) at 0°C. After addition, the reaction mixture was warmed up to room temperature and continued to stirring for 1 h. Then water was added and the reaction mixture was extracted with CH₂Cl₂, the organic phase was dried over Na₂SO₄. Filtration, removal of the solvent, and purification by falsh column chromatography (eluent: ethyl acetate) afforded the product **2** (1.1 g, 96%). This compound was used for the next step directly without further characterization.

To a solution of compound **2** (584 mg, 1.70 mmol) in AcOEt (5 mL) was added Me₃OBF₄ (251 mg, 1.70 mmol) at 0°C. After addition, the reaction mixture was warmed up to room temperature and continued to stirring for 2 h. The solid was precipitated, filtrated, and dried to give product **3** (679 mg, 90%) as a white solid. mp: 138-140°C; $[\alpha]_D^{20} = -47.2^\circ$ (c = 0.25, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.75 (s, 2H), 4.11 (s, 6H), 3.90 and 3.70 (br, 1H), 3.40-3.10 (m, 4H), 2.05-1.78 (m, 4H), 1.43 (br, 9H); ¹³C NMR (100 MHz, CD₃OD) δ 156.7, 141.2, 140.1, 127.3, 126.9, 81.6, 81.1, 61.2, 58.5,

58.1, 47.0, 46.3, 45.9, 44.3, 39.0, 29.4, 29.1, 28.7, 27.2, 24.4, 23.7; anal calcd for C₁₅H₂₇BF₄N₄O₂S: C 40.37, H 6.10, N 12.55; Found: C 40.52, H 6.31, N 12.41.

2. Synthesis of catalyst 1c

1c The obtained product **3** (500 mg, 1.23 mmol) was added 4 M HCl dioxane solution (5 mL). The reaction was stirred at room temperature for 5 h and removed the solvent to give the hydrogen chloride salts, which was dissolved in methanol and neutralized with NaHCO₃ solid. Removal the solvent left a residue, which was further purified by short column chromatography on basic aluminum oxide (eluent: methanol) to remove the inorganic salt and give product **1c** (403 mg, 95%) as a white solid. mp: 147-148°C; $[\alpha]_D^{20} = 4.5^\circ$ (c = 0.31, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.53 and 7.50 (s, 2H), 4.06 (s, 6H), 3.70-3.50 (m, 1H), 3.36-2.90 (m, 4H), 2.20-1.90 (m, 3H), 1.78-1.64 (m, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 148.11, 124.7, 124.6, 113.2, 63.1, 46.9, 46.5, 38.1, 37.9, 30.7, 29.2, 28.4, 24.8, 24.4; anal calcd for C₁₀H₁₉BF₄N₄O₂S: C 34.70, H 5.53, N 16.19; Found: C 34.58, H 5.62, N 16.32.

The general procedure for the Michael addition reaction 3. (S)-2-((R)-2-nitro-1-phenylethyl)cyclohexanone $4a^2$

NO₂

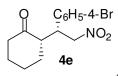
4a The catalyst 1c (7 mg, 10 mol%) was added to a solution of cyclohexanone (98 mg, 1.0 mmol) in *i*-PrOH (0.5 mL) at room temperature. The reaction mixture was stirred for 20 min, and then *trans*-β-nitrostyrene (30 mg, 0.2 mmol) was added. After stirring at room temperature for 16 h, the reaction mixture was concentrated in vacuum and the residue was diluted with ethyl acetate (or ether) to precipitate the catalyst. The organic layer was separated and purified by flash silica gel column (eluent: hexane : ethyl acetate = 4 : 1) to give the Michael adduct **4a** (45 mg, 91%) as a white solid. The catalyst was recovered and reused for the next cycle. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.23 (m, 3H), 7.20-7.14 (m, 2H), 4.94 (dd, *J* = 12.4 and 4.4 Hz, 1H), 6.43 (dd, *J* = 12.4 and 10.0 Hz, 1H), 3.76 (dt, *J* = 9.6 and 4.4 Hz, 1H), 2.74-2.64 (m, 1H), 2.52-2.34 (m, 2H), 2.13-2.03 (m, 1H), 1.83-1.50 (m, 4H), 1.30-1.18 (m, 1H); *syn/anti* =

95/5; ee = 90%; HPLC (Chiralpak AS-H, i-Propanol/Hexane = 10/90, flow rate 0.7 mL/min, $\lambda = 238$ nm): t_{minor} = 18.2 min, t_{major} = 27.5 min.

