Supporting Information # Synthesis of γ -Keto Esters through a Neighboring Carbonyl Group-Assisted Hydration of 3-Alkynoates Weibo Wang, Bo Xu, Gerald B. Hammond* Department of Chemistry, University of Louisville, Louisville, Kentucky, 40292, U.S.A. GB.hammond@louisville.edu # **Contents** | General | 2 | |---|----| | Preparation of 3-alkynoates 1 | 2 | | General procedure for hydration of alkyne 1 | 6 | | Synthesis of compound 3 | 11 | | References | | #### General 1 H, 13 C and 19 F NMR spectra were recorded at 500, 126 and 470 MHz respectively, using CDCl₃ as a solvent. The chemical shifts are reported in δ (ppm) values relative to CHCl₃ (δ 7.26 ppm for 1 H NMR and δ 77.0 ppm for 13 C NMR) and CFCl₃ (δ 0 ppm for 19 F NMR), multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), m (multiplet) and br (broad). Coupling constants, J, are reported in Hertz. Coupling constants are reported in hertz (Hz). All air and/or moisture sensitive reactions were carried out under argon atmosphere. Solvents (tetrahydrofuran, ether, dichloromethane and DMF) were chemically dried using a commercial solvent purification system. All other reagents and solvents were employed without further purification. The products were purified using a commercial flash chromatography system or a regular glass column. TLC was developed on silica gel 60 F254 aluminum sheets. Elemental analysis was performed at an outside libratory. When needed, reactions were monitored using 19 F NMR and the mixture percentage yield was obtained using α , α , α trifluoromethylbenzene as internal reference. #### Preparation of 3-alkynoates 11,2 To a oven-dried, air free 10 mL flask of corresponding allene 0.5mmol was added by dry THF (2 mL), then the reaction mixture was cooled down to -78°C, LDA (2M in THF, 0.375ml, 0.75mmol) was added slowly over 5min. The reaction mixture was stirred at -78°C for 5mins, and then alkyl bromide (0.75 mmol) was injected drop wise slowly. The resulting solution was stirred for 10 mins, then warm up to room temperature and was stirred for overnight at room temperature. Then reaction mixture was quenched with saturated NH₄Cl solution (2-3ml). After stirring for 5mins at the room temperature, the resulting aqueous mixture was extracted with ether (three times) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The crude product was purified by flash silica gel chromatography (25% CH₂Cl₂ in hexane - 50% CH₂Cl₂ in hexane) to give the α , α -disubstituted β -alkynyl ester products. $$n$$ -C₆H₁₃ \longrightarrow COOEt Compound **1a** (Colorless oil , 74%): 1 H NMR (500 MHz, CDCl₃) 0.88 (t, J = 6.5 Hz, 3H), 