Supporting Material

## Free-Radical-Induced Oxidative and Reductive Degradation of Fibrate Pharmaceuticals: Kinetic Studies and Degradation Mechanisms

Behnaz Razavi<sup>1</sup>, Weihua Song<sup>1,\*</sup>, William J. Cooper<sup>1</sup>, John Greaves<sup>2</sup>, Joonseon Jeong<sup>1</sup>

<sup>1</sup>Urban Water Research Center, Department of Civil and Environmental Engineering,

University of California, Irvine

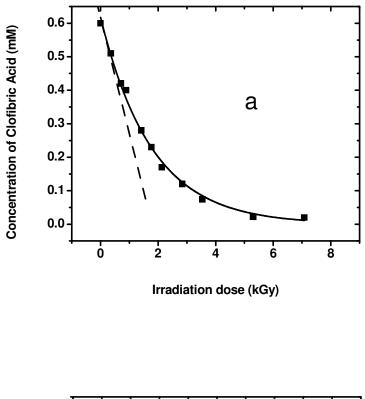
Irvine, CA 92697-2175

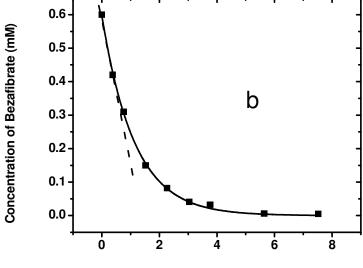
brazavi@uci.edu

wsong@uci.edu

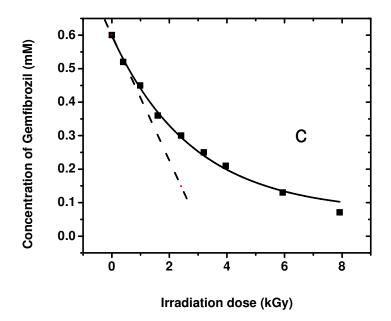
wcooper@uci.edu

hahaha1@snu.ac.kr


<sup>2</sup>Department of Chemistry University of California, Irvine Irvine, CA 92697


jgreaves@uci.edu

Journal of Physical Chemistry A


November 22, 2008

**Reaction Efficiency**. Steady-state experiments were performed using <sup>137</sup>Cs radiolysis to determine the efficiency of hydroxyl radical and hydrated electron degradation of the fibrate pharmaceuticals. Steady-state irradiation of these three compounds in aerated aqueous solution resulted in decreasing concentrations as the dose was increased. The results are shown below in Figure S1





Irradiation dose (kGy)



**Figure S1.** Measured loss of clofibric acid (a), bezafibrate (b) and gemfibrozil (c) in aerated aqueous solution using <sup>137</sup>Cs  $\gamma$ -irradiation. Curves correspond to fitted exponential loss, while dashed straight lines are the estimated initial slopes with values of m = -2.95 x 10<sup>-4</sup> M kGy<sup>-1</sup>, -4.29 x 10<sup>-4</sup> M kGy<sup>-1</sup>, -1.87 x 10<sup>-4</sup> M kGy<sup>-1</sup> for clofibric acid, bezafibrate and gemfibrozil respectively.