4. (S)-2-((R)-1-(4-methylphenyl)-2-nitroethyl)cyclohexanone 4b³

4b ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 4.91 (dd, *J* = 12.4 and 4.8 Hz, 1H), 4.62 (dd, *J* = 12.4 and 10.0 Hz, 1H), 3.72 (dt, *J* = 10.0 and 4.8 Hz, 1H), 2.71-2.62 (m, 1H), 2.51-2.32 (m, 2H), 2.31 (s, 3H), 2.12-2.02 (m, 1H), 1.82-1.50 (m, 4H), 1.30-1.18 (m, 1H); *syn/anti* = 99/1; ee = 99%; HPLC (Chiralpak AS-H, i-Propanol/Hexane = 10/90, flow rate 0.8 mL/min, λ = 254 nm): t_{minor} = 12.4 min, t_{major} = 20.6 min.

5. (S)-2-((R)-1-(4-methoxyphenyl)-2-nitroethyl)cyclohexanone 4c²


4c ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 4.95 (dd, J = 12.4 and 4.4 Hz, 1H), 4.58 (dd, J = 12.4 and 10.0 Hz, 1H), 3.78 (s, 3H), 3.72 (dt, J = 10.0 and 4.4 Hz, 1H), 2.69-2.60 (m, 1H), 2.53-2.33 (m, 2H), 2.13-2.04 (m, 1H), 1.82-1.50 (m, 4H), 1.30-1.17 (m, 1H); *syn/anti* = 99/1; ee = 98%. HPLC (Chiralpak AD, i-Propanol/Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 254$ nm): t_{minor} = 26.9 min, t_{major} = 32.7 min.

6. (S)-2-((R)-1-(2-trifluoromethanephenyl)-2-nitroethyl)cyclohexanone 4d⁴

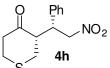
4d ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.6 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.39 (dd, J = 16.4 and 10.0 Hz, 2H), 5.02 (dd, J = 12.0 and 6.8 Hz, 1H), 4.76 (dd, J = 12.0 and 4.0 Hz, 1H), 4.13-4.05 (m, 1H), 3.06-2.96 (m, 1H), 2.54-2.40 (m, 3H), 2.18-2.08 (m, 1H), 1.84-1.52 (m, 4H), 1.38-1.24 (m, 1H); *syn/anti* 98/2; ee = 95%; HPLC

(Chiralpak AD, i-Propanol/Hexane = 10/90, flow rate 0.5 mL/min, λ = 254 nm): t_{minor} = 13.7 min, t_{major} = 18.6 min.

7. (S)-2-((R)-1-(4-bromophenyl)-2-nitroethyl)cyclohexanone 4e⁵

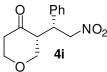
¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, *J* = 6.8 and 1.6 Hz, 2H), 7.06 (dd, *J* = 6.8 and 1.6 Hz, 2H), 4.92 (dd, *J* = 12.4 and 4.4 Hz, 1H), 4.60 (dd, *J* = 12.4 and 10.0 Hz, 1H), 3.74 (dt, *J* = 9.6 and 4.4 Hz, 1H), 2.70-2.60 (m, 1H), 2.52-2.32 (m, 2H), 2.14-2.04 (m, 1H), 1.84-1.52 (m, 4H), 1.30-1.18 (m, 1H); *syn/anti* = 93/7; ee = 94%; HPLC (Chiralpak AS-H, i-Propanol/Hexane = 10/90, flow rate 1 mL/min, λ = 254 nm): t_{minor} = 15.5 min, t_{major} = 27.1 min.

8. (S)-2-((R)-2-nitro-(2-nitrophenyl)ethyl)cyclohexanone 4f⁶

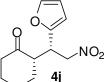

 $\int_{-1}^{1} \frac{C_6H_5-2-NO_2}{NO_2} + \frac{1}{4} \int_{-1}^{1} H NMR (400 \text{ MHz, CDCl}_3) \delta 7.84 (d, J = 8.0 \text{ Hz, 1H}), 7.59 (t, J = 8.0 \text{ Hz, 1H}), 7.48-7.42 (m, 2H), 4.98-4.87 (m, 2H), 4.32 (dt, J = 8.8 and 4.8 \text{ Hz, 1H}), 2.99-2.91 (m, 1H), 2.52-2.32 (m, 2H), 2.16-2.08 (m, 1H), 1.88-1.78 (m, 2H), 1.72-1.40 (m, 4H);$ *syn/anti* $= 97/3; ee = 90\%; HPLC (Chiralpak AD, i-Propanol/Hexane = 5/95, flow rate 1 mL/min, <math>\lambda$ = 238 nm): t_{minor} = 20.1 min, t_{major} = 29.3 min.

9. (S)-2-((R)-1-(2,4-dichlorophenyl)-2-nitroethyl)cyclohexanone 4g⁶

$$\begin{array}{c}
O & C_6H_4-2,4-Cl_2\\
\hline
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$


¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 2.0 Hz, 1H), 7.28-7.14 (m, 2H), 4.95-4.80 (m, 2H), 4.25 (dt, J = 9.6 and 4.8 Hz, 1H), 2.93-2.82 (m, 1H), 2.52-2.32 (m, 2H), 2.16-2.07 (m, 1H), 1.87-1.50 (m, 4H), 1.40-1.25 (m, 1H); *syn/anti* = 99/1; ee = 99\%; HPLC (Chiralpak AS-H, i-Propanol/Hexane = 5/95, flow rate 1 mL/min, $\lambda = 238$ nm): t_{minor} = 14.3 min, t_{major} = 25.5 min.

