Ionic Liquid-Supported (ILS) (S)-Pyrrolidine Sulfonamide, a Recyclable Organocatalyst for the Highly Enantioselective Michael Addition to Nitroolefins
 Bukuo Ni,* Qianying Zhang, Kritanjali Dhungana, and Allan D. Headley*
 Department of Chemistry, Texas A\&M University-Commerce, Commerce, TX 754293011, USA
 bukuo_ni@tamu-commerce.edu

Supporting Information

Table of contentsSynthesis of catalyst 1c.S2-S3
The data of Michael addition reaction. S3-S7
References S7
Spectra of chiral pyridinium ionic liquids S8-S11
Spectra of chiral HPLC for compounds 4a-4m S12-S23

General Information: Commercial reagents were used as received, unless otherwise stated. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with fluorescence UV254 were used for thin-layer chromatography (TLC) analysis. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the Bruker Avance 400. The data of Elemental Analysis were obtained from Quantitative Technologies INC.

All the compounds synthesized (shown in Table 3) in the manuscript are known compounds. ${ }^{2-7}$ Their relative and absolute configurations of the products were determined by comparison with the known ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, chiral HPLC analysis, and optical rotation values

1. Synthesis of compound 3

To a solution of (S)-2-amino-1-N-Boc-pyrrolidine ($660 \mathrm{mg}, 3.3$ mmol) and $\mathrm{Et}_{3} \mathrm{~N}(364 \mathrm{mg}, 3.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added 1-methyl-2sufonylchlorideimidazole ${ }^{1}$ ($596 \mathrm{mg}, 3.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After addition, the reaction mixture was warmed up to room temperature and continued to stirring for 1 h . Then water was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, removal of the solvent, and purification by falsh column chromatography (eluent: ethyl acetate) afforded the product 2 ($1.1 \mathrm{~g}, 96 \%$). This compound was used for the next step directly without further characterization.

To a solution of compound $2(584 \mathrm{mg}, 1.70 \mathrm{mmol})$ in AcOEt (5 mL) was added $\mathrm{Me}_{3} \mathrm{OBF}_{4}(251 \mathrm{mg}, 1.70 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After addition, the reaction mixture was warmed up to room temperature and continued to stirring for 2 h . The solid was precipitated, filtrated, and dried to give product $3\left(679 \mathrm{mg}, 90 \%\right.$) as a white solid. $\mathrm{mp}: 138-140^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=-47.2^{\circ}(\mathrm{c}=0.25, \mathrm{MeOH}){ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.75(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{~s}$, $6 \mathrm{H}), 3.90$ and $3.70(\mathrm{br}, 1 \mathrm{H}), 3.40-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.05-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{br}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 156.7,141.2,140.1,127.3,126.9,81.6,81.1,61.2,58.5$,
58.1, 47.0, 46.3, 45.9, 44.3, 39.0, 29.4, 29.1, 28.7, 27.2, 24.4, 23.7; anal calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{BF}_{4} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C} 40.37$, H 6.10, N 12.55; Found: C 40.52, H 6.31, N 12.41.

2. Synthesis of catalyst 1c

1c
The obtained product 3 ($500 \mathrm{mg}, 1.23 \mathrm{mmol}$) was added 4 M HCl dioxane solution $(5 \mathrm{~mL})$. The reaction was stirred at room temperature for 5 h and removed the solvent to give the hydrogen chloride salts, which was dissolved in methanol and neutralized with NaHCO_{3} solid. Removal the solvent left a residue, which was further purified by short column chromatography on basic aluminum oxide (eluent: methanol) to remove the inorganic salt and give product $1 \mathbf{c}(403 \mathrm{mg}, 95 \%)$ as a white solid. mp: $147-148^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=4.5^{\circ}(\mathrm{c}=0.31, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 7.53 and $7.50(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 6 \mathrm{H}), 3.70-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.36-2.90(\mathrm{~m}, 4 \mathrm{H}), 2.20-1.90(\mathrm{~m}$, $3 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 148.11, 124.7, 124.6, 113.2, 63.1, 46.9, 46.5, 38.1, 37.9, 30.7, 29.2, 28.4, 24.8, 24.4; anal calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{BF}_{4} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$: C 34.70, H 5.53, N 16.19; Found: C 34.58, H 5.62, N 16.32 .

