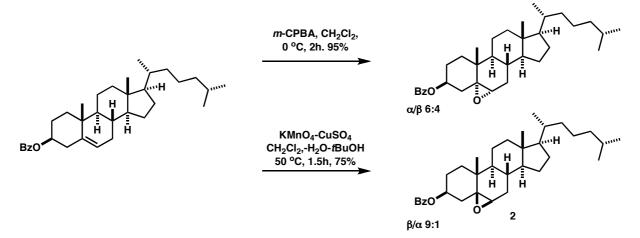
A Study of the Epoxidation of Cycloolefins by the *t*-BuOH Copper-Permanganate System

Younis Baqi, Simon Giroux, and E. J. Corey*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge, Massachusetts 02138

Table of content:


1. Materials and Methods	page S1
2. Experimental procedures	page S2
3. References	page S6
4. Copies of selected ¹ H and ¹³ C NMR spectras	page S7

1. Materials and Methods. Unless stated otherwise, reactions were performed in flame dried glassware under a slight positive pressure of nitrogen using freshly distilled, dry solvent. Commercial grade reagents and solvents were used without further purification except as indicated below. Methanol (MeOH) was distilled over CaSO₄. Dichloromethane (CH₂Cl₂), benzene, and triethylamine (Et₃N) were distilled over calcium hydride (CaH₂). Ether (Et₂O) and tetrahydrofuran (THF) were purified by Seco Solvent Systems. Thin layer chromatography (TLC) was performed using E. Merck silica gel 60 F₂₅₄ precoated plates (0.25 mm). Flash chromatography was performed using Baker silica gel (40 µm particle size). ¹H NMR spectra were recorded on Varian Mercury 400 (400 MHz) or Unity/INOVA 500 (500 MHz) spectrometers and chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent resonance as internal standard (δ 7.26 ppm for CDCl3). ¹³C NMR spectra were recorded on Varian Mercury 400 (100 MHz) or Unity/INOVA 500 (125 MHz) spectrometers with proton decoupling. Chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent as internal (δ 77.16 ppm for CDCl3). IR spectra were recorded on Avatar 360 FT-IR spectrometer. Low-resolution and high-resolution mass spectral analyses were performed at the Harvard University Mass Spectrometry Center. Optical rotations were measured with a Perkin-Elmer 241 polarimeter at the indicated temperature with a sodium lamp (D line, 589 nm). Melting points (m.p.) are uncorrected and were recorded on a Thomas-Hoover Unimelt capillary melting point apparatus.

2. Experimental procedures

2.1 Studies on Δ^5 model.

Epoxidation of cholesteryl benzoate:

Epoxidation with *m***-CPBA:**

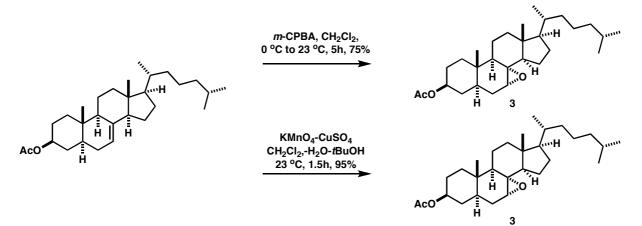
To a stirred solution of cholesteryl benzoate (100 mg, 0.20 mmol) in CH₂Cl₂ (2 mL) was added *m*-CPBA (52.7 mg, 0.31 mmol) at 0 °C the reaction was completed after 2 h stirring at 0 °C. The reaction was quenched by addition of saturated solution of K₂CO₃ (aq.) (2 mL) and the aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL). The organic phase was dried over Na₂SO₄ and concentrated to dryness to afford a 6:4 mixture of cholestan-5 α ,6 α -epoxy-3 β -ol benzoate and cholestan-5 β ,6 β -epoxy-3 β -ol benzoate (98 mg, 95%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, 2H, *J* = 7.5 Hz), 7.53 (dd, 1H, *J* = 7.1 Hz, *J* = 6.9 Hz), 7.42 (m, 2H), 5.21 (1H, m, 3CH, α -epoxide), 5.05 (1H, m, 3CH, β -epoxide), 3.12 (1H, br, 6CH, β -epoxide)^{*}, 2.93 (1H, d, *J* = 4.4 Hz, 6CH, α -epoxide)^{*}, 2.25 (m, 1H), 2.08 (m, 1H), 1.95-1.11 (m, 16H), 1.05 (s, 3H, CH₃), 0.98 (m, 2H), 0.87 (m, 6H, 2-CH₃), 0.62 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 165.9, 133.1, 133.0, 131.0, 130.7, 129.79, 129.76, 128.54, 128.48, 72.2, 72.1, 65.4, 63.8, 62.8, 59.4, 57.0, 56.4, 56.1, 51.2, 42.7, 42.6, 42.5, 40.0, 39.7, 38.3, 36.9, 36.5, 36.4, 36.01, 35.97, 35.33, 35.29, 32.7, 32.4, 30.13, 29.99, 29.0, 28.4, 28.3, 28.3, 27.6, 24.4, 24.3, 24.1, 24.0, 23.1, 22.8, 22.2, 20.9, 18.92, 18.88, 17.3, 16.2, 12.1, 12.0; IR (cm⁻¹): 2932, 2867, 1712, 1466, 1450, 1275, 1117, 1026, 709.

Epoxidation with KMnO₄-CuSO₄:

A mixture of KMnO₄ (600 mg) and CuSO₄·5H₂O (300 mg) was ground to a fine powder and transferred to a reaction flask. Water (0.03 mL) was added, and mixed very well. To a stirred suspension of this mixture in CH₂Cl₂ (2 mL) was added cholesteryl benzoate (100 mg, 0.20 mmol) and *t*-BuOH (0.15 mL). The mixture was then refluxed for 1.25 h. After cooling the

mixture was filtered through a pad of Celite[®] and washed with CH₂Cl₂ (3x10 mL) to give, after concentration, cholestan-5β,6β-epoxy-3β-ol benzoate **2** (77 mg, 75%) as a white solid. [α]_D = +10 (CHCl₃, *c* = 0.5); ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, 2H, *J* = 7.3 Hz), 7.53 (m, 1H), 7.42 (m, 2H), 5.05 (1H, m, 3*CH*), 3.11 (1H, br, 6*CH*, β-epoxide, $\omega^{1/2} = 2.1$ Hz)^{*}, 2.27 (dd, 1H, *J* = 12.7 Hz, *J* = 12.2 Hz), 2.09 (d, 1H, *J* = 14.6 Hz), 1.98 (m, 2H), 1.82 (m, 1H), 1.64-1.04 (m, 14H), 1.03 (s, 3H, CH₃), 0.84 (m, 6H, 2CH₃), 0.64 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 133.1, 130.7, 129.8, 128.54, 128.48, 72.1, 63.8, 62.8, 56.4, 51.2, 42.5, 40.0, 39.7, 38.3, 36.9, 36.4, 36.0, 35.3, 32.7, 30.0, 28.4, 28.2, 27.6, 24.4, 24.1, 23.1, 22.8, 22.2, 18.9, 17.3, 12.0; m.p. 168-170 °C, (lit. m.p. 172-174 °C)¹; MS (ES +) *m/z* (%): 507.4 (M + H⁺, 100).