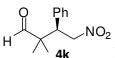
10. (*R*)-Tetrahydro-3-((*R*)-2-nitro-1-phenylethyl)thiopyran-4-one 4h⁵


S ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.26 (m, 3H), 7.21-7.16 (m, 2H), 4.96 (dd, *J* = 12.4 and 4.8 Hz, 1H), 4.64 (dd, *J* = 12.4 and 10.0 Hz, 1H), 4.20-4.10 (m, 1H), 3.87-3.68 (m, 2H), 3.70 (dd, *J* = 11.2 and 5.2 Hz, 1H), 3.27 (dd, *J* = 11.2 and 10.0 Hz, 1H), 2.93-2.83 (m, 1H), 2.73-2.61 (m, 1H), 2.60-2.53 (m, 1H); *syn/anti* =96/4; ee = 92%; HPLC (Chiralpak AS-H, i-Propanol/Hexane = 40/60, flow rate 0.5 mL/min, λ = 254 nm): t_{minor} = 21.8 min, t_{major} = 27.7 min.

11. (*R*)-Tetrahydro-3-((*R*)-2-nitro-1-phenylethyl)pyran-4-one 4i⁵

¹H NMR (400 MHz, CDCl₃) δ 7.37-7.26 (m, 3H), 7.21-7.16 (m, 2H), 4.96 (dd, *J* = 12.4 and 4.8 Hz, 1H), 4.64 (dd, *J* = 12.4 and 10.0 Hz, 1H), 4.20-4.10 (m, 1H), 3.87-3.68 (m, 2H), 3.70 (dd, *J* = 11.2 and 5.2 Hz, 1H), 3.27 (dd, *J* = 11.2 and 10.0 Hz, 1H), 2.93-2.83 (m, 1H), 2.73-2.61 (m, 1H), 2.60-2.53 (m, 1H); *syn/anti* 94/6; ee = 93%; HPLC (Chiralpak AS-H, i-Propanol/Hexane = 50/50, flow rate 0.5 mL/min, λ = 254 nm): t_{minor} = 18.7 min, t_{maior} = 22.7 min.

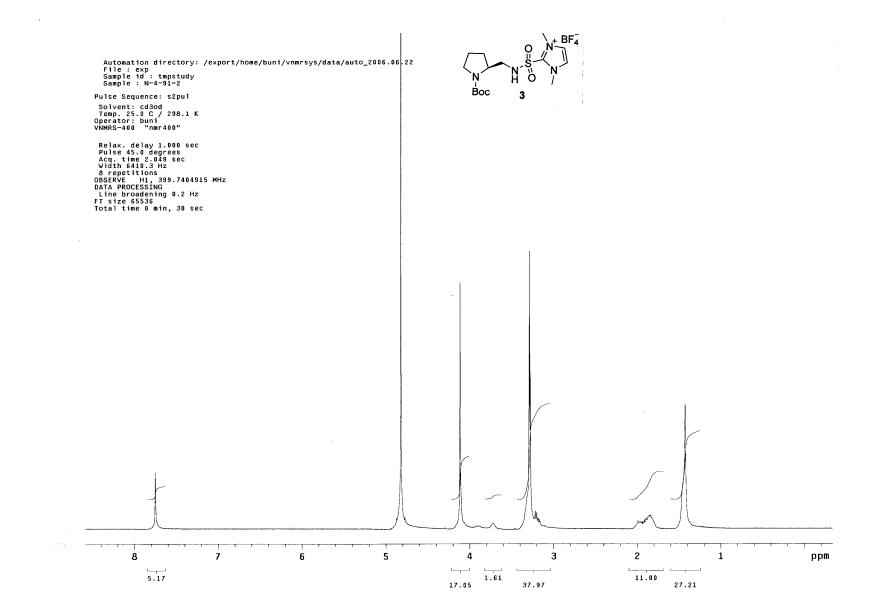
12. (S)-2-((S)-1-(furan-2-yl)-2-nitroethyl)cyclohexanone $4j^7$