The general procedure for the Michael addition reaction

3. (S)-2-((R)-2-nitro-1-phenylethyl)cyclohexanone 4a ${ }^{2}$

The catalyst $\mathbf{1 c}(7 \mathrm{mg}, 10 \mathrm{~mol} \%)$ was added to a solution of cyclohexanone $(98 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $i-\operatorname{PrOH}(0.5 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred for 20 min , and then trans- β-nitrostyrene ($30 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added. After stirring at room temperature for 16 h , the reaction mixture was concentrated in vacuum and the residue was diluted with ethyl acetate (or ether) to precipitate the catalyst. The organic layer was separated and purified by flash silica gel column (eluent: hexane : ethyl acetate $=4: 1)$ to give the Michael adduct $\mathbf{4 a}(45 \mathrm{mg}, 91 \%)$ as a white solid. The catalyst was recovered and reused for the next cycle. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.35-7.23 (m, 3H), 7.20-7.14 (m, 2H), $4.94(\mathrm{dd}, J=12.4$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ $(\mathrm{dd}, J=12.4$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dt}, J=9.6$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 1 \mathrm{H})$, 2.52-2.34 (m, 2H), 2.13-2.03 (m, 1H), 1.83-1.50 (m, 4H), 1.30-1.18 (m, 1H); syn/anti $=$

95/5; ee $=90 \%$; HPLC (Chiralpak AS-H, i-Propanol/Hexane $=10 / 90$, flow rate 0.7 $\mathrm{mL} / \mathrm{min}, \lambda=238 \mathrm{~nm}): \mathrm{t}_{\text {minor }}=18.2 \mathrm{~min}, \mathrm{t}_{\text {major }}=27.5 \mathrm{~min}$.

4. (S)-2-((R)-1-(4-methylphenyl)-2-nitroethyl)cyclohexanone 4b ${ }^{3}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.91(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=12.4$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dt}$, $J=10.0$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.02$ $(\mathrm{m}, 1 \mathrm{H}), 1.82-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.18(\mathrm{~m}, 1 \mathrm{H}) ;$ syn/anti $=99 / 1$; ee $=99 \%$; HPLC $($ Chiralpak AS-H, i-Propanol $/$ Hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\text {minor }}=$ $12.4 \mathrm{~min}, \mathrm{t}_{\text {major }}=20.6 \mathrm{~min}$.

5. (S)-2-((R)-1-(4-methoxyphenyl)-2-nitroethyl)cyclohexanone $4 \mathbf{c}^{2}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=12.4$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=12.4$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, 3H), $3.72(\mathrm{dt}, J=10.0$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.13-$ $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.17(\mathrm{~m}, 1 \mathrm{H}) ;$ syn/anti $=99 / 1$; ee $=98 \%$. HPLC $($ Chiralpak AD, i-Propanol $/$ Hexane $=10 / 90$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\text {minor }}=$ $26.9 \mathrm{~min}, \mathrm{t}_{\text {major }}=32.7 \mathrm{~min}$.

6. (S)-2-((R)-1-(2-trifluoromethanephenyl)-2-nitroethyl)cyclohexanone $\mathbf{4 d}^{4}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, \quad J=16.4$ and $10.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{dd}, J=12.0$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (dd, $J=12.0$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 3 \mathrm{H})$, 2.18-2.08 (m, 1H), 1.84-1.52 (m, 4H), 1.38-1.24 (m, 1H); syn/anti 98/2; ee $=95 \%$; HPLC
$($ Chiralpak AD, i-Propanol $/$ Hexane $=10 / 90$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\text {minor }}=$ $13.7 \mathrm{~min}, \mathrm{t}_{\text {major }}=18.6 \mathrm{~min}$.

7. (S)-2-((R)-1-(4-bromophenyl)-2-nitroethyl)cyclohexanone 4e ${ }^{5}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{dd}, J=6.8$ and $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (dd, $J=6.8$ and $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{dd}, J=12.4$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=12.4$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dt}, J=9.6$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.32(\mathrm{~m}, 2 \mathrm{H})$, 2.14-2.04 (m, 1H), 1.84-1.52 (m, 4H), 1.30-1.18 (m, 1H); syn/anti $=93 / 7$; ee $=94 \%$; HPLC (Chiralpak AS-H, i-Propanol/Hexane $=10 / 90$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\text {minor }}=15.5 \mathrm{~min}, \mathrm{t}_{\text {major }}=27.1 \mathrm{~min}$.