^{*} The equatorial hydrogen (6C*H*) in the β-epoxide isomer is easly distinguishable than the axial hydrogen (6C*H*) in the α-epoxide; 6C*H* in β-epoxide is downfield (3.11 ppm) and broad $(\omega^{1/2} = 2.1 \text{ Hz})$, whilst 6C*H* in α-epoxide is upfield (2.93 ppm) and a clear doublet (J = 4.3 Hz).²


Preparation of Cu(MnO₄)₂

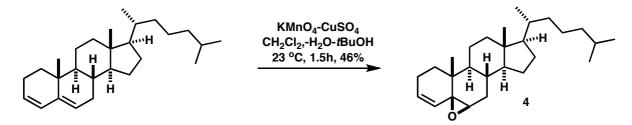
To a stirred solution of KMnO₄ (13.3 g, 84.3 mmol) in H₂O (200 mL) was added Cu(BF₄)₂ (10.0 g, 42.1 mmol) in H₂O (10 mL) at 0 °C. The resulting mixture was stirred at 0 °C for 10 minutes and then filtered to remove the precipitate of KBF₄. Evaporation of H₂O gave Cu(MnO₄)₂ (10g, 79%) as a grey-brown powder. Cu(MnO₄)₂ was also synthesized using a literature method,⁶ but we found this to be much less convenient.

Epoxidation with Cu(MnO₄)₂:

Cholesteryl benzoate (50 mg, 0.102 mmol) was dissolved in CH_2Cl_2 (0.5 mL) and *t*-BuOH (1.5 mL). To this stirred solution, $Cu(MnO_4)_2$ (46 mg, 0.153 mmol) was added at room temperature. Stirring was continued at room temperature for 1 h. The resulting solution was passed through a short pad of silica gel which was eluted wih CH_2Cl_2 and ether. Evaporation in vacuo gave cholestan-5 β ,6 β -epoxy-3 β -ol benzoate **2** and cholestan-5 α ,6 α -epoxy-3 β -ol benzoate in a 6:1 ratio as a white solid (55 mg, quant) with physical data identical as above.

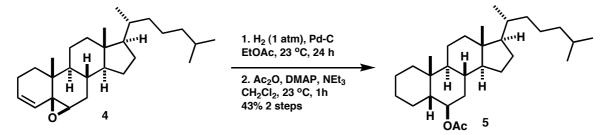
2.2 Studies on Δ^7 model. Epoxidation of Δ^7 acetate:

Epoxidation with *m***-CPBA:**


To a stirred solution of Δ^7 acetate (100 mg, 0.23 mmol) in CH₂Cl₂ (2 mL) was added *m*-CPBA (60 mg, 0.35 mmol) at 0 °C. After 2 h of stirring at 0 °C, the mixture was treated with saturated aq. solution of K₂CO₃ (2 mL) and the aqueous phase was extracted with CH₂Cl₂ (3x10 mL). The organic phase was dried over Na₂SO₄ and concentrated to dryness to afford cholestan-7 α ,8 α -epoxy-3 β -ol acetate **3** as a white solid (98 mg, 95%).

Epoxidation with KMnO₄-CuSO₄:

A mixture of KMnO₄ (420 mg) and CuSO₄'5H₂O (210 mg) was ground to a fine powder and transferred to a reaction flask. H₂O (0.025 mL) was added, and mixed very well. To a stirred suspension of this mixture in CH₂Cl₂ (1.5 mL) at 23 °C was added Δ^7 acetate (100 mg, 0.23 mmol) and *t*-BuOH (0.10 mL). The mixture was refluxed for 1.25 h, cooled and treated with saturated Na₂S₂O₄ (aq), filtered through a pad of Celite[®] and washed with CH₂Cl₂ (3x10 mL). The organic phase was separated and the aqueous phase was extracted with CH₂Cl₂ (3x10 mL). The combined organic phase was dried over Na₂SO₄ and evaporated to give cholestan-7 α ,8 α -epoxy-3 β -ol acetate **3** (99 mg, 95%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 4.61 (br, 1H, 3C*H*), 3.26 (1H, br, 7C*H*, α -epoxide)^{*}, 1.98 (s, 3H, CH₃), 1.73-1.19 (m, 26H), 1.09 (s, 3H, CH₃), 0.84 (m, 9H, 3CH₃), 0.68 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 73.4, 62.5, 59.2, 56.2, 54.6, 46.2, 42.8, 39.7, 38.6, 37.5, 36.3, 36.2, 34.4, 33.9, 33.4, 30.0, 28.2, 27.6, 27.5, 24.1, 23.0, 22.8, 22.4, 21.6, 19.1, 15.1, 12.7; IR (cm⁻¹): 2948, 2867, 1731, 1467, 1364, 1240, 1029, 736; m.p. 207-210 °C (lit. m.p. 95-97 °C).³; MS (ES +) *m/z* (%): 445.4 (M + H⁺, 10), 427.3 (M – H₂O + H⁺, 100).