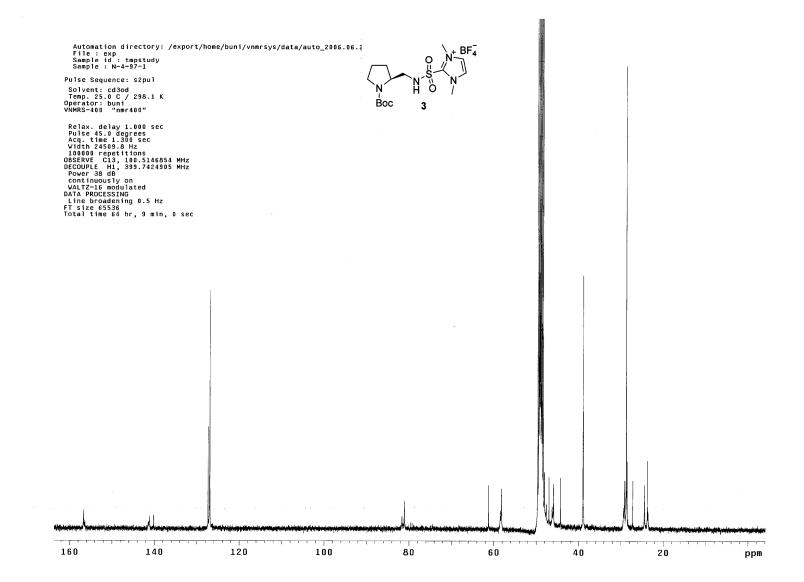


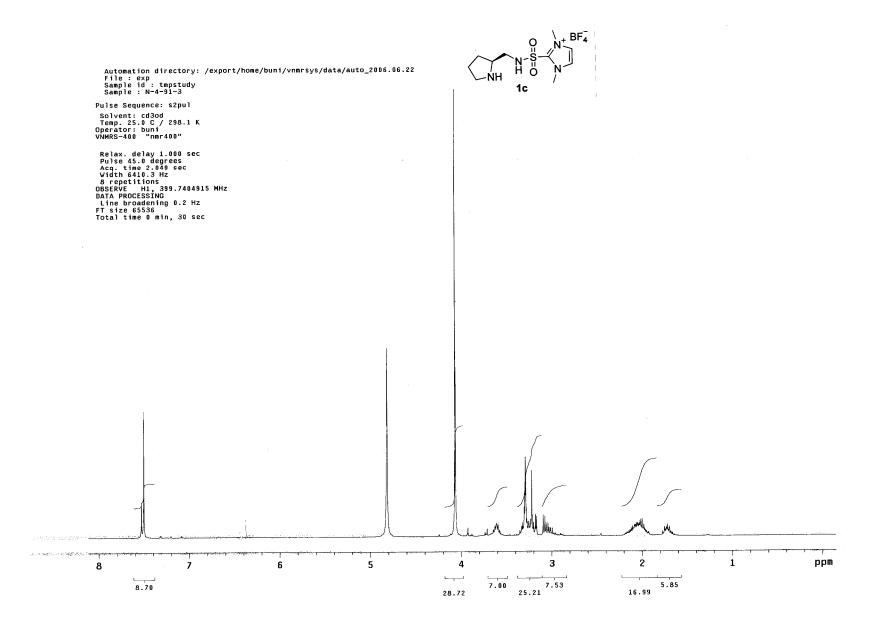
¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.34 (d, J = 1.2 Hz, 1H), 6.28 (dd, J = 2.8, 2.1 Hz, 1H), 6.17 (dd, 1H), 4.78 (dd, J = 12.5 and 4.8 Hz, 1H), 4.67 (dd, J = 12.5 and 9.2 Hz, 1H), 3.97 (dt, J = 9.1, 4.7 Hz, 1H), 2.78-2.71 (m, 1H), 2.49-2.44 (m, 1H), 2.40-2.32 (m, 1H), 2.13-2.07 (m, 1H), 1.86-1.82 (m, 1H), 1.79-1.73 (m, 1H), 1.71-1.61 (m, 2H), 1.33-1.23 (m, 1H). *syn/anti* 92/8; ee = 80%; HPLC (Chiralpak AS-H, i-Propanol/Hexane = 10/90, flow rate 0.7 mL/min, $\lambda = 220$ nm): t_{major} = 14.4 min, t_{major} = 17.6 min.