8. (S)-2-((R)-2-nitro-(2-nitrophenyl)ethyl)cyclohexanone 4f ${ }^{6}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 4.98-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{dt}, J=8.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.99-2.91 (m, 1H), 2.52-2.32 (m, 2H), 2.16-2.08 (m, 1H), 1.88-1.78 (m, 2H), 1.72-1.40 (m, 4H); syn/anti $=97 / 3$; ee $=90 \%$; HPLC (Chiralpak AD, i-Propanol/Hexane $=5 / 95$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=238 \mathrm{~nm})$: $\mathrm{t}_{\text {minor }}=20.1 \mathrm{~min}, \mathrm{t}_{\text {major }}=29.3 \mathrm{~min}$.

9. (S)-2-((R)-1-(2,4-dichlorophenyl)-2-nitroethyl)cyclohexanone $\mathbf{4 g}^{6}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.14(\mathrm{~m}$, $2 \mathrm{H}), 4.95-4.80(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{dt}, J=9.6$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.32$ $(\mathrm{m}, 2 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 1 \mathrm{H}) ;$ syn/anti$=99 / 1$; ee $=$ 99%; HPLC (Chiralpak AS-H, i-Propanol/Hexane $=5 / 95$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=238$ $\mathrm{nm}): \mathrm{t}_{\text {minor }}=14.3 \mathrm{~min}, \mathrm{t}_{\text {major }}=25.5 \mathrm{~min}$.

10. ($\boldsymbol{R})$-Tetrahydro-3-(($\boldsymbol{R})$-2-nitro-1-phenylethyl)thiopyran-4-one $\mathbf{4 h}^{5}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H})$, $4.96(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=12.4$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}$, $1 \mathrm{H}), 3.87-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=11.2$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, \mathrm{J}=11.2$ and 10.0 $\mathrm{Hz}, 1 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H})$; syn/anti $=96 / 4$; ee $=$ 92%; HPLC (Chiralpak AS-H, i-Propanol/Hexane $=40 / 60$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}): \mathrm{t}_{\text {minor }}=21.8 \mathrm{~min}, \mathrm{t}_{\text {major }}=27.7 \mathrm{~min}$.

11. ($\boldsymbol{R})$-Tetrahydro-3-(($\boldsymbol{R})$-2-nitro-1-phenylethyl)pyran-4-one $\mathbf{4 i}^{5}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.37-7.26 (m, 3H), 7.21-7.16 (m, 2H), $4.96(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=12.4$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}$, $1 \mathrm{H}), 3.87-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=11.2$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, \mathrm{J}=11.2$ and 10.0 $\mathrm{Hz}, 1 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H})$; syn/anti 94/6; ee $=$ 93%; HPLC (Chiralpak AS-H, i-Propanol/Hexane $=50 / 50$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}): \mathrm{t}_{\text {minor }}=18.7 \mathrm{~min}, \mathrm{t}_{\text {major }}=22.7 \mathrm{~min}$.

12. (S)-2-((S)-1-(furan-2-yl)-2-nitroethyl)cyclohexanone $\mathbf{4 j}^{7}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.34(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}$, $J=2.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=12.5$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=12.5$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dt}, J=9.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 1 \mathrm{H})$, 2.40-2.32 (m, 1H), 2.13-2.07 (m, 1H), 1.86-1.82 (m, 1H), 1.79-1.73 (m, 1H), 1.71-1.61 $(\mathrm{m}, 2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 1 \mathrm{H})$. syn/anti $92 / 8$; ee $=80 \%$; HPLC (Chiralpak AS-H, iPropanol $/$ Hexane $=10 / 90$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}): \mathrm{t}_{\text {major }}=14.4 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ 17.6 min.