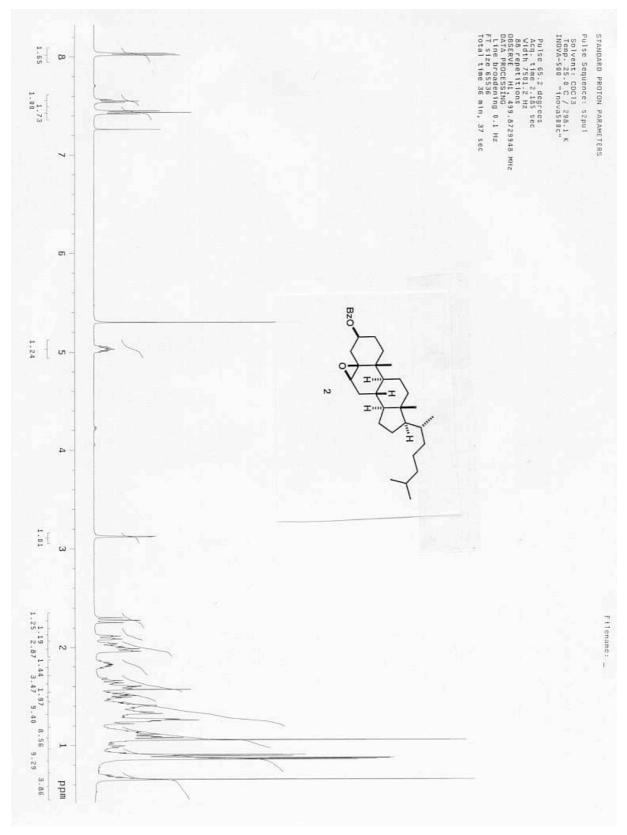

^{*} The axial hydrogen (7C*H*) in the α-epoxide isomer is easly distinguishable than the equatorial hydrogen (7C*H*) in the β-epoxide; 7C*H* in α-epoxide is down field (3.26 ppm) and broad ($\omega^{1/2} = 2.1$ Hz), whilst 7C*H* in β-epoxide is upfield (2.80 ppm) and doublet (J = 5.3 Hz).³