13. (R)-5-nitro-4-phenylpentan-2-one 2l⁸

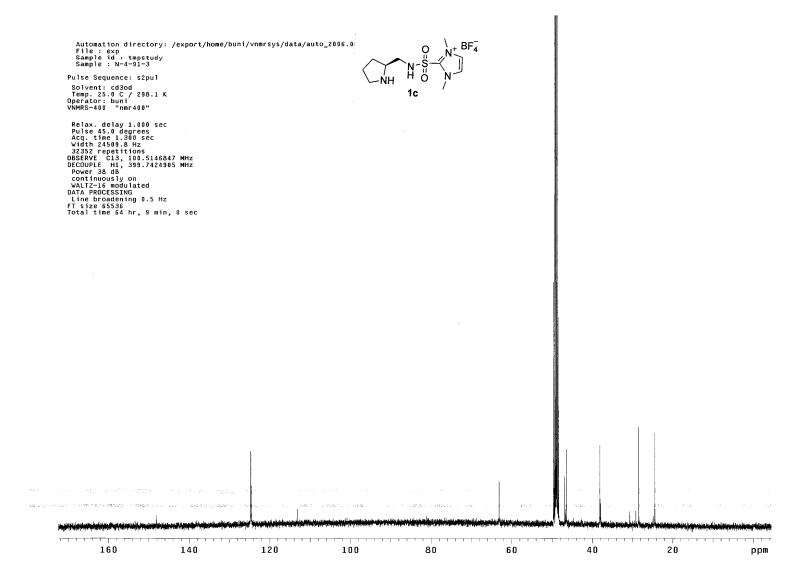
¹H NMR (400 MHz, CDCl₃) δ 7.38-7.20 (m, 5H), 4.69 (dd, J = 12.4 and 6.8 Hz, 1H), 4.60 (dd, J = 12.4 and 7.6 Hz, 1H), 4.04-3.96 (m, 1H), 2.92 (d, J = 7.2 Hz, 2H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.3, 138.8, 129.1, 127.9, 127.4, 79.4, 46.1, 39.0, 30.4; ee = 14%; HPLC (Chiralpak AS-H, i-Propanol/Hexane = 20/80, flow rate 0.5 mL/min, $\lambda = 254$ nm): t_{minor} = 30.4 min, t_{major} = 41.2 min.

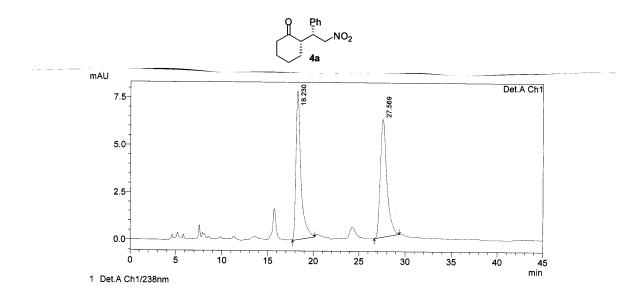

14. (*R*)-2,2-dimethyl-4-nitro-3-phenylbutanal 4m⁵

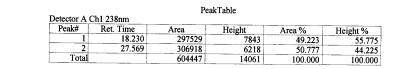

¹¹ \wedge **4k** ¹H NMR (400 MHz, CDCl₃): δ 9.50 (s, 1H), 7.40-7.15 (m, 5H), 4.83 (dd, *J* = 13.0 and 11.4 Hz, 1H), 4.67 (dd, *J* = 13.0 and 4.0 Hz, 1H), 3.76 (dd, *J* = 11.4 and 4.0 Hz, 1H), 1.11 (s, 3H), 0.98 (s, 3H). ee = 76%; HPLC (Chiralpak AS-H, i-Propanol/Hexane = 5/95, flow rate 0.5 mL/min, λ = 238 nm): t_{major} = 32.2 min, t_{major} = 33.5 min.

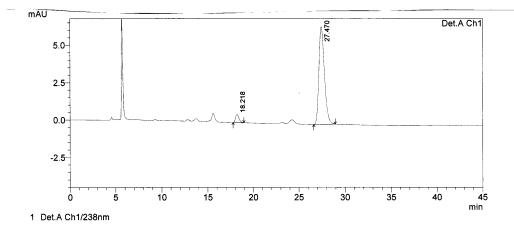

References:

- 1. Diltz, S.; Aguirre, G.; Ortega, F.; Walsh, P. J. Tetrahedron: Asymmetry 1997, 8, 3559
- 2. Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558.
- 3. Saraswathy, V. G.; Sankararaman, S. J. Org. Chem. 1995, 60, 5024.
- 4. Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas III, C. F.
- Synthesis 2004, 1509.
- 5. Wang, J.; Li, H.; Lou, B.; Zu, L.; Guo, H.; Wang, W. Chem. Eur. J. 2006, 12, 4321.
- 6. Cao, C-L.; Ye, M-C.; Sun, X-L.; Tang, Y. Org. Lett. 2006, 8, 2901.
- 7. Pansare, S. V.; Pandya, K. J. Am. Chem. Soc. 2006, 128, 9624-9625.
- 8. Halland, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67, 8331.