0.95 (t, J = 7 Hz, 3H), 1.25-1.32 (m, 3H), 1.35-1.41 (m, 2H), 1.39 (s, 2H), 1.46-1.51 (m, 2H), 1.61-1.66 (m, 2H), 1.79-1.84 (m, H), 2.18 (t, J = 7 Hz, 2H), 4.16 (q, J = 7 Hz, 2H). $$n-C_6H_{13}$$ COOEt $n-C_8H_{17}$ Compound **1b** (Colorless oil , 67%) : 1 H NMR (500 MHz, CDCl₃) 0.85-0.89 (m, 6H), 1.24-1.33 (m, 17H), 1.39 (s, 3H), 1.35-1.45 (m, 2H), 1.45-1.51 (m, 2H), 1.55-1.61 (m,2H), 1.73-1.77 (m, 2H), 2.18 (t, J =7Hz, 2H), 4.16 (q, J = 7 Hz, 2H). Compound **1c** (Colorless oil , 54%) : 1 H NMR (500 MHz, CDCl₃) 0.87-0.92 (m, 6H), 1.25-1.31 (m, 7H), 1.31-1.38 (m, 4H), 1.40 (s, 3H), 1.44-1.50 (m, 2H), 1.54-1.60 (m, 1H), 1.73-1.79 (m, 1H), 2.18 (t, J = 6.5 Hz, 2H), 4.16 (q, J = 7.0 Hz, 2H). $$n$$ -C₆H₁₃ COOEt OMe Compound **1d** (Colorless oil , 90%) : 1 H NMR (500 MHz, CDCl₃) 0.85 (t, J = 7.0 Hz, 3H), 1.23-1.29 (m, 7H), 1.31-1.36 (m, 2H), 1.39 (s, 3H), 1.42-1.46 (m, 2H), 2.14 (t, J = 7.0 Hz, 2H), 3.33 (s, 3H), 3.45 (d, J = 8.5 Hz, 1H), 3.59 (d, J = 9.0 Hz, 1H), 4.16 (q, J = 7.0 Hz, 2H). Compound **1e** (Colorless oil , 81%) : 1 H NMR (500 MHz, CDCl₃) 0.88 (t, J = 6.5 Hz, 3H), 1.25-1.32 (m, 7H), 1.36-1.40 (m, 2H), 1.42 (s, 3H), 1.46-1.50 (m, 2H), 1.65-1.70 (m, 1H), 1.86-1.92 (m, 1H), 2.11-2.14 (m, 2H), 2.18 (d, J = 6.5 Hz, 2H), 4.16 (q, J = 6.5 Hz, 2H), 4.93-5.03 (m, 2H), 5.77-5.83 (m, 1H). Compound **1f** (Colorless oil , 88%) : 1 H NMR (500 MHz, CDCl₃) 0.89 (t, J = 7.0 Hz, 3H), 1.26-1.31 (m, 7H), 1.4 (s, 3H), 1.38-1.52 (m, 4H), 2.19 (t, J = 6.5 Hz, 2H), 2.38-2.42 (m,1H), 2.52-2.56 (m, 1H), 4.17 (q, J = 7Hz, 2H), 5.08-5.11 (m, 2H), 5.82-5.88 (m, 1H). Compound **1g** (Colorless oil , 79%): 1 H NMR (500 MHz, CDCl₃) 1.32 (t, J = 7.0 Hz, 3H), 1.55 (s, 3H), 2.53-2.57 (m, H), 2.67-2.71 (m, H), 4.24 (q, J = 7.0 Hz, 2H), 5.16-5.20 (m, 2H), 5.98 (m, 1H), 7.20-7.30 (m, 3H), 7.44-7.45 (m, 2H). General procedure for preparation of 1i and lh:² $$n$$ -C₆H₁₃ + OMe TBAF(0.1 eq.) T -C₆H₁₃ -C₇H₁₃ T -C₆H₁₃ T -C₇H₁₃ -C₇H To a solution of ethyl α -methyl- γ -(n-hexyl)-allenoate (63 mg, 0.3 mmol) and methyl acrylate (31 mg, 0.36 mmol) in THF (2.0 mL) was add a solution of TBAF in THF (1.0 M solution in THF, 0.03 mL). The mixture was stirred for 2 hr at 50 $^{\circ}$ C, afterwards the solvent was removed under reduced pressure and the residue was subjected to a flash column chromatography (eluent: ethyl acetate/petroleum ether , 1:20) to give product **1h** (71 mg, 80%) as a colorless oil. $$C_6H_{13} \xrightarrow{\bigcirc} OCH_3$$ Compound **1h**: a colorless oil; IR (neat) v 2933, 2859, 1739, 1437, 1238, 1024 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.87 (3H, t, J = 7.0 Hz), 1.26-1.50 (14H, m), 