Photoelectrochemical Behavior of Polychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays for Dye-Sensitized Solar Cells

Norma R. de Tacconi, ${ }^{*}{ }^{\dagger}$ Wilaiwan Chanmanee, ${ }^{\dagger}$ Krishnan Rajeshwar, ${ }^{\dagger}$ Jonathan Rochford, ${ }^{\dagger}$ and Elena Galoppini***
${ }^{\dagger}$ Center for Renewable Energy Science \& Technology (CREST), Department of Chemistry \& Biochemistry, University of Texas at Arlington, Arlington, TX 76109-0065,
${ }^{\ddagger}$ Chemistry Department, Rutgers University, Newark, New Jersey 07102

Supporting Information

For $\mathbf{P 2}$ (Figure S 1), the $v(\mathrm{C}=\mathrm{O})$ mode at $1638 \mathrm{~cm}^{-1}$ is clearly seen in the Raman spectrum of species in solution and appears as a shoulder in the high frequency side tail of a larger band at $1589 \mathrm{~cm}^{-1}$ due to the phenyl ring stretching modes. ${ }^{1}$ This band shifts toward higher frequencies and appears at $1657 \mathrm{~cm}^{-1}$ upon adsorption. Interestingly, its intensity decreases significantly but does not disappear as expected for a full coordination saturation of all carboxylic groups on the TiO_{2} NTA surface. The incomplete disappearance points out to the presence of some free carboxylic groups either because $\mathbf{P 2}$ is coordinated to TiO_{2} only through one carboxylic group or because there are some porphyrin molecules trapped in the nanotubes and not directly bound to the surface. On the other hand, as expected upon adsorption, the symmetric stretching mode $\left(v_{\mathrm{S}}\left(\mathrm{CO}_{2}^{-}\right)\right)$is at $1417 \mathrm{~cm}^{-1}$ for solution species and appears broader and smaller upon binding to the TiO_{2} NTA surface.

For $\mathbf{P 2}$, it is worth noting the $\delta_{\mathrm{S}}\left(\mathrm{CO}_{2}^{-}\right)$band at $825 \mathrm{~cm}^{-1}$ is clearly less intense in the bound condition (where it is located at $827 \mathrm{~cm}^{-1}$) than in the solution state while the wagging $\omega(\mathrm{OCO})$ mode is shifted from 663 to $666 \mathrm{~cm}^{-1}$ for the adsorbed dye and decreases in intensity. Also the band at $1300 \mathrm{~cm}^{-1}$ associated with $v(\mathrm{C}-\mathrm{O})$ mode moves to $1298 \mathrm{~cm}^{-1}$ upon adsorption but its
intensity does not seem to decrease as expected if all the carboxylic groups were attached to the TiO_{2} surface. This may be diagnostic of significant porphyrin-porphyrin ring interaction resulting from aggregation (ring stacking) of the porphyrin groups (see above). ${ }^{2}$ Our diffuse reflectance data obtained under the same conditions as the Raman spectra (Figure 2) does show some degree of aggregation for the $\mathbf{P} 2$ compound.

The Raman spectra of $\mathbf{P 3}$ (Figure S2), both in solution and bound to TiO_{2} NTA are less structured than those for the $\mathbf{P} 1$ and $\mathbf{P 2}$ porphyrins. The $v_{\mathrm{S}}(\mathrm{OCO})$ feature at $1421 \mathrm{~cm}^{-1}$ is seen in both conditions probably because some free carboxylic acid groups are still present in the bound situation. As in the $\mathbf{P 2}$ case above, it is also likely that there are some porphyrin molecules not directly bound to the TiO_{2} nanotube walls but are trapped inside the nanotubes. The symmetric $\left(\mathrm{CO}_{2}^{-}\right)$bending mode at $850 \mathrm{~cm}^{-1}\left(\delta_{\mathrm{S}}\left(\mathrm{CO}_{2}^{-}\right)\right)$in solution is clearly less intense in the bound condition and shifted to $848 \mathrm{~cm}^{-1}$. Importantly, the $v_{a}\left(\mathrm{CO}_{2}{ }^{-}\right)$at $1547 \mathrm{~cm}^{-1}$ is enhanced by binding while the bending $\delta_{\mathrm{a}}\left(\mathrm{CO}_{2}^{-}\right)$at $730 \mathrm{~cm}^{-1}$ almost disappears upon binding.

The Raman spectra of P4 (Figure S3) shares similarities with those of $\mathbf{P 2}$ both in solution and in the adsorbed state. The band located at $1546-1550 \mathrm{~cm}^{-1}$ assigned to $v_{\mathrm{a}}\left(\mathrm{CO}_{2}{ }^{-}\right)$is relatively broader and with a more noticeable shoulder at $1599 \mathrm{~cm}^{-1}$ for $\mathbf{P} 4$ than for $\mathbf{P} 2$ (c.f., Figures S3 and S 1). These changes seem to be due to the electron-donating contribution of the methyl groups that $\mathbf{P} 2$ has in the attached phenyl groups to the porphyrin ring (see Figure 1). The Raman spectra of P5 (Figure S4) have similarities with those of P3. The $1303-1305 \mathrm{~cm}^{-1}$ band associated with $v(\mathrm{C}-\mathrm{O})$ stretching is more intense in $\mathbf{P 5}$ than in $\mathbf{P 3}$ in both solution and adsorbed states. For P1, P3 and P5, a broad band at $1417-1420 \mathrm{~cm}^{-1}$, related to the $v_{\mathrm{s}}\left(\mathrm{CO}_{2}^{-}\right)$mode, increases in intensity upon adsorption while this effect was not observed in P2 and P4.
(1) Cinta, S.; Venter, M.; Fickert, C.; Haiduc, I.; Scholz , P.; Kiefer, W. J. Mol. Struct. 1998, 446, 209.
(2) Cherian, S.; Wamser, C. J. Phys. Chem. B 2000, 104, 3624.

Figure S1. Resonance Raman spectra of compound $\mathbf{P} 2$ dissolved in methanol (A) and bound to TiO_{2} NTA (B). The TiO_{2} NTA film used for this spectrum has an average inner diameter of 120 nm and was prepared by anodization at $20 \mathrm{~V}, 3 \mathrm{~h}$ with polyethylene glycol 400 (PEG 400) as medium modifier, and with a PEG $400: \mathrm{H}_{2} \mathrm{O}$ ratio of 80:20.

Figure S2. Resonance Raman spectra of compound $\mathbf{P 3}$ dissolved in methanol (A) and bound to TiO_{2} NTA (B). Other details as in Figure S1.

Figure S3. Resonance Raman spectra of compound $\mathbf{P 4}$ dissolved in methanol (A) and bound to TiO_{2} NTA (B). Other details as in Figure S1.

Figure S4. Resonance Raman spectra of compound P5 dissolved in methanol (A) and bound to TiO_{2} NTA (B). Other details as in Figure S1.