2.5 Studies on $\Delta^{3,5}$ model. Epoxidation of 3,5-Cholestadiene ($\Delta^{3,5}$ model):

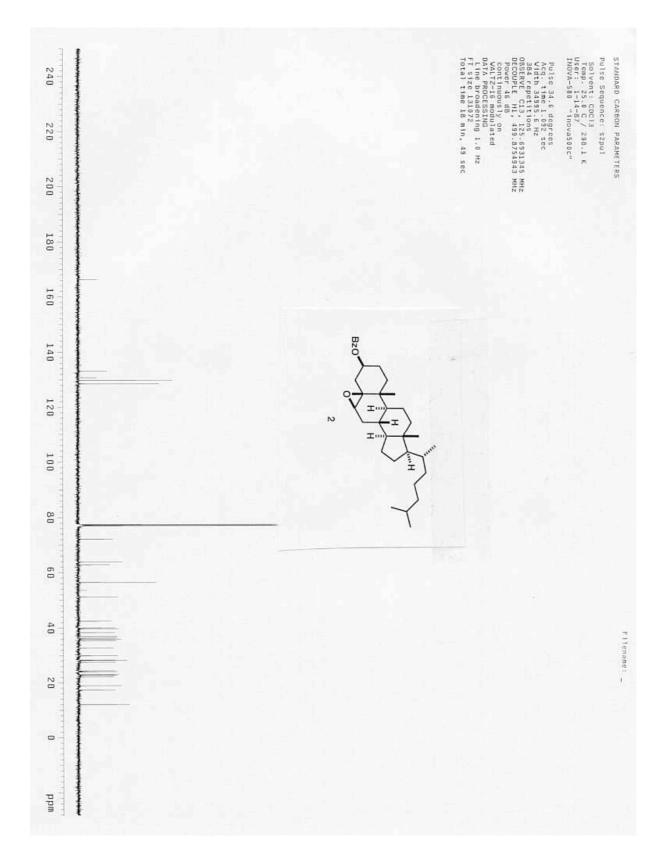
A mixture of KMnO₄ (1.4 g) and CuSO₄·5H₂O (0.7 g) was ground to a fine powder and transferred to a reaction flask. H₂O (0.04 mL) was added, and mixed very well. To a stirred suspension of this mixture in CH₂Cl₂ (10 mL) was added 3,5-cholestadiene⁸ (369 mg, 1 mmol) at r.t., followed by the addition of *tert*-butanol (0.4 mL). The solution was stirred at r.t. for 3h by which time TLC indicated that the epoxidation was completed. The reaction was quenched with isopropyl alcohol, filtered through a pad of Celite[®] and washed with EtOAc (7x10 mL). Evaporation gave a crude mixture of **4** (174 mg, 46%), which used in the next step. Analysis of the crude: ¹H NMR (500 MHz, CDCl₃) δ 6.02 (m, 1H), 4.95 (m, 1H), 3.12 (br, 1H, 6C*H*, β -epoxide), 2.20-1.78 (m, 6H), 1.60-0.98 (m, 18H), 0.97 (s, 3H, CH₃), 0.88 (m, 6H, 2CH₃), 0.66 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃) δ 132.9, 130.8, 62.1, 56.51, 56.47, 50.2, 42.6, 40.0, 39.7, 36.5, 36.4, 36.01, 35.97, 34.1, 32.5, 29.9, 28.4, 28.2, 24.5, 24.0, 23.0, 22.8, 22.3, 21.6, 18.9, 16.5, 12.0; IR (cm⁻¹): 2933, 2867, 1707, 1466, 1351, 1025, 737, 703.

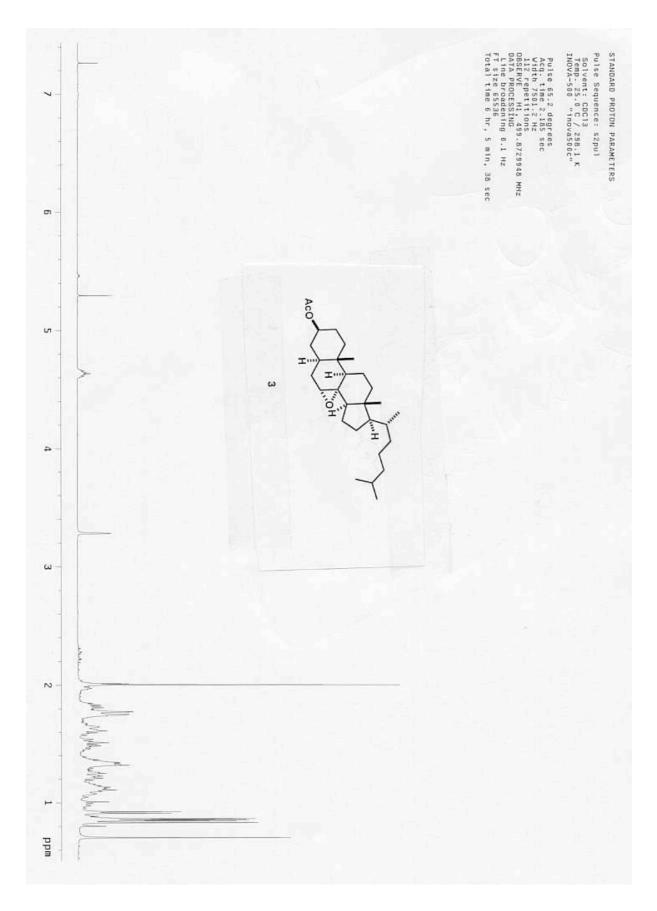
Hydrogenation and Acetylation of Cholest-5β,6β-epoxy-3-ene:

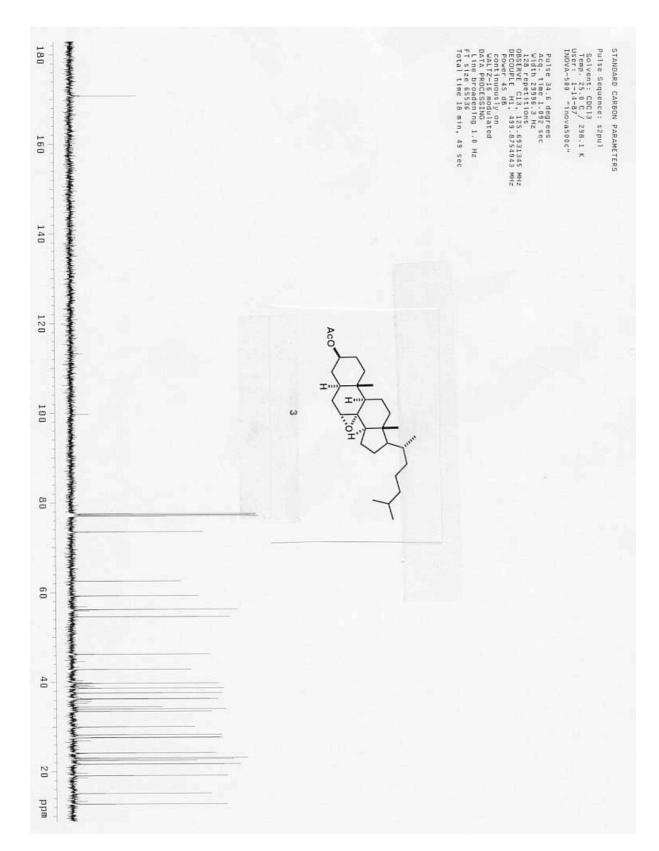
To a stirred solution of cholest-5 β ,6 β -epoxy-3-ene **4** (170 mg, 0.44 mmol) in EtOAc (5 mL) was added Pd/C (28 mg, 10 wt. %). The reaction mixture was placed under an atmosphere of H₂ (1 atm) and the mixture was stirred for 24 h. After filtration through a pad of Celite[®],