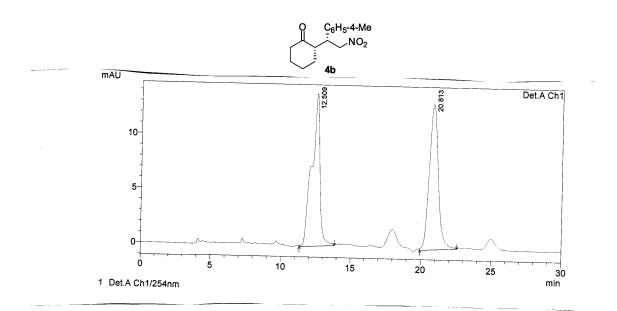

S8

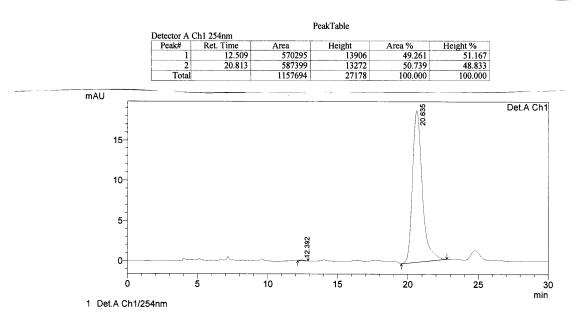




S10

 PeakTable

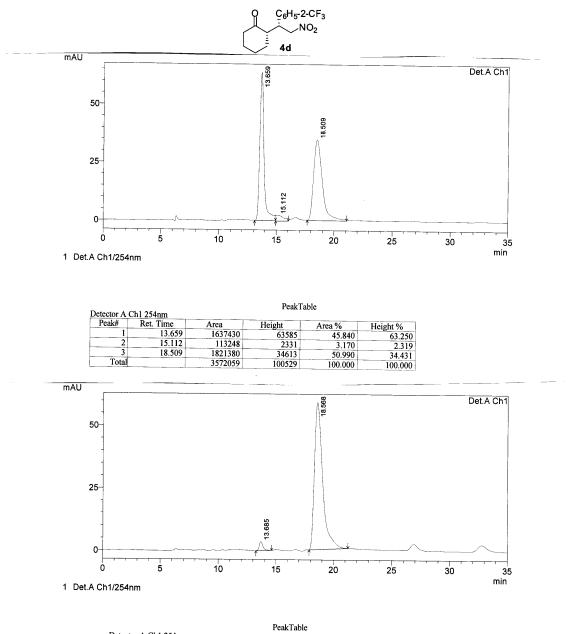

 Detector A Ch1 238nm
 Area
 Height
 Area %
 Height %


 Peak#
 Ret. Time
 Area
 Height
 543
 5.035
 7.704

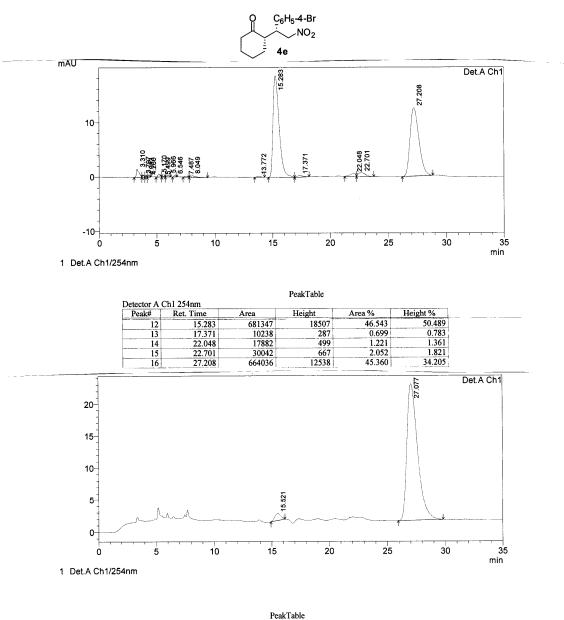
 1
 18.218
 14410
 543
 5.035
 7.704

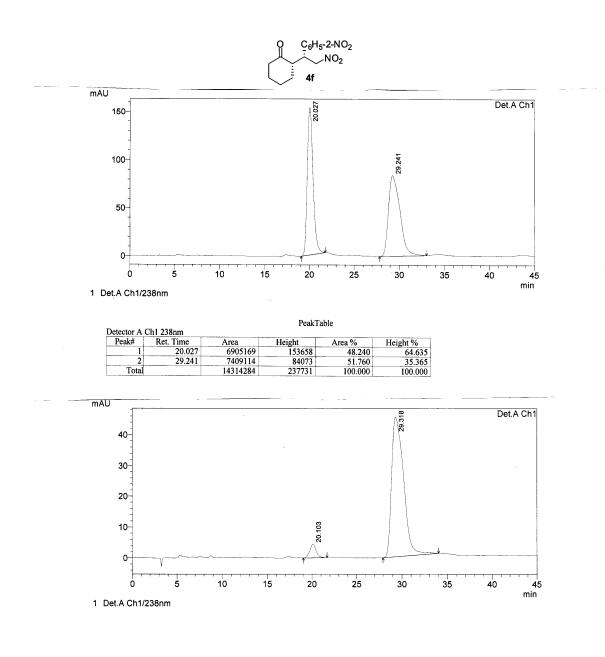
 2
 27.470
 271767
 6502
 94.965
 92.296

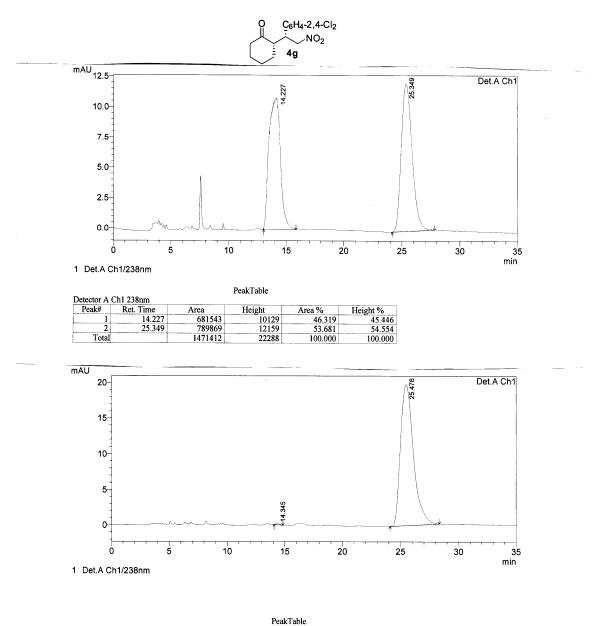

 Total
 286177
 7044
 100.000
 100.000

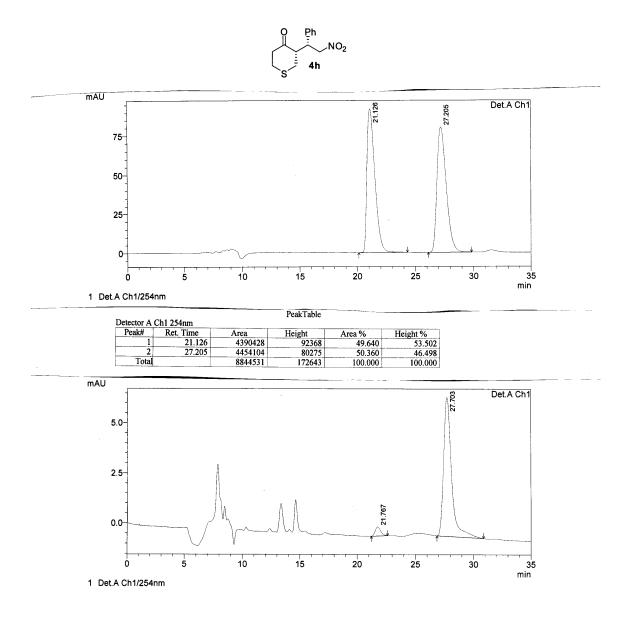


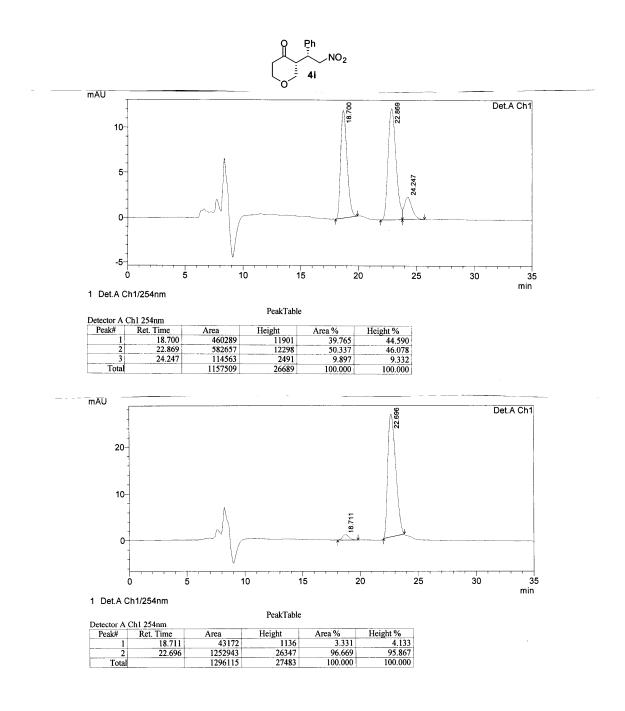
PeakTable Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	12.392	1589	82	0.174	0.435	
2	20.635	910061	18852	99.826	99.565	
Total		911651	18935	100.000	100.000	