1.87-1.92 (1H, m), 1.93-2.18 (m, 3H), 2.39-2.45 (m, 1H), 2.49-2.55 (m, 1H), 3.66 (s, 3H), 4.16 (q, J = 7.0 Hz, 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 14.0, 14.1, 18.7, 22.5, 26.0, 28.4, 28.7, 30.5, 31.3, 34.8, 42.2, 51.6, 61.4, 80.0, 84.1, 173.4, 173.6; MS (EI) m/z 286 (M⁺, 100), 252, 214; Anal. Calcd. for C₁₇H₂₈O₄: C, 68.89; H, 9.52. Found: C, 68.94; H, 9.61. Compound **1i**: a colorless oil; IR (neat) v 2983, 1738, 1443, 1241, 1115, 1022, 1126 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.24 (t, J = 7.0 Hz, 3H), 1.39 (s, 3H), 1.78 (s, 3H), 1.85-1.91 (m, 1H), 2.09-2.15 (m, 1H), 2.35-2.42 (m, 1H), 2.45-2.52 (m, 1H), 3.63 (s, 3H), 4.14 (q, J = 7.0 Hz, 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 3.5, 14.0, 25.9, 30.4, 34.8, 42.2, 51.5, 61.4, 79.0, 79.4, 173.2, 173.5; MS (EI) m/z 226 (M⁺, 100), 178, 151; Anal. Calcd. for C₁₂H₁₈O₄: C, 63.70; H, 8.02. Found: C, 63.90; H, 8.13. #### General procedure for hydration of alkyne 1. $$n$$ -C₆H₁₃ COOEt Catalyst n -C₆H₁₃ 2a NaAuCl₄·2H₂O (3mg, 5%) was added to a stirring solution of alkyne **1a** (71.4 mg, 0.3 mmol) in EtOH/H₂O (4:1, 1 mL). After stirring for 12-18h at r.t., the reaction mixture was concentrated under reduced pressure and the crude product was purified by flash silica gel chromatography (EtOAc/hexane 1: 20 - 1:4) to give the final product **2a** as a colorless oil (**60** mg, 78%). $$n$$ -C₆H₁₃ $\overset{\text{O}}{\underset{\textbf{2a}}{\bigvee}}$ IR (neat): 2957, 2930, 2859, 1734, 1457, 1177, 1134 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.83-0.89 (m , 6H), 1.20(s, 3H), 1.22-1.32 (m, 9H), 1.52-1.67 (m, 4H), 2.34-2.38 (m, 2H), 2.49 (d, J = 17.5 Hz, 1H), 2.89 (d, J = 17.5 Hz, 1H), 4.13 (q, J = 7.0 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 8.7, 14.2, 14.4, 21.3, 22.7, 24.0, 29.1, 31.8, 32.7, 43.6, 44.0, 50.8, 60.6, 176.8, 209.1; GC/MS (EI) m/z: 257, 211, 171, 143, 113, 85, 69, 42; HRMS (ESI) calcd. for (C₁₅H₂₈O₃ + Na)⁺ 279.1936, found 279.1930. $$n$$ -C₆H₁₃ COOEt n -C₈H₁₇ **2b** (Colorless oil , 93%): IR (neat): 2927, 2855, 2359, 1717, 1457, 1176 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, J =7.0 Hz, 6H), 1.20-1.29 (m, 24H), 1.52-1.55 (m, 4H), 2.29-2.36 (m, 2H), 2.49 (d, J = 17.5 Hz, 1H), 2.88 (d, J = 17.5 Hz, 1H), 4.12 (q, J = 7.0 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 14.2, 14.3, 14.4, 21.8, 22.7, 22.9, 24.0, 24.3, 29.1, 29.4, 29.6, 30.2, 31.8, 32.1, 40.1, 43.6, 43.7, 51.1, 60.6, 176.9, 209.1; GC/MS (EI) m/z: 341, 295, 270, 227, 181, 163, 135, 112. HRMS (ESI) calcd. for (C₂₁H₄₀O₃ + Na)⁺ 363.2875, found 363.2872. **2c** (Colorless oil , 74%): IR (neat): 2931, 2873, 1717, 1457, 1176 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.86-0.90 (m, 6H), 1.19-1.31 (m, 14H), 1.46-1.55 (m, 4H), 2.32-2.36 (m, 2H), 2.50 (d, **2d** (Colorless oil , 89%): IR (neat): 2927, 2857, 2359, 1733, 1457, 1110 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.85-0.88 (m, 3H), 1.21-1.29 (m, 12H), 1.52-1.55 (m, 2H), 2.36 (t, J =6.5 Hz, 2H), 2.63 (d, J =17.5 Hz, 1H), 2.90 (d, J = 17.5 Hz, 1H), 3.30 (s, 3H), 3.39 (d, J = 9.0 Hz, 1H), 3.53 (d, J = 9.0 Hz, 1H), 4.13 (q, J = 7.5Hz, 2H); ¹³C-NMR(125MHz,CDCl₃): δ 14.2, 14.3, 21.3, 22.7, 24.0, 29.1, 29.9, 31.8, 43.5, 45.1, 47.0, 59.4, 60.8, 175.5, 209.3; GC/MS (EI) m/z: 273, 227, 145, 99, 42. **2e** (Colorless oil , 91%): IR (neat): 2929, 2857, 1717, 1457, 1176, 910cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.86 (t, J =7.0 Hz, 3H), 1.21-1.30 (m, 12H), 1.52-1.66 (m, 4H), 1.94-2.00 (m, 2H), 2.32-2.36 (m, 2H), 2.52 (d, J = 17.5 Hz, 1H), 2.89 (d, J = 17.5 Hz, 1H), 4.11 (q, J = 7.5 Hz, 2H), 5.72-5.77 (m, 1H), 4.93 (d, J =10.0 Hz, 1H), 4.99 (d, J =10.0Hz, 1H); ¹³C-NMR(125MHz,CDCl₃): δ 14.2, 14.3, 21.8, 22.7, 24.0, 28.7, 29.1, 31.8, 39.1, 43.5, 51.0, 60.7, 114.9, 138.3, 176.6, 208.9; GC/MS (EI) m/z: 283, 237, 209, 182, 151, 95, 42. HRMS (ESI) calcd. for $(C_{17}H_{30}O_3 + Na)^+$ 305.2093, found 305.2084. **2f** (Colorless oil , 91%): IR (neat): 2929, 2857, 2359, 1717, 1457, 1175, 917 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.86 (t, J =7.0 Hz, 3H), 1.20-1.29 (m, 12H), 1.50-1.53 (m, 2H), 2.31-2.34 (m, 4H), 2.53 (d, J = 17.5 Hz, 1H), 2.81 (d, J = 17.5 Hz, 1H), 4.09-4.13 (m, 2H), 5.00-5.06 (m, 2H), 5.66-5.71 (m, 1H); ¹³C-NMR (125MHz, CDCl₃): δ 14.2, 14.3, 22.3, 22.7, 23.9, 29.0, 31.8, 43.3, 43.5, 43.6, 50.1, 60.7, 118.7, 133.6, 176.5, 208.9; GC/MS (EI) m/z: 269, 223, 195, 141, 113, 42. HRMS (ESI) calcd. for (C₁₆H₂₈O₃ + Na)⁺ 292.1936, found 292.1934. **2g** (Colorless oil , 58%): IR (neat): 2926, 1733, 1685, 1456, 1224, 753cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.20-1.26 (m, 3H), 1.32 (s, 3H), 2.45-2.47 (m, 2H), 3.16 (d, J =17.5 Hz, 1H), 3.41 (d, J =17.5 Hz, 1H), 4.15 (q, J = 7.5 Hz, 2H), 5.06-5.10 (m, 2H), 5.75-5.81 (m, H), 7.45 (t, J = 7.5 Hz, 2H), 7.56 (t, J = 7.0 Hz, 1H), 7.93 (d, J = 8.0 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 14.4, 22.4, 43.4, 43.7, 46.4, 60.7, 118.9, 128.1, 128.8, 133.3, 133.6, 137.4, 176.6, 197.8; GC/MS (EI) *m/z*: 261, 215, 187, 170, 141, 105, 77; Anal. Calcd. for C₁₆H₂₀O₃: C, 73.82; H, 7.74. Found: C, 73.97; H, 8.00. **2h** (Colorless oil , 92%): IR (neat): 2928, 2856, 1734, 1457, 1175cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H), 1.22-1.31 (m, 12H), 1.53-1.56 (m, 2H), 1.82-1.87 (m, 1H), 1.92-1.98 (m, 1H), 2.27-2.37 (m, 4H), 2.55 (d, J = 17.5 Hz, 1H), 2.88 (d, J = 17.5Hz, H), 3.67 (s, 3H), 4.13 (q, J = 7.0 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 14.2, 14.3, 21.7, 22.7, 24.0, 29.0, 29.5, 31.8, 34.4, 43.0, 43.5, 51.0, 51.9, 60.9, 173.9, 176.0, 208.6; GC/MS (EI) m/z: 315, 269, 229, 201, 155, 85; **2i** (Colorless oil , 80%): IR (neat): 2981, 2361, 1734, 1363, 1176, 1117, 1026 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.23-1.25 (m, 6H), 1.82-1.88 (m, 1H), 1.92-1.98 (m, 1H), 2.12 (s, 3H), 2.25-2.33 (m, 2H), 2.57 (d, J = 17.5 Hz, 1H), 2.92 (d, J = 17.5 Hz, 1H), 3.67 (s, 3H), 4.13 (q, J = 7.5 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 14.3, 21.7, 29.5, 30.7, 34.3, 43.1, 51.8, 51.9, 61.0, 173.8, 176.0, 206.1; GC/MS (EI) m/z: 245, 200, 141, 113, 85; Anal. Calcd. for C₁₂H₂₀O₅: C, 59.00; H, 8.25. Found: C, 59.41; H, 8.41. **2j** (Colorless oil , 74%): IR (neat): 2929, 2858, 1735, 1373, 1187, 1033 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, J = 6.5 Hz, 3H), 1.24-1.30 (m, 9H), 1.57-1.60 (m, 2H), 2.44 (t, J = 7.5 Hz, 2H), 2.57 (t, J = 6.5 Hz, 2H), 2.71 (t, J = 6.0 Hz, 2H), 4.12 (q, J = 7.0 Hz, 2H); ¹³C-NMR (125 MHz, CDCl₃): δ 14.2, 14.4, 22.7, 24.0, 28.2, 29.1, 31.8, 37.2, 43.1, 60.8, 173.1, 209.5; GC/MS (EI) m/z: 215, 169, 144, 127, 113, 98, 85, 69. **2k** (Colorless oil , 74%): IR (neat): 2930, 2858, 1727, 1466, 1302, 1182, 1033 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, J = 7.0 Hz, 3H), 1.25-1.33 (m, 9H), 1.61-1.64 (m, 2H), 2.62 (t, J = 7.0 Hz, 2H), 4.26 (q, J = 7.0 Hz, 2H), 6.66 (d, J = 16.5 Hz, 1H), 7.05 (d, J = 16.5 Hz, 1H); ¹³C-NMR (125 MHz, CDCl₃): δ 14.2, 14.3, 22.7, 23.9, 29.0, 31.8, 41.8, 61.6, 130.9, 140.0, 165.8, 200.2; GC/MS (EI) m/z: 213, 169, 139, 127, 114, 97, 85, 69, 56; Anal. Calcd. for C₁₂H₂₀O₃: C, 67.89; H, 9.50. Found: C, 68.38; H, 9.79. ### Synthesis of compound 5. Compound **3c** (Colorless oil , 76%): IR (neat): 2955, 2860, 2359, 1749, 1716, 1320, 1241, 1154, 1014 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.86 (t, J = 7.0 Hz, 3H), 1.23-1.30 (m, 4H), 1.56-1.59 (m, 2H), 2.50 (t, J = 7.5 Hz, 2H), 3.42 (s, 2H), 3.71 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃): δ 14.1, 22.6, 23.3, 31.3, 43.2, 49.2, 52.5, 167.9, 203.1; GC/MS (EI) m/z: 173, 130, 100, 40. GC/MS (EI) m/z: 269, 223, 195, 141, 113, 42. HRMS (ESI) calcd. for (C₉H₁₆O₃ + Na)⁺ 195.0997, found 195.0998. # **References:** - (1) Wang, W.; Xu, B.; Hammond, G. B. Org. Lett. 2008, 10, 3713-3716. - (2) Liu, L.-P.; Xu, B.; Hammond, G. B. Org. Lett. 2008, 10, 3887-3890.