13. (R)-5-nitro-4-phenylpentan-2-one $2 \mathbf{1}^{8}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.69(\mathrm{dd}, J=12.4$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{dd}, J=12.4$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.96(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 205.3,138.8,129.1,127.9,127.4,79.4,46.1,39.0$, 30.4; ee $=14 \% ;$ HPLC $($ Chiralpak AS-H, i-Propanol $/$ Hexane $=20 / 80$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\text {minor }}=30.4 \mathrm{~min}, \mathrm{t}_{\text {major }}=41.2 \mathrm{~min}$.

14. (R)-2,2-dimethyl-4-nitro-3-phenylbutanal 4m ${ }^{5}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.83$ (dd, $J=13.0$ and $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=13.0$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=11.4$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H})$. ee $=76 \%$; HPLC (Chiralpak AS-H, iPropanol $/$ Hexane $=5 / 95$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=238 \mathrm{~nm}): \mathrm{t}_{\text {major }}=32.2 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ 33.5 min .

References:

1. Diltz, S.; Aguirre, G.; Ortega, F.; Walsh, P. J. Tetrahedron: Asymmetry 1997, 8, 3559
2. Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558.
3. Saraswathy, V. G.; Sankararaman, S. J. Org. Chem. 1995, 60, 5024.
4. Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas III, C. F. Synthesis 2004, 1509.
5. Wang, J.; Li, H.; Lou, B.; Zu, L.; Guo, H.; Wang, W. Chem. Eur. J. 2006, 12, 4321.
6. Cao, C-L.; Ye, M-C.; Sun, X-L.; Tang, Y. Org. Lett. 2006, 8, 2901.
7. Pansare, S. V.; Pandya, K. J. Am. Chem. Soc. 2006, 128, 9624-9625.
8. Halland, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67, 8331.

Automation directory: /export/home/buni/vnmrsys/data/auto_2006.0

Sample : N-4-91-3
Pulse Sequence: s2pul
Solvent: cd 3 od
Temp. $25.0 \mathrm{c} / 298.1 \mathrm{~K}$
Operator
VNMRS 400 buni
nmr400"
Relax. delay 1.000 sec
Pulse
Pulse 45.0 degrees
Acq. time 1.300 s
W idt 24509.8 Hz
3
32352 repetitions
OBSERVE C13, 100.514687 MHz
OECOUPLE $\mathrm{H1}, 399.7424905 \mathrm{MHz}$

Power 38 dB
continuously on
WALTZ-16 modulate
WALTZ-16 modulate
DATA PROCESSING
DATA PROCESSNNG 0.5 Hz
FT size 65536
Total time $64 \mathrm{hr}, \mathrm{g} \mathrm{min}, 0 \mathrm{sec}$

PeakTable
Detector A Ch1 238nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	18.230	297529	7843	49.223	55.775
2	27.569	306918	6218	50.777	44.225
Total		604447	14061	100.000	100.000

1 Det.A Ch1/238nm

PeakTable						
Detector A Ch1 238nm	Height					
Peak\#	Ret. Time	Area	Area \%	Height \%		
1	18.218	14410	543	5.035	7.704	
2	27.470	271767	6502	94.965	92.296	
Total		286177	7044	100.000	100.000	

Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	13.685	78532	3533	2.632	5.660
2	18.568	2905428	58898	97.368	94.340
Total		2983960	62432	100.000	100.000

1 Det.A Ch $1 / 254 n m$
Detector A Ch1 254 nm

	PeakTable				
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	15.521	39403	1083	2.813	4.831
2	27.077	1361455	21332	97.187	95.169
Total		1400857	22415	100.000	100.000

1 Det.A Ch1/238nm

[^0]

1 Det.A Ch $1 / 238 \mathrm{~nm}$

1 Det.A Ch1/238nm

Detector A Chl $238 \mathrm{~nm} \quad$ PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	14.345	2966	132	0.193	0.661
2	25.476	1531692	19808	99.807	99.339
Total		1534658	19940	100.000	100.000

1 Det.A Ch1/254nm

Detector A Ch1 254 nm

	PeakTable				
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	30.448	604929	12729	50.402	67.063
2	41.750	595282	6252	49.598	32.937
Total		1200210	18981	100.000	100.000

1 Det.A Ch1/254nm
PeakTable
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	30.394	3345902	56251	43.237	63.719
2	41.194	4392597	32028	56.763	36.281
Total		7738499	88279	100.000	100.000

[^0]: 1 Det.A Ch1/238nm