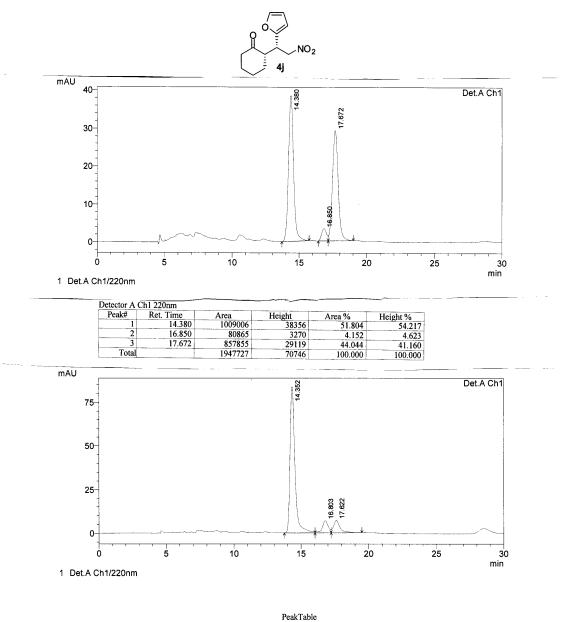

1


			Peaklable				
Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	26.856	27003	649	0.985	1.355		
2	32.714	2713152	47264	99.015	98.645		
Total		2740155	47913	100.000	100.000		

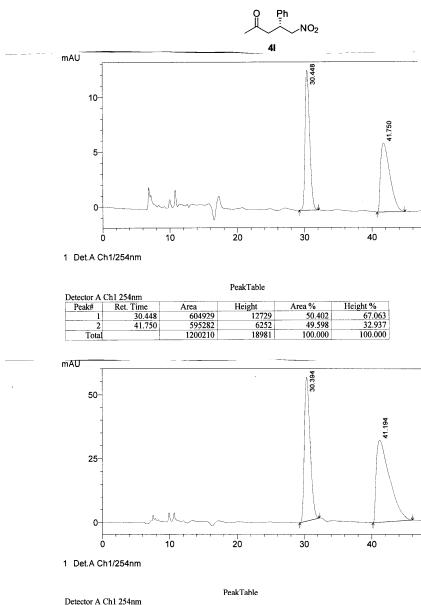

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.685	78532	3533	2.632	5.660
2	18.568	2905428	58898	97.368	94.340
Total		2983960	62432	100.000	100.000


Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.521	39403	1083	2.813	4.831
2	27.077	1361455	21332	97.187	95.169
Total		1400857	22415	100.000	100.000

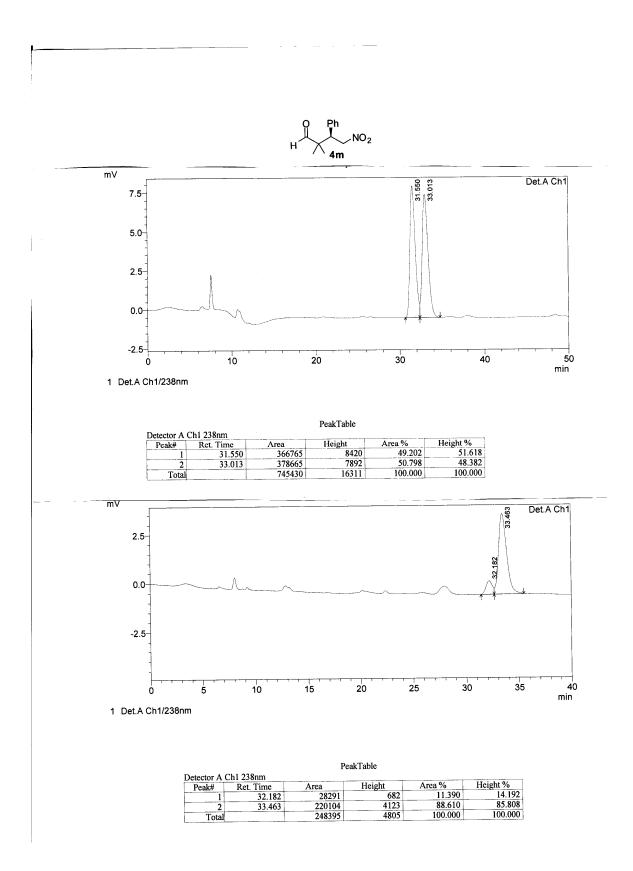

Detector A (Ch1 238nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.103	219080	4400	5.010	8.853
2	29.318	4153882	45301	94.990	91.147
Total		4372961	49701	100.000	100.000



etector A Ch1 238nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	14.345	2966	132	0.193	0.661	
2	25.476	1531692	19808	99.807	99.339	
Total		1534658	19940	100.000	100.000	



PeakTable PeakTable						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	21.767	14504	443	4.214	6.005	
2	27.703	329677	6937	95.786	93.995	
Total		344180	7381	100.000	100.000	



Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.352	2127030	83677	82.889	85.833
2	16.803	206996	6833	8.066	7.009
3	17.622	232091	6978	9.044	7.158
Total		2566117	97489	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	30.394	3345902	56251	43.237	63.719
2	41.194	4392597	32028	56.763	36.281
Total		7738499	88279	100.000	100.000

S23