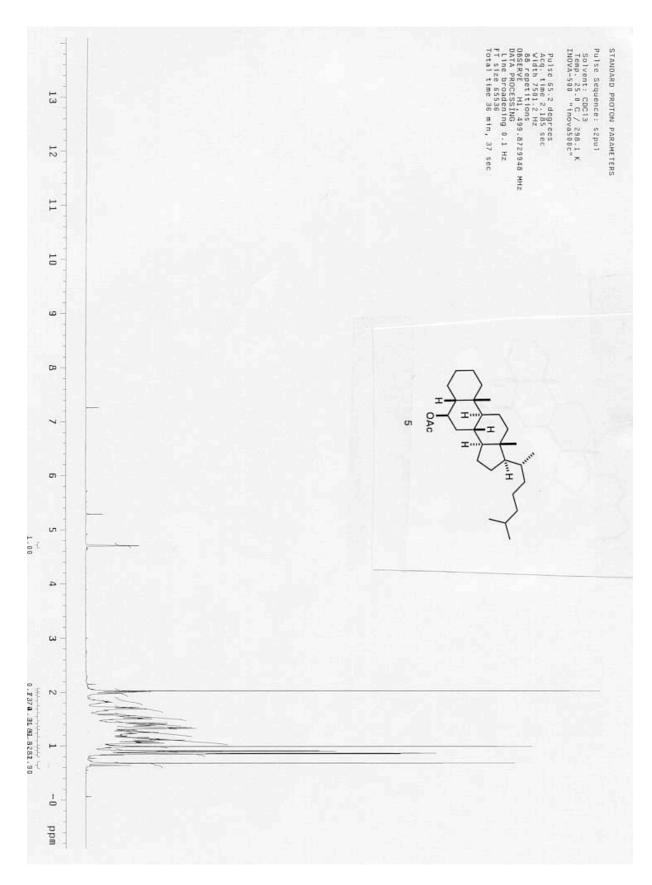

washing with EtOAc (3x5 mL) and concentration, the residue was purified by flash chromatography (hexanes/EtOAc; $10:0 \rightarrow 8:2$) to afford coprostan-6 β -ol (76 mg, 45%) as a thick syrup. To a stirred solution of coprostan-6β-ol (75 mg, 0.19 mmol) in CH₂Cl₂ (4 mL) was added DMAP (3 mg, 0.02 mmol) and Et₃N (0.01 mL, 0.57 mmol) at r.t. To this mixture acetic anhydride (0.05 mL, 0.29 mmol) was added. The reaction mixture was stirred for 1h and then treated with saturated NH₄Cl (5 mL). The aqueous phase was extracted with CH₂Cl₂ (3x5 mL) and the organic phase was dried with Na₂SO₄. Evaporation gave a crude mixture (88 mg), which purified by flash chromatography (100:0 to 90:10 hexanes/EtOAc) to afford coprostan-6 β -ol acetate 5 (80 mg, 96%) as a white solid. [α]_D = +16 (CHCl₃, c = 0.55), lit. $[\alpha]_{D} = +22 \ (c = 0.55).^{4}; {}^{1}H \ NMR \ (500 \ MHz, \ CDCl_{3}) \ \delta \ 4.70 \ (d, \ 1H, \ 6CH, \ J = 1.8 \ Hz), \ 2.03 \ (s, \ MHz, \ CDCl_{3}) \ \delta \ 4.70 \ (d, \ 1H, \ 6CH, \ J = 1.8 \ Hz), \ 2.03 \ (s, \ MHz, \ CDCl_{3}) \ \delta \ 4.70 \ (d, \ 1H, \ 6CH, \ J = 1.8 \ Hz), \ 2.03 \ (s, \ MHz, \ CDCl_{3}) \ \delta \ 4.70 \ (d, \ 1H, \ 6CH, \ J = 1.8 \ Hz), \ 2.03 \ (s, \ MHz, \ MHz, \ MHz, \ MHz) \ \delta \ 4.70 \ (d, \ 1H, \ 6CH, \ J = 1.8 \ Hz), \ 2.03 \ (s, \ MHz, \ MHz, \ MHz) \ \delta \ 4.70 \ (d, \ 1H, \ 6CH, \ J = 1.8 \ Hz), \ 2.03 \ (s, \ MHz, \ MHz, \ MHz) \ \delta \ \delta \ A.70 \ (d, \ MHz, \ MHz) \ \delta \ A.70 \ (d, \ MHz, \ MHz) \ \delta \ A.70 \ (d, \ MHz, \ MHz) \ \delta \ A.70 \ (d, \ MHz, \ MHz) \ \delta \ A.70 \ (d, \ MHz, \ MHz) \ \delta \ A.70 \ (d, \ MHz) \ A.70 \ (d, \ MH$ 3H, CH₃), 1.99 (m, 1H), 1.82 (m, 1H), 1.70 (m, 3H), 1.56 (m, 4H), 1.42-1.03 (m, 10H), 0.99 (s, 3H, CH₃), 0.88 (m, 6H, 2CH₃), 0.68 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 76.0, 56.6, 65.5, 46.8, 43.0, 40.7, 40.4, 39.8, 37.8, 36.4, 36.0, 35.2, 32.0, 31.7, 28.5, 28.2, 26.8, 26.7, 26.1, 24.5, 24.1, 23.0, 22.8, 22.0, 21.0, 20.8, 18.9, 12.4; IR (cm⁻¹): 2929, 2849, 1739, 1462, 1369, 1244, 1016, 737; m.p. 104-106 °C (lit. m.p. 109-111 °C).⁴ MS (ES +) *m/z* (%): $372.4 ([M - OAc]^+, 30), 371.4 (M - OAc - H]^+, 100).$

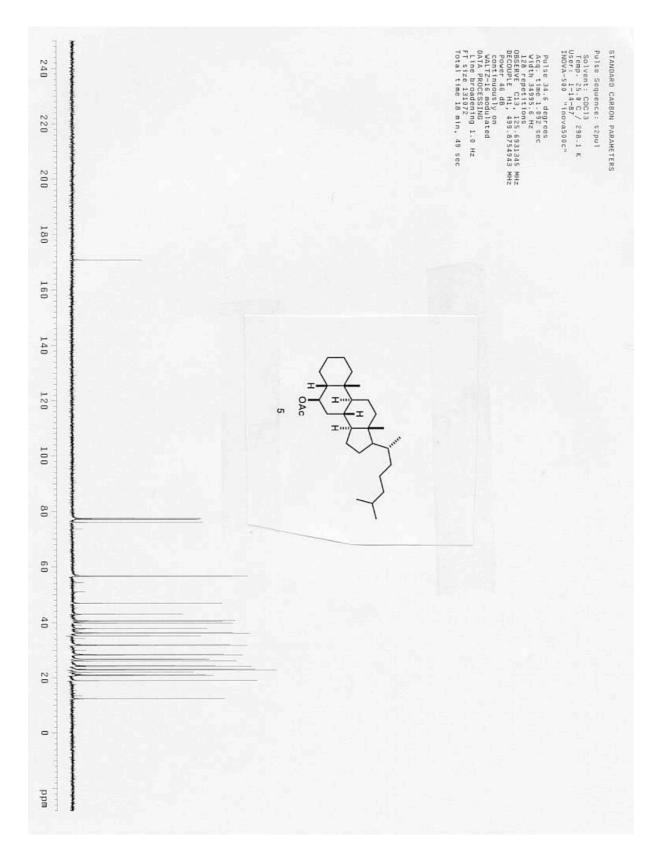
Epoxidation of Stigmasteryl Acetate with Cu(MnO₄)₂.


Stigmasteryl acetate (50 mg, 0.11 mmol) was dissolved in 0.5 mL of CH_2Cl_2 , and treated with 1.5 mL of *t*-BuOH. To this stirred solution, $Cu(MnO_4)_2$ (50 mg, 0.165 mmol) was added at room temperature. Stirring was continued at room temperature for 1 h. The resulting solution was passed through a short pad of silica gel which was eluted wih CH_2Cl_2 and ether. Evaporation of the solvent *in vacuo* gave 5 β ,6 β -epoxy-derivative **6** and 5 α ,6 α -epoxy-derivative in a 6:1 ratio as a white solid (51 mg, 99%) with physical data identical to the literature.⁵


3. References :


- (1) Marchon, J.-C.; Ramasseul, R. Synthesis 1989, 389-391.
- (2) Yamada, T.; Imagawa, K.; Mukaiyama, T. Chem. Lett. 1992, 2109-2112.
- (3) Eguchi, S.; Yamaguchi, S.; Furuya, M.; Morisaki, M. Chem. Pharm. Bull. 1988, 36, 2813-2818.
- (4) Jones, D.N.; Shoppee, C.W.; Summers, G.H.R.; J. Chem. Soc. 1955, 2876-2887.
- (5) Syamala, M. S.; Das, J.; Baskaran, S.; Chandrasekaran, S. J. Org. Chem. 1992, 57, 1928-1930.
- (6) Kotai, Lé; Sajo, I. E.; Gacs, I.; Sharma, P. K.; Banerji, K. K. Z. Anorg. Allg. Chem. 2007, 633, 1257.




4. Copies of selected ¹H and ¹³C NMR spectras:

