Synthetic studies on N-alkoxyamines: a mild and broadly applicable route starting from nitroxide radicals and aldehydes

Kai-Uwe Schoening*, Walter Fischer, Stefan Hauck, Alexander Dichtl, Michael Kuepfert

Ciba Inc., WRO-1059, 4002 Basel, Switzerland

kai-uwe.schoening@ciba.com

Supporting information

Content

General	p2
Experimental procedures for non-commercial aldehydes	р3
Experimental procedures for compounds $S-1 - S-27$	p5
Copies of ¹ H, ¹³ C-NMR spectra of all compounds	p19

General

NMR spectra were recorded at 300 or 400 MHz for ¹H-NMR and 75.5 or 100 MHz for ¹³C-NMR. Chemical shifts were reported in the scale relative to the solvent used as an internal reference. MS measurements were collected on a ion trap mass spectrometer coupled with a gas chromatograph. The column was operated at a flow rate of 1 mL/min (Helium gas). The oven temperature was ramped between 60 and 360 °C at a rate of 30 °C/min. Alternatively, probes were directly inserted in the mass spectrometer source by a direct sample probe system in the direct exposure probe (DEP) mode. For structure confirmation, the system was operated in the PCI mode with isobutane as reagent gas. Masses were recorded as [M+H]⁺. HRMS measurements were conducted on a LC-MS-MS system through flow injection. Molpeaks were determined in the positive mode. The mass calibration was conducted via external calibration.

In general, reactions were carried out in glassware under regular atmosphere. No precautions were taken to exclude moisture. Solvents and aldehydes were used as is without prior purification. Reagents and aldehydes were obtained from commercial sources unless otherwise noted.

Attention: it is crucial to ensure that no residual peroxide is contained in the samples before starting distillations or complete drying!

Experimental procedures for non-commercial aldehydes

Cyclobutyl carbaldehyde was prepared according to: Omura, K.; Swern, D. *Tetrahedron* **1978**, *34*, 1651.

5.48 ml (63.86 mmol) oxalyl chloride were dissolved in 40 ml dichloromethane and cooled in a dry ice bath to -75 °C under protective gas atmosphere. Then 9.07 ml (127.71 mmol) DMSO were added drop wise. A solution of 5.0 g (58.05 mmol) cyclobutane methanol in 40 ml methylene chloride was added and the mixture was stirred at -75 °C for 1 h. After the addition of 40.40 ml (290.26 mmol) triethylamine and warming to rt, the mixture was washed with brine and water. The organic layer was separated, dried with Na₂SO₄, filtered and the solvent removed in vacuo. 1.06 g (12.6 mmol, 22%) cyclobutane carbaldehyde were obtained as a foul smelling, light yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 9.74 (s, 1H), 2.82 (m, 1H), 2.22 (m, 2H), 2.06 (m, 2H), 1.91 (m, 2H); MS: m/z = 85 [M+H]⁺.

Cyclooctane carbaldehyde was prepared according to: Omura, K.; Swern, D. *Tetrahedron* **1978**, *34*, 1651.

3.32 ml (38.67 mmol) oxalyl chloride were dissolved in 40 ml dichloromethane and cooled in a dry ice bath to -75 °C under protective gas atmosphere. Then 5.50 ml (77.33 mmol) DMSO were added drop wise. A solution of 5.0 g (35.15 mmol) cyclobutane methanol in 40 ml methylene chloride was added and the mixture was stirred at -75 °C for 1 h. After the addition of 24.50 ml (175.76 mmol) triethylamine and warming to rt, the mixture was washed with brine and water. The organic layer was separated, dried with Na₂SO₄, filtered and the solvent removed *in vacuo*. 4.23 g (30.16 mmol, 86%) cyclooctane carbaldehyde were obtained as a light yellow oil.

¹H-NMR (400 MHz, CDCl₃): δ 9.60 (s, 1H), 2.36 (m, 1H), 1.92 (m, 2H), 1.69 (m, 2H), 1.45-1.62 (m, 10H); MS: m/z = 141 [M+H]⁺.

2-Methyl-2-nitro-5-oxopentanoic acid ethyl ester was prepared according to: (a) Ballini, R.; Petrini, M. *Synthesis* **1986**, 1024-1026. (b) Hauck, S. PhD thesis, TU Kaiserslautern, **2007**, 173.

16.47 g (111.94 mmol) 2-nitro-propionic acid ethyl ester were dissolved in 100 ml acetonitrile under protective gas atmosphere and cooled to 0 °C. 2 ml Triethylamine and 11.0 ml (167.91 mmol) acroleine were added. The solution was stirred at 10 °C for 6.5 h. Then the mixture was treated with water, neutralized with aqueous HCl and extracted with methylene chloride. The organic layer was separated, dried over Na₂SO₄, filtered and the solvent was removed *in vacuo*. 18.34 g (90.26 mmol, 81 %) 2-methyl-2-nitro-5-oxopentanoic acid ethyl ester were obtained as yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 9.75 (s, 1H), 4.25 (q, *J* = 6.99 Hz, 3H), 2.58 (m, 2H), 2.49 (m, 2H), 1.77 (s, 3H), 1.28 (t, *J* = 6.99 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.5, 167.3, 91.9, 63.4, 38.8, 29.1, 22.2, 14.2; MS: m/z = 204 [M+H]⁺.

Experimental procedures for compounds S-1 – S-27

General procedure for the synthesis of N-alkoxyamines: 4-hydroxy TEMPO and the required aldehyde (1.3-3 eq.) were dissolved in an appropriate solvent and 1-3.0 mol% of CuCl were added. At rt, 1.3-1.5 eq. of hydrogen peroxide (30% aqueous solution) were added over a period of 30-120 min. The reaction mixture was stirred at a temperature usually not higher than 40°C until all nitroxide radical was consumed. If required, more H_2O_2 or aldehyde were added. Residual H_2O_2 was thoroughly removed during the work-up process, (if necessary, NaHSO₃ solution can be used) and the crude products were purified by (flash) column chromatography or crystallization.

Synthesis of compounds S-1 to S-27

1-Methoxy-2,2,6,6-tetramethylpiperidin-4-ol (S-1). To a solution of 5.0 g (29.0 mmol) 4hydroxy-TEMPO in 20 ml water was added CuCl (57 mg, 2 mol %) and acetaldehyde (6.6 ml, 116 mmol). 8.9 ml (87 mmol) 30 % H₂O₂ was added over a period of 30 min while keeping the temperature at 65 - 70 °C. After 4 h stirring at this temperature, the mixture is slowly cooled down to rt while the product started to precipitate. The pH of the reaction mixture was adjusted to ~8 using 10 % K₂CO₃ solution and the mixture was cooled down to 5 °C. The product was collected by filtration. The filter cake was washed successively with cold 10 % ascorbic acid solution and water. The filtrate was extracted with toluene, and the organic phase was washed with brine. Upon drying over Na₂SO₄, the organic phase was removed *in vacuo* to yield a tan residue. The combined crude product fractions were purified by distillation (0.04 mbar, 120 °C oilbath temp, bp ~ 90 °C) to give **S-1** as a white solid (3.9 g, 20.8 mmol, 72%). ¹H-NMR (400 MHz, CDCl₃): δ 3.94 (m, 1H), 3.61 (s, 3H), 1.79 (dd, *J* = 12.0, 4.0 Hz, 2H), 1.64 (br s, 1H), 1.46 (ps t, *J* = 12.0 Hz, 2H), 1.21 (2s, 6H), 1.26 (2s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 65.4 (t), 63.2 (2q), 60.0 (p), 48.2 (2s), 33.1 (2p), 20.9 (2p); IR (neat): v max 3265, 2960, 1450, 1358, 1173, 1026 cm⁻¹; MS: m/z = 188 [M+H]⁺; Anal. calcd. for $C_{10}H_{21}NO_2$: C, 64.13; H, 11.30; N, 7.48. Found: C, 63.94; H, 11.22; N, 7.45.

1-Propoxy-2,2,6,6-tetramethylpiperidin-4-ol (S-2). To a mixture of 150.0 g (870.8 mmol) 4-hydroxy-TEMPO in 620 ml 1-butanol/water (1:4) was added CuCl (861 mg, 1 mol%) and butanal (94.2 g, 1.31 mol). 120 ml (1.18 mol) 30% H₂O₂ was added over a period of 30 min while keeping the temperature between 30 and 35 °C. Stirring was continued at 35 °C for 8 h, whereupon another 12 ml (118.0 mmol) H₂O₂ was added. After 6 h the reaction mixture was extracted with MTBE. The combined organic phases were washed with 2 N NaOH, water, 5 % Na₂EDTA, 10 % ascorbic acid solution, and brine. After drying over Na₂SO₄, the organic phase was concentrated *in vacuo* to provide an off-white solid. Pure **S-2** was obtained after column chromatography (silica gel, hexane/acetone 9:1); (157.5 g, 731.5 mmol, 84 %). ¹H-NMR (400 MHz, CDCl₃): δ 3.95 (m, 1H), 3.70 (q, *J* = 9.2 Hz, 2H), 1.80 (dd, *J* = 14.4, 3.2 Hz, 2H), 1.70 (br s, 1H, OH), 1.53 (m, 2H), 1.50 (m, 4H), 1.24 (2s, 6H), 1.15 (2s, 6H), 0.95 (t, *J* = 10.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 78.4 (s), 63.3 (t), 60.0 (2q), 48.3 (2s), 33.2 (2p), 21.9 (s), 21.0 (2p), 10.9 (p); IR (neat): v max 3264, 2965, 1451, 1363, 1173, 1040 cm⁻¹; MS: m/z = 216 [M+H]⁺; Anal. calcd. for C₁₂H₂₅NO₂: C, 66.93; H, 11.70; N, 6.50. Found: C, 66.73; H, 11.49; N, 6.38.

1-Isopropoxy-2,2,6,6-tetramethylpiperidin-4-ol (S-3). To a solution of 2.5 g (14.5 mmol) 4hydroxy-TEMPO in 10 ml 2-propanol/water (1:5) was added CuCl (28.7 mg, 2 mol%) and 2methylpropanal (1.57 g, 21.8 mmol). 2.5 g (21.8 mmol) 30 % H₂O₂ was added over a period of 30 min while keeping the temperature under 30 °C. After 12 h of stirring at rt, the mixture was extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over MgSO₄ the organic phase was concentrated *in vacuo* to leave a green solid. The crude product was recrystallized from water/ethanol (1:1) to yield **S-3** as white crystals (2.9 g, 13.3 mmol, 91%). ¹H-NMR (400 MHz, CDCl₃): δ 3.99 (m, 2H), 1.82 (dd, *J* = 12.0, 3.6 Hz, 2H), 1.48 (ps t, *J* = 12.0 Hz, 2H), 1.40 (br s, 1H, OH), 1.18 (m, 18H); ¹³C-NMR (100 MHz, CDCl₃): δ 75.2 (t), 63.5 (t), 59.9 (2q), 48.8 (2s), 34.5 (2p), 22.3 (2p), 21.2 (2p); IR (neat): v max 3264, 2973, 1448, 1372, 1151, 1082 cm⁻¹; MS: $m/z = 216 [M+H]^+$; Anal. calcd. for $C_{12}H_{25}NO_2$: C, 66.93; H, 11.70; N, 6.50. Found: C, 66.68; H, 11.07; N, 6.34.

1-(1-Ethyl-pentyloxy)-2,2,6,6-tetramethylpiperidin-4-ol (S-4). To a solution of 60.0 g (348.3 mmol) 4-hydroxy-TEMPO in 92 g (717.5 mmol) 2-methylheptanal was added 0.86 g (2.5 mol%) CuCl. 30 % H₂O₂ (60.0 g, 522.5 mmol) was added over a period of 4 h at rt. The reaction mixture was stirred at 30 °C for 12 h, while every 4 h a further 10 ml of H₂O₂ were added. The mixture was diluted with MTBE and subsequently washed with 10 % ascorbic acid solution, NaOH, water, brine. After drying over MgSO₄ the organic phase was concentrated *in vacuo* to afford 102 g of a yellow oil. The crude product was heated *in vacuo* (0.05 mbar) at 70 °C for 8 h to remove residual aldehyde. The resulting product was filtered over silica gel (500 g, hexane/acetone 10:1) to yield 71.1 g (261.9 mmol, 75%) of **S-4** as a pale yellow oil after removal of the solvent. ¹H-NMR (400 MHz, CDCl₃): δ 4.00 (m, 1H), 3.70 (m, 1H), 1.80 (m, 2H), 1.69 (m, 1H), 1.48 (m, 3H), 1.32 (m, 4H), 1.18 (2s, 6H), 1.17 (2s, 6H), 0.98 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 83.2, 63.5, 60.3, 60.1, 48.9, 34.4, 32.0, 28.0, 25.3, 23.1, 21.4, 14.2, 11.8, 9.9; IR (neat): v max 3349, 2931, 1468, 1395, 1189, 1048 cm⁻¹; MS: m/z = 272 [M+H]⁺; Anal. calcd. for C₁₆H₃₃NO₂: C, 70.80; H, 12.25; N, 5.16. Found: C, 70.76; H, 12.17; N, 5.14.

1-*tert*-**Butyloxy-2,2,6,6-tetramethylpiperidin-4-ol (S-5).** To a solution of 25.0 g (145.1 mmol) 4-hydroxy-TEMPO in 100 ml ethanol/water (1:1), 24.8 g 30 % H₂O₂ and CuCl (390 mg, 2 mol%) was added 15.6 g (181.4 mmol) pivaloylaldehyde (15.6 g, 181.4 mmol) over a period of 20 min while cooling applying a water bath. The emulsion was stirred at rt. After approximately 1 h, a white precipitate started forming. After 8 h, another 5.6 g (49.2 mmol) H₂O₂ and 50 ml ethanol/water (1:1) were added and stirring was continued for 8 h. The reaction mixture was cooled to 5 °C, whereupon the solid was separated by filtration. The filter cake was thoroughly washed with water and subsequently dried at 45 °C (125 mbar) to give S-5 (28.3 g, 123.3 mmol, 85%) as white crystals. ¹H-NMR (400 MHz, CDCl₃): δ 3.93 (m, 1H), 1.89 (br s, 1H), 1.81 (dd, *J* = 12.4, 1.6 Hz, 2H), 1.45 (ps t, *J* = 12.0 Hz, 2H), 1.28 (s, 9H), 1.64 (2s, 6H), 1.29 (2s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 78.0 (q), 63.1 (t), 59.6 (2q), 49.2 (2s), 34.8 (2p), 29.5 (3p), 21.4 (2p); IR (neat): v max 3268, 2975, 1472, 1449, 1371, 1168, 1044 cm⁻¹; MS: m/z = 230 [M+H]⁺; Anal. calcd. for C₁₃H₂₇NO₂: C, 68.08; H, 11.87; N, 6.11. Found: C, 67.83; H, 11.69; N, 6.03.

1-Octyloxy-2,2,6,6-tetramethylpiperidin-4-ol (S-6). To a solution of 10.0 g (58.1 mmol) 4-hydroxy-TEMPO in 30 ml *tert*-butanol/water (2:1) was added CuCl (140 mg, 2.5 mol%) and nonanal (28.9, 203.2 mmol). 10.2 g (151.0 mmol) 50 % H₂O₂ was added under thorough stirring over a period of 75 min while keeping the temperature at 30 °C. After 12 h another 2 g of 50 % H₂O₂ was added and stirring was continued for 4 h at 40 °C. The mixture was extracted with hexane and successively washed with 10 % ascorbic acid solution, 10 % NaHSO₃ solution, 1 N NaOH, water, and brine. After drying over MgSO₄ the organic phase was concentrated *in vacuo* to provide a yellow oil. The crude product was purified by flash column chromatography (100 g silica gel, hexane/acetone 8:1) to give **S-6** (11.8 g, 41.3 mmol, 71 %) as a colorless oil. ¹H-NMR (400 MHz, CDCl₃): δ 3.96 (m, 1H), 3.72 (t, *J* = 6.6 Hz, 2H), 1.81 (dd, *J* = 12.4, 4.0 Hz, 2H), 1.60-1.39 (m, 4H), 1.39-1.20 (m, 22H), 0.88 (t, *J* = 10.8 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 77.2 (s), 63.4 (t), 60.0 (2q), 48.3 (2s), 33.2 (p), 31.9 (s), 29.7 (s), 29.3 (s), 28.7 (s), 26.4 (s), 22.7 (s), 21.1 (p), 14.2 (p); IR (neat): v max 3346, 2925, 2855, 1692, 1467, 1399, 1194, 1046 cm⁻¹; MS: m/z = 286 [M+H]⁺; Anal. calcd. for C₁₇H₃₅NO₂: C, 71.53; H, 12.36; N, 4.91. Found: C, 71.38; H, 12.19; N, 4.85.

Bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate (S-7). To a suspension of 100 g bis-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl) sebacate (196 mmol) in a mixture consisting of 225 g heptane and 55 g *tert*-butanol was added 146.6 g (979 mmol) nonanal, 315 mg (1 mmol) hexadecyltrimethylammonium chloride, and 500 mg (5 mmol) CuCl. 75 g (1096 mmol) 50 % H₂O₂ was added over a period of 2 h while keeping the internal temperature between 28 – 35 °C. The temperature was raised to 40 °C and stirring was continued for 12 h. After 6 h, another 16.5 g of H₂O₂ was added. After 12 h, another 15 g of H₂O₂ was added and stirring was continued at 55 °C for 2-3 h. The green emulsion obtained was diluted with hexane and washed successively with 10 % Na₂CO₃ solution, 10 % Na₂EDTA solution, sat. Na₂CO₃, water, and brine. The organic phase was dried over Na₂SO₄ and subsequently removed *in vacuo*. The obtained yellow oil was stirred *in vacuo* (0.03 mbar) at 65 °C for 6 h. Chromatography over silica gel (1000g) with hexane/acetone 49:1 provided 109.4 g (148 mmol, 75%) of **S-7** as a pale yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 5.00 (m, 2H), 3.72 (t, *J* = 6.4 Hz, 4H), 2.25 (t, *J* = 6.6 Hz, 4H), 1.80 (m, 4H), 1.60-1.47 (m, 12H), 1.39 -1.12 (m, 52H), 0.88 (t, *J* = 6.8 Hz, 6H). ¹³C-NMR (100 MHz, CDCl₃): δ 173.4 (q), 77.04 (s), 67.5 (t), 59.9 (q), 44.1 (s), 34.6 (s), 33.1 (p), 31.9 (s), 29.7 (s), 29.8 (s), 29.7 (s), 29.4 (s), 29.3 (s), 29.1 (s), 29.0 (s), 28.7 (s), 26.44 (s), 25.0 (s), 22.7 (s), 20.9 (p), 14.0 (p); IR (neat): v max 2927, 2855, 1733, 1457, 1360, 1173, 1001 cm⁻¹; MS: m/z = 737 $[M+H]^+$; Anal. calcd. for C₄₄H₈₄N₂O₆: C, 71.69; H, 11.49; N, 3.80. Found: C, 71.39; H, 11.58; N, 3.60.

1-Cyclobutoxy-2,2,6,6-tetramethylpiperidin-4-ol (S-8). To a solution of 0.79 g (4.57 mmol) 4hydroxy-TEMPO in 4 ml *tert*-butanol/water (1:1) was added CuCl (16 mg, 3.5 mol%) and cyclobutane carbaldehyde (0.50 g, 5.95 mmol). 0.59 g (8.7 mmol) 50 % H₂O₂ was added over a period of 30 min while keeping the temperature under 30 °C. After 18 h of stirring at rt, the mixture was stirred at 40 °C for 4 h. The product was extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over Na₂SO₄, the organic phase was concentrated *in vacuo* to leave a bright green oil which was purified by column chromatography (80 g silica gel, hexane/ethyl acetate 1:1) to give **S-8** (0.24 g, 1.1 mmol, 24%) as a colorless oil which solidified upon standing into a white wax. ¹H-NMR (400 MHz, CDCl₃): δ 4.13 (m, 1H), 3.93 (m, 1H), 2.28 (m, 2H), 1.92 (m, 2H), 1.81 (m, 2H), 1.54-1.35 (m, 4H), 1.21 (m, 1H), 1.11 (2s, 6H), 1.07 (2s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 81.2 (t), 63.4 (t), 58.9 (2q), 48.2 (2s), 33.4 (2p), 32.4 (2s), 21.0 (2p), 11.1 (s). IR (neat): v max 3227, 3004, 2973, 2928, 1469, 1371, 1360, 1342, 1246, 1236, 1087, 1048 cm⁻¹; HRMS (+ESI) calcd. [C₁₃H₂₅NO₂]⁺ [M+H]⁺ MS: 228.1964 found 228.1966.

1-Cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-ol (S-9). To a solution of 6.8 g (39.5 mmol) 4hydroxy-TEMPO in 25 ml *tert*-butanol/water (2:1) was added copper(II) chloride (39 mg, 1 mol%) and cyclohexane carbaldehyde (4.42 g, 39.5 mmol). 8.9 g (78.9 mmol) 30 % H₂O₂ was added over a period of 30 min while keeping the temperature under 30 °C. After 12 h of stirring at rt, the mixture was extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over MgSO₄, the organic phase was concentrated *in vacuo* to leave a bright green oil (6.9 g, 90 % purity (GC)). The crude product was purified by column chromatography (80 g silica gel, hexane/acetone 9:1) to give **S-9** (6.3 g, 24.5 mmol, 62%) as a light chartreuse oil. ¹H-NMR (400 MHz, CDCl₃): δ 3.98 (m, 1H), 3.63 (m, 1H), 2.06 (m, 2H), 1.81 (m, 4H), 1.57-1.48 (m, 3H), 1.37-1.13 (m, 6H), 1.21 (2s, 6H), 1.17 (2s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 81.9 (t), 63.4 (t), 60.0 (2q), 48.8 (2s), 34.5 (2p), 32.8 (2s), 25.9 (2s), 25.0 (2s), 21.2 (2p); IR (neat): v max 3301, 2935, 2855, 1446, 1359, 1178, 1041 cm⁻¹; MS: m/z = 256 [M+H]⁺; Anal. calcd. for C₁₅H₂₉NO₂: C, 70.54; H, 11.45; N, 5.48. Found: C, 70.18; H, 11.37; N, 5.35.

1-Cyclooctyloxy-2,2,6,6-tetramethylpiperidin-4-ol (S-10). To a solution of 1.00 g (5.8 mmol) 4-hydroxy-TEMPO in 4 ml *tert*-butanol/water (1:1) was added CuCl (16 mg, 3.5 mol%) and cyclooctyl carbaldehyde (1.06 g, 7.5 mmol). 0.59 g (8.7 mmol) 50 % H₂O₂ was added over a period of 30 min while keeping the temperature under 30 °C. After 18 h of stirring at rt, the mixture was heated to 40 °C for 24 h. The mixture was then extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over Na₂SO₄, the organic phase was concentrated *in vacuo* to leave a yellow oil. This was purified by column chromatography (80 g silica gel, hexane/ethyl acetate 2:1) to give **S-10** (0.73 g, 2.6 mmol, 45 %) as a pale yellow oil. After a short time, the oil solidified into a yellowish wax. ¹H-NMR (300 MHz, CDCl₃): δ 3.96 (ddd, *J* = 16.2, 6.7, 4.9 Hz, 1H), 3.86 (ddd, *J* = 12.0, 8.4, 3.7 Hz, 1H), 2.00 (ddt, *J* = 11.6, 11.6, 7.8, 3.6 Hz, 2H), 1.81 (m, 2H), 1.44-1.74 (multiple m, 15H), 1.19 (s, 6H), 1.16 (s, 6H). ¹³C-NMR (75 MHz, CDCl₃): δ 83.4, 63.5, 60.1, 48.9, 34.5, 31.1, 27.5, 25.7, 23.6, 21.4; IR (neat): v max 3264, 3006, 2969, 2917, 2850, 1446, 1467, 1358, 1337, 1372, 1244, 1162, 1213, 1193, 1177, 1031, 1042 cm⁻¹; HRMS (+ESI) calcd. [C₁₇H₃₃NO₂]⁺ [M+H]⁺ MS: 284.2590 found 284.2587.

1-(Cyclohex-3-enyloxy)-2,2,6,6-tetramethylpiperidin-4-ol (S-11). To a solution of 7.5 g (43.5 mmol) 4-hydroxy-TEMPO in 25 ml *tert*-butanol/water (2:1) was added CuCl (43 mg, 1 mol%) and 3-cyclohexene-1-carboxaldehyde (7.19 g, 65.3 mmol). 7.1 g (69.7 mmol) 30 % H₂O₂ was added over a period of 30 min while keeping the temperature under 30 °C. After 12 h of stirring at 30 °C, the mixture was extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over MgSO₄, the organic phase was concentrated *in vacuo* to leave a bright green oil (6.9 g, 90 purity (GC). The crude product was purified by flash column chromatography (100 g silica gel, hexane/acetone 12:1) to give **S-11** (7.9 g, 31.3 mmol, 72%) as a white solid. ¹H-NMR (400 MHz, CDCl₃): δ 5.59 (m, 2H),

3.94 (m, 2H), 2.39 (m, 1H), 2.25-2.02 (m, 4H), 1.83 (m, 3H), 1.51 (m, 3H), 1.21 (2s, 6H), 1.17 (2s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 126.7 (t), 125.0 (t), 78.7 (t), 63.1 (t), 60.1 (q), 60.4 (q), 48.7 (2s), 34.5 (2p), 31.8 (s), 28.7 (s), 25.0 (s), 21.2 (2p); IR (neat): v max 3372, 3009, 2930, 1447, 1359, 1174, 1026 cm⁻¹; MS: m/z = 254 [M+H]⁺; Anal. calcd. for C₁₅H₂₇NO₂: C, 71.10; H, 10.74; N, 5.53. Found: C, 71.33; H, 10.49; N, 5.38.

1-(Bicyclo[2.2.1]hept-5-en-2-yloxy)-2,2,6,6-tetramethylpiperidin-4-ol (S-12). To a solution of 1.00 g (5.8 mmol) 4-hydroxy-TEMPO in 4 ml ethanol was added CuCl (14 mg, 2.5 mol%) and bicyclo[2.2.1]hept-5-ene-2-carboxaldehyde (1.1 g, 8.71 mmol). 1.0 g (8.7 mmol) 30 % H₂O₂ was added over a period of 2 h and the reaction mixture was stirred at rt for 48 h. The product was extracted with ethyl acetate. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over Na₂SO₄, the organic phase was concentrated in vacuo to leave a yellow oil. The crude product was was purified by flash column chromatography (15 g silica gel, hexane/acetone 19:1) to give S-12 (1.14 g, 4.3 mmol, 74%) as a white solid consisting of two isomers in a 9:1 ratio (exo/endo). Sublimation of this material (0.01 mbar, 80 °C) did not lead to an increase in purity. ¹H-NMR (400 MHz, CDCl₃) (major isomer): δ 6.15 (dd, J = 5.4, 2.7 Hz, 1H), 5.91 (dd, J = 5.4, 3.3 Hz, 1H), 3.93 (m, 2H), 3.09 (s, 1H), 2.74 (s, 1H), 2.00-1.05 (m, ~30H); ¹³C-NMR (100 MHz, CDCl₃): δ140.7, 138.1, 133.8, 131.8, 91.0, 87.9, 87.0, 63.1, 30.4, 60.0, 59.4, 59.3, 48.4, 47.5, 47.2, 46.6, 46.0, 41.2, 39.8, 36.6, 35.7, 34.7, 34.3, 33.9, 33.8, 30.6, 30.2, 21.2, 14.4, 13.1, 11.3; IR (neat): v max 3378, 2969, 2936, 1478, 1452, 1372, 1340, 1245, 1165, 1031 cm⁻¹; MS: $m/z = 266 [M+H]^+$. Anal. calcd. for C₁₆H₂₇NO₂: C, 70.80; H, 9.90; N, 5.00. Found: C, 71.50; H, 10.13; N, 4.99.

1-(1,1-Dimethyl-but-3-enyloxy)-2,2,6,6-tetramethylpiperidin-4-ol (S-13). To a solution of 1.00 g (5.8 mmol) 4-hydroxy-TEMPO in 4 ml *tert*-butanol/water (1:1) was added CuCl (16 mg, 3.5 mol%) and 2,2-dimethyl-4-pentenal (1.02 ml, 7.5 mmol). 0.590 g (8.7 mmol) 50 % H₂O₂ was added over a period of 30 min while keeping the temperature below 30 °C. After 28 h of stirring at rt, the mixture was extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over Na₂SO₄, the organic phase was concentrated *in vacuo* to leave S-13 as a light yellow oil which solidified into a

yellowish wax after a short time (1.25 g, 4.89 mmol, 84%). ¹H-NMR (300 MHz, CDCl₃): δ 5.86 (dddd, J = 14.5, 12.2, 9.0, 7.3 Hz, 1H), 4.99 (m, 1H), 4.95 (tdd, J = 6.5, 2.4, 1.3, 1.3 Hz, 1H), 3.87 (tt, J = 11.5, 11.5, 4.2, 4.2 Hz, 1H), 2.30 (d, J = 7.2 Hz, 2H), 1.75 (tdd, J = 12.9, 3.8, 2.1, 2.1 Hz, 2H), 1.38 (ps t, J = 11.8 Hz, 2H), 1.18 (s, 6H), 1.10 (s, 6H), 1.07 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 135.7, 116.8, 79.2, 63.1, 59.8, 49.2, 47.8, 26.7, 21.6; IR (neat): v max 3281, 3007, 2972, 2931, 1447, 1471, 1435, 1374, 1358, 1251, 1206, 1163, 1192, 1079, 1031 cm⁻¹; HRMS (+ESI) calcd. [C₁₅H₂₉NO₂]⁺ [M+H]⁺ MS: 256.2277 found 256.2278.

1-[((*Z*)-Non-3-enyl)oxy]-2,2,6,6-tetramethylpiperidin-4-ol (S-14). To a solution of 1.00 g (5.8 mmol) 4-hydroxy-TEMPO in 4 ml toluene/*tert*-butanol (1:1) was added CuCl (16 mg, 3.5 mol%) and cis-4-decenal (4.11 ml, 22.5 mmol). 0.59 g (8.7 mmol) 50 % H₂O₂ was added over a period of 30 min while keeping the temperature below 30 °C. After 18 h of stirring at rt, the mixture was heated to 40 °C for 20 h. The mixture was subsequently extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over Na₂SO₄, the organic phase was concentrated *in vacuo* to leave a yellow oil which was purified by column chromatography (120 g silica gel, hexane/ethyl acetate 1:1) to give **S-14** (0.99 g, 3.52 mmol, 61%) as a light yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 5.41 (m, 2H), 3.94 (m, 1H), 3.73 (t, *J* = 7.0 Hz, 2H), 1.26-1.40 (multiple m, 6H), 1.19 (s, 6H), 1.14 (s, 6H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 131.7, 125.8, 76.4, 63.4, 60.0, 48.3, 33.2, 31.5, 29.3, 27.2, 26.8, 22.6, 21.0, 14.1; IR (neat): v max. 3329, 3006, 2925, 2857, 1467, 1456, 1372, 1369, 1045, 1030 cm⁻¹; HRMS (+ESI) calcd. [C₁₈H₃₅NO₂]⁺ [M+H]⁺ MS: 298.2741 found 298.2736.

1-(1-Phenyl-ethoxy)-2,2,6,6-tetramethylpiperidin-4-ol (S-15). To a solution of 1.0 g (5.8 mmol) 4-hydroxy-TEMPO in 4 ml *tert*-butanol was added CuCl (20 mg, 3.5 mol%) and 2-phenylpropionaldehyde (1.6 g, 11.6 mmol). 1.3 g (11.6 mmol) 30 % H_2O_2 was added over a period of 30 min. After 12 h of stirring at rt, the mixture was extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over MgSO₄, the organic phase was concentrated *in vacuo* to give an off-

white solid. The crude product was dissolved in boiling hexane (10 ml), and upon cooling the product crystallized as a white solid. The crystals were separated by filtration to give pure **S-15** (1.15g, 4.15 mmol, 68%). ¹H-NMR (400 MHz, CDCl₃): δ 7.45-7.24 (m, 5H), 4.80 (q, *J* = 6.8 Hz, 1H), 3.81 (m, 1H), 1.86 (dd, *J* = 8.8, 3.8 Hz, 1H), 1.75 (m, 1H), 1.61-1.40 (m, 2H), 1.53 (s, 3H), 1.37 (s, 3H), 1.25 (s, 3H), 1.11 (s, 3H), 0.70 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 145.5 (q), 128.1 (2t), 127.0 (t), 126.7 (2t), 83.2 (t), 63.3 (t), 60.2 (q), 60.0 (q), 48.9 (s), 48.8 (s), 34.5 (p), 34.2 (p), 23.5 (p), 21.3 (p); IR (neat): v max 3274, 3004, 2924, 1449, 1374, 1212, 1043 cm⁻¹; MS: m/z = 278 [M+H]⁺; Anal. calcd. for C₁₇H₂₇NO₂: C, 73.61; H, 9.81; N, 5.05. Found: C, 73.25; H, 9.09; N, 4.95.

2,2,6,6-Tetramethyl-1-(2-phenyl-propoxy)-piperidin-4-ol (S-16). To a solution of 10.0 g (58.1 mmol) 4-hydroxy-TEMPO in 30 ml water was added acetic acid (300 mg), CuCl (20 mg, 3.5 mol%) and 3-phenylbutyraldehyde (11.18 g, 75.47 mmol). 5.9 g (87.0 mmol) 50 % H₂O₂ was added over a period of 30 min. After 12 h of stirring at rt, the mixture was extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over MgSO₄, the organic phase was concentrated in vacuo to give an offwhite solid. The crude product was dissolved in boiling hexane (10 ml), and upon cooling the product crystallized as a white solid. The crystals were separated by filtration to give pure S-16 (1.15g, 4.15 mmol, 68%). Alternatively, the product can be purified by Kugelrohr® distillation $(1.2 \times 10^{-1} \text{ mbar}, 110-130 \text{ °C})$. ¹H-NMR (400 MHz, CDCl₃): δ 7.27 (m, 5H), 3.94 (m, 1H), 3.84 (m, 2H), 3.01 (sext., J = 6.90, 6.90, 6.89, 6.89, 6.89 Hz, 1H), 1.78 (m, 2H), 1.44 (dt, J = 12.13, 12.10, 6.19 Hz, 2H), 1.35 (d, J = 7.03 Hz, 3H), 1.24 (m, 1H), 1.16 (s, 3H), 1.15 (s, 3H), 1.08 (s, 3H), 1.07 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 144.6, 128.1, 127.5, 126.2, 82.0, 63.3, 60.2, 48.3, 39.5, 33.1, 33.0, 21.1, 21.0, 18.2; IR (neat): v max 3263, 2966, 2923, 2871, 1495, 1452, 1371, 1360, 1049, 1033 cm⁻¹; MS: $m/z = 292 [M+H]^+$; Anal. calcd. for C₁₈H₂₉NO₂: C, 74.18; H, 10.03; N, 4.81. Found: C, 74.01; H, 9.97; N, 4.83.

2-(4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-propionic acid ethyl ester (S-17). To a solution of 0.50 g (2.9 mmol) 4-hydroxy-TEMPO in 4 ml *tert*-butanol/water (1:1) was added CuCl (8 mg, 3.5 mol%) and 2-formyl propionic acid ethyl ester (0.49 g, 3.75 mmol). 0.30 g (4.35 mmol) 50 % H_2O_2 was added over a period of 30 min while keeping the temperature below 30

°C. After 26 h of stirring at 30 °C, the mixture was extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over Na₂SO₄, the organic phase was concentrated *in vacuo* to leave a yellow oil which was purified by column chromatography (80 g silica gel, hexane/ethyl acetate 2:1) to give **S-17** (0.50 g, 1.83 mmol, 63 %) as a light yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 4.30 (q, *J* = 7.0 Hz, 1H), 4.16 (ddd, *J* = 14.2, 7.1, 1.5 Hz, 2H), 3.95 (m, 1H), 1.79 (m, 2H), 1.45 (m, 2H), 1.40 (d, *J* = 7.0 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.22 (s, 3H), 1.17 (2s, 6H), 1.07 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.1, 81.8, 63.0, 60.5, 59.9, 48.7, 48.4, 33.7, 33.0, 21.1, 21.0, 18.3, 14.1. IR (neat): v max 3451, 2977, 2936, 1733, 1457, 1362, 1374, 1263, 1184, 1126, 1078, 1047, 1030 cm⁻¹; MS: m/z = 274 [M+H]⁺. Anal. calcd. for C₁₄H₂₇NO₄: C, 61.51; H, 9.96; N, 5.12. Found: C, 61.79; H, 9.85; N, 5.01.

4-(4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-2-methyl-2-nitro-butyric acid ethvl ester (S-18). To a solution of 1.0 g (5.8 mmol) 4-hydroxy-TEMPO in 4 ml tert-butanol/water (1:1) was added CuCl (5 mg, 5 mol%) and 2-methyl-2-nitro-5-oxopentanoic acid ethyl ester (1.54 g, 7.5 mmol). 0.590 g (8.7 mmol) 50 % H₂O₂ was added over a period of 30 min while keeping the temperature below 30 °C. After 22 h of stirring at rt, the mixture was extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over Na₂SO₄, the organic phase was concentrated *in vacuo*. The crude product was purified by flash column chromatography (50 g silica gel, hexan/acetone 10:1) to afford **S-18** as a pale yellow oil (1.28 g, 3.7 mmol, 64%). ¹H-NMR (400 MHz, CDCl₃): δ 4.27 (q, J = 7.1 Hz, 2H), 3.90 (m, 1H), 3.87 (m, 2H), 2.62 (m, 1H), 2.47 (m, 1H), 1.86 (s, 3H), 1.79 (dd, J = 12.3, 4.1 Hz, 2H), 1.43 (ps t, J = 12.5 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H), 1.10-1.28 (multiple s, 12H); ¹³C-NMR (100 MHz, CDCl₃): δ 167.3, 91.4, 71.6, 63.1, 62.9, 60.1, 48.1, 35.5, 33.1, 31.2, 21.1, 21.0, 13.8; IR (neat): v max 3357, 2974, 2939, 1748, 1455, 1374, 1361, 1299, 1252, 1193, 1111, 1140, 1046, 1029 cm⁻¹; HRMS (+ESI) calcd. $[C_{16}H_{30}N_2O_6]^+$ [M+H]⁺ MS: 347.2182 found 347.2174.

4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-yl carbonic acid methyl ester (S-19). To a solution of 2.5 g (14.5 mmol) 4-hydroxy-TEMPO in 8 g (90.8 mmol) methyl glyoxylate was added CuCl

(28.7 mg, 2 mol%). 2.0 g (19.6 mmol) 30 % H₂O₂ was added over a period of 60 min. After 12 h of stirring at rt, the mixture was diluted with MTBE. The organic phase was washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over MgSO₄, the organic phase was concentrated *in vacuo* to leave a white solid. The crude product was filtered over silica gel (20 g) using hexane/acetone (2:1) to yield **S-19** as a white solid (2.55g, 11.0 mmol, 76%). ¹H-NMR (300 MHz, CDCl₃): δ 4.01 (m, 1H), 3.82 (s, 3H), 1.89 (dd, *J* = 11.2, 4.2 Hz, 2H), 1.82 (br s, 1H), 1.67 (ps t, *J* = 11.2 Hz, 2H), 1.21 (2s, 6H), 1.15 (2s, 6H); ¹³C-NMR (75 MHz, CDCl₃): δ 157.6 (q), 63.1 (t), 61.1 (2q), 55.5 (p), 48.1 (2s), 32.0 (2p), 21.6 (2p); IR (neat): v max 3234, 2966, 1773, 1440, 1365, 1225, 1183, 1047 cm⁻¹; MS: m/z = 232 [M+H]⁺; Anal. calcd. for C₁₁H₂₁NO₄: C, 57.12; H, 9.15; N, 6.06. Found: C, 57.34; H, 8.97; N, 5.83.

1-(2,2-Dimethoxy-ethoxy)-2,2,6,6-tetramethylpiperidin-4-ol (**S-20**). To a solution of 2.5 g (14.5 mmol) 4-hydroxy-TEMPO in 7.5 g (63.5 mmol) 3,3-dimethoxy propanal was added CuCl (28.7 mg, 2 mol%). 2.0 g (19.6 mmol) 30 % H₂O₂ was added over a period of 60 min. After 9 h of stirring at rt, the mixture was diluted with MTBE. The organic phase was successively washed with water, 1 N NaOH, 10% Na₂EDTA solution, water, and brine. After drying over MgSO₄, the organic phase was concentrated *in vacuo* to leave a white solid. The crude product was recrystallized from hexane/acetone (95:5) to yield **S-20** as a white solid (2.5g, 9.58 mmol, 66%). ¹H-NMR (300 MHz, CDCl₃): δ 4.49 (t, *J* = 5.2 Hz, 1H), 3.94 (m, 1H), 3.84 (2d, *J* = 5.2 Hz, 2H), 3.40 (2s, 6H), 2.72 (s, 1H), 1.81 (dd, *J* = 12.4, 4.0 Hz, 2H), 1.52 (br s, 1H), 1.48 (ps t, *J* = 11.6 Hz, 2H), 1.22 (2s, 6H), 1.16 (2s, 6H); ¹³C-NMR (75 MHz, CDCl₃): δ 102.4 (t), 77.3 (s), 63.2 (t), 60.2 (2q), 53.9 (2p), 48.3 (2s), 33.1 (2p), 21.0 (2p); IR (neat): v max 3401, 2974, 1718, 1469, 1374, 1193, 1077 cm⁻¹; MS: m/z = 262 [M+H]⁺; Anal. calcd. for C₁₃H₂₇NO₄: C, 59.74; H, 10.41; N, 5.36. Found: C, 59.69; H, 10.32; N, 5.38.

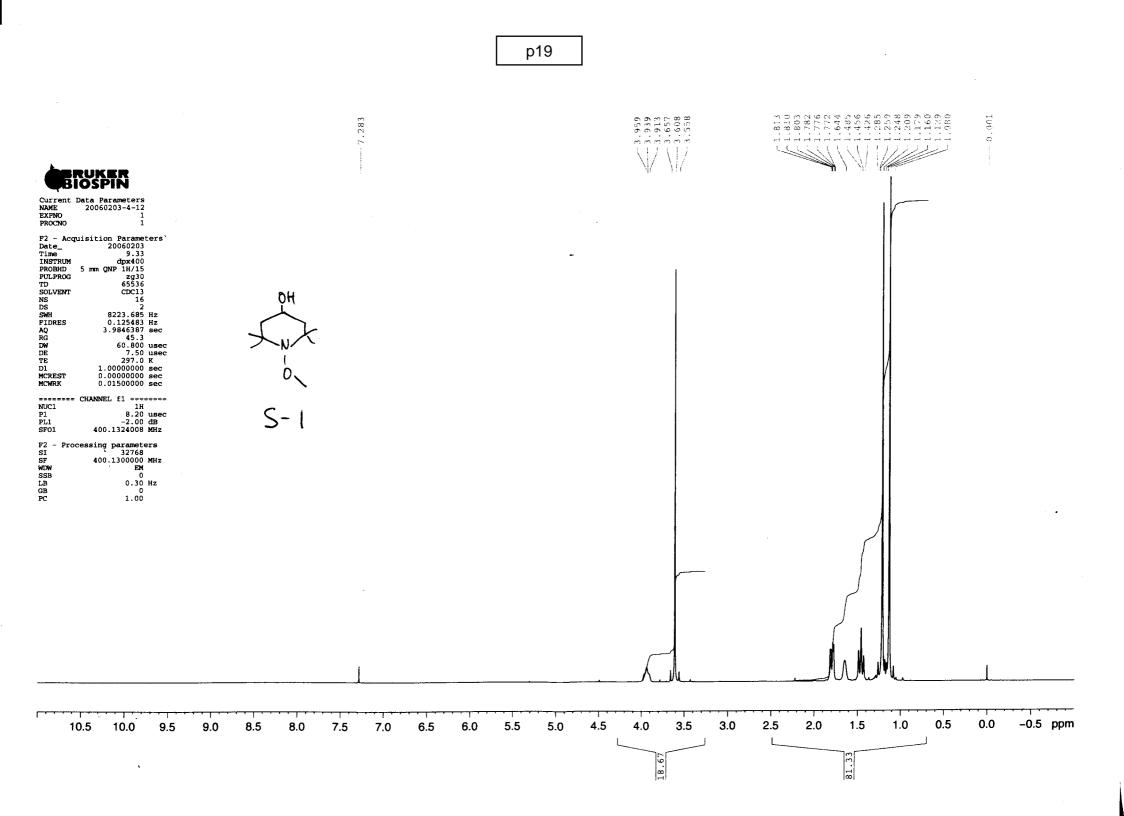
Acetic acid 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yloxymethyl ester (S-21). To a solution of 1.0 g (5.8 mmol) 4-hydroxy-TEMPO in 5 ml toluene and 1.19 g (11.6 mmol) acetoxyacetaldehyd was added CuCl (11.4 mg, 2 mol%). 1.3 g (11.6 mmol) 30 % H_2O_2 was added over a period of 120 min. After 12 h of stirring at rt, the mixture was diluted with toluene. The organic phase was washed with 5 % ascorbic acid solution, 0.1 M Na₂CO₃ solution, water,

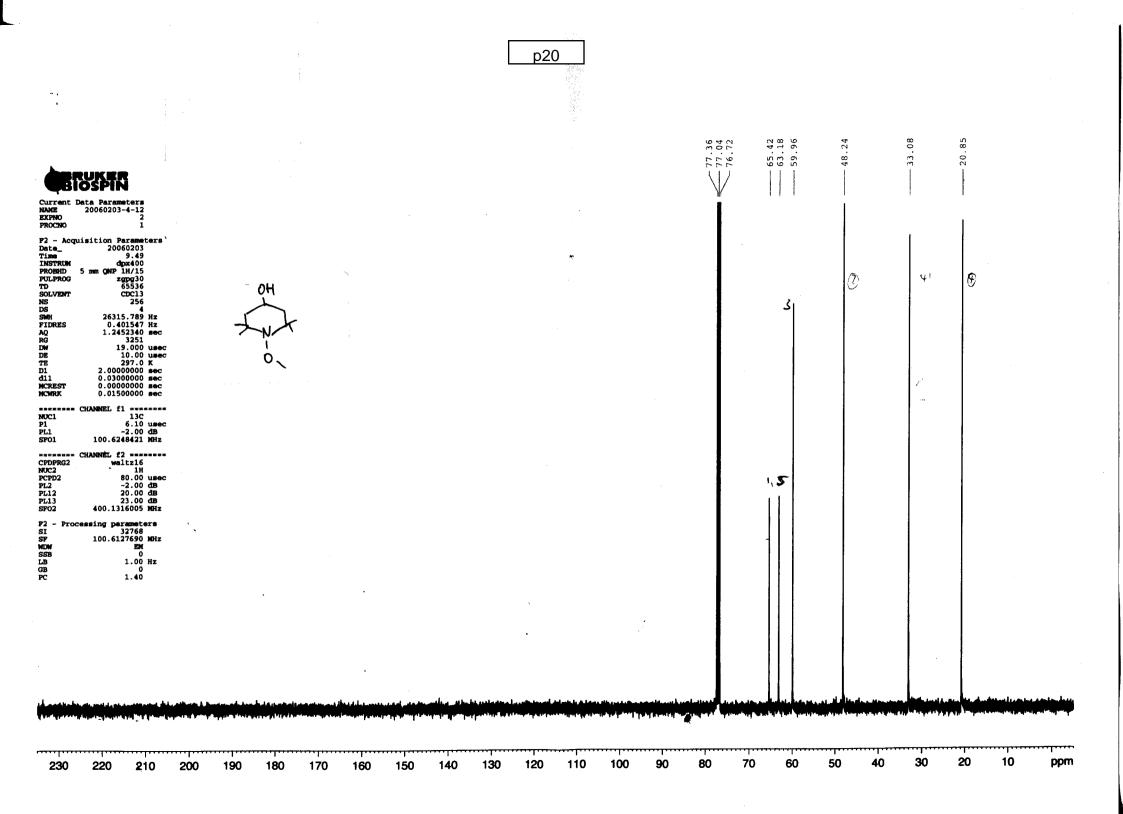
and brine. After drying over MgSO₄, the organic phase was concentrated *in vacuo* to leave a pale chartreuse oil. The crude product was heated to 35 °C for 4 h while applying a vacuum of 0.05 mbar to afford 0.97 g (4.0 mmol, 68 %) of pure **S-21** as an oil. ¹H-NMR (400 MHz, CDCl₃): δ 5.45 (s, 2H), 3.99 (m, 1H), 2.10 (s, 3H), 1.86 (dd, *J* = 12.8, 6.4 Hz, 2H), 1.48 (ps t, *J* = 12.0 Hz, 2H), 1.21 (2s, 6H), 1.17 (2s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 170.3 (q), 93.4 (s), 63.0 (t), 60.2 (2q), 48.1 (2s), 33.3 (2p), 21.1 (3p); IR (neat): v max 3378, 2975, 2938, 1735, 1458, 1364, 1220, 1008 cm⁻¹; HRMS (+ESI) calcd. [C₁₂H₂₃NO₄]⁺ [M+H]⁺ MS: 246.1670 found 246.1666.

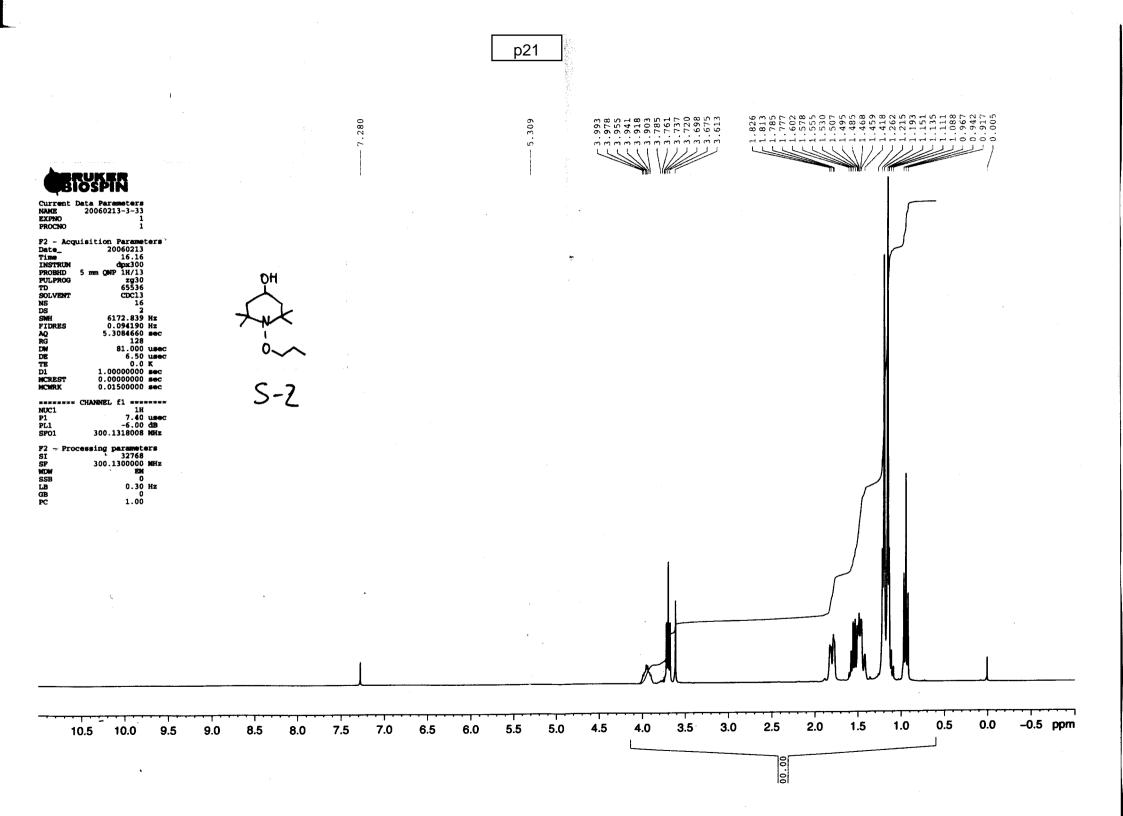
4-(4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-piperidine-1-carboxylic acid *tert***butyl ester (S-22).** To a solution of 0.29 g (1.7 mmol) 4-hydroxy-TEMPO in 4 ml *tert*butanol/water (1:1) was added CuCl (5 mg, 5 mol%) and N-Boc-piperidinyl-4-acetaldehyde (0.500 g, 2.2 mmol). 0.173 g (2.55 mmol) 50 % H₂O₂ was added over a period of 30 min while keeping the temperature under 30 °C. After 21 h of stirring at rt, the mixture was extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over Na₂SO₄, the organic phase was concentrated *in vacuo* to leave **S-22** (0.252 g, 0.68 mmol, 40%) as a pale yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 4.07 (m, 2H), 3.92 (m, 1H), 3.59 (m, 2H), 2.68 (m, 2H), 1.76 (dd, *J* = 12.3, 4.0 Hz, 2H), 1.69 (m, 2H), 1.40-1.48 (m, 5H), 1.43 (s, 9H), 1.15 (s, 6H), 1.11 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 154.8, 80.9, 79.3, 62.3, 60.2, 48.2, 36.1, 33.2, 29.2, 28.5, 21.1; IR (neat): v max 2974, 2927, 2868, 1669, 1468, 1364, 1423, 1273, 1243, 1168, 1145, 1045 cm⁻¹; HRMS (+ESI) calcd. [C₂₀H₃₈N₂O₄]⁺ [M+H]⁺ MS: 371.2904 found 371.2900.

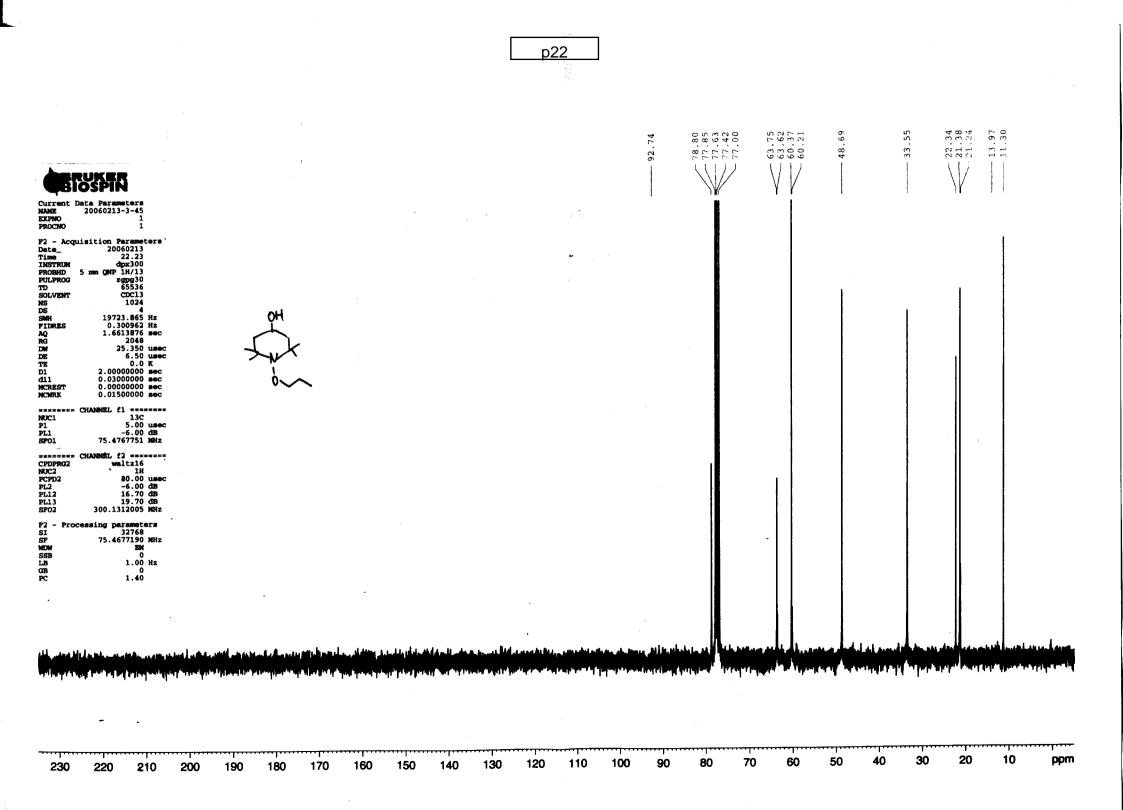
4-Ethyl-4-(4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-hexanenitrile (S-23). To a solution of 1.00 g (5.8 mmol) 4-hydroxy-TEMPO in 4 ml *tert*-butanol/water (1:1) was added CuCl (10 mg, 3.5 mol%) and 4-ethyl-4-formylhexanenitrile (1.21 ml, 7.5 mmol). 0.59 g (8.7 mmol) 50 % H₂O₂ was added over a period of 30 min while keeping the temperature below 30 °C. After 5 h of stirring at rt, the mixture was heated to 40 °C and stirred for an additional 38 h. The mixture was then extracted with MTBE. The combined organic layers were washed with 10 % ascorbic acid solution, 1 N NaOH, water, and brine. After drying over Na₂SO₄, the organic phase was concentrated *in vacuo* to leave a yellow oil which rapidly solidified into a light yellow

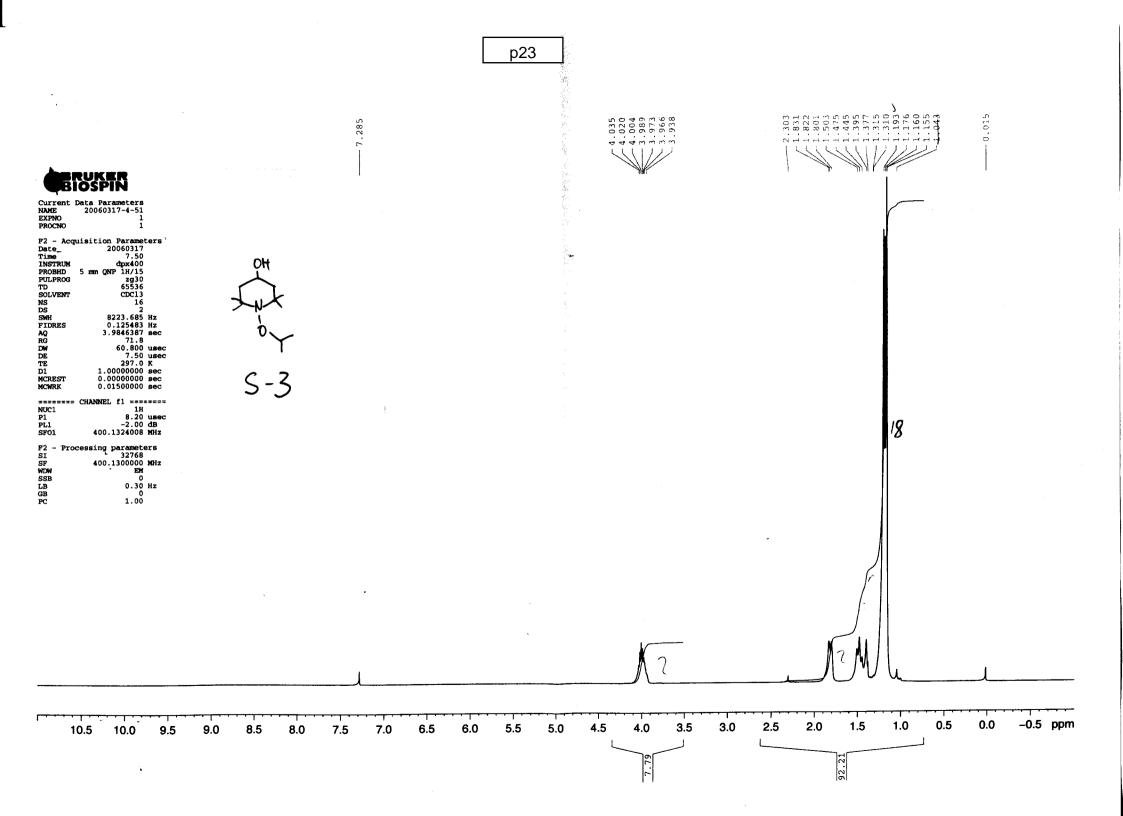
wax. Recrystallization of the wax in ethyl acetate and hexane yielded pure **S-23** (1.05 g, 3.5 mmol, 61%) as yellowish crystals. ¹H-NMR (300 MHz, CDCl₃): δ 3.96 (tt, J = 11.5, 11.5, 4.3, 4.3 Hz, 1H), 2.63-2.55 (m, 2H), 2.15-2.07 (m, 2H), 1.87 (dd, J = 4.2, 1.7 Hz, 1H), 1.83 (dd, J = 4.1, 1.8 Hz, 1H), 1.77 (dq, J = 7.6, 7.4, 7.4, 2.6 Hz, 4H), 1.46 (ps t, J = 11.9 Hz, 2H), 1.17 (s, 6H), 1.16 (s, 6H), 0.95 (t, J = 11.8, 6H); ¹³C-NMR (75 MHz, CDCl₃): δ 120.6, 81.6, 62.9, 60.2, 49.4, 34.6, 30.6, 21.9, 12.7, 9.5. IR (neat): v max 3280, 2975, 2934, 2878, 2245, 1457, 1373, 1361, 1199, 1182, 1163, 1048, 1035 cm⁻¹; HRMS (+ESI) calcd. [C₁₇H₃₂N₂O₂]⁺ [M+H]⁺ MS: 297.2542 found 297.2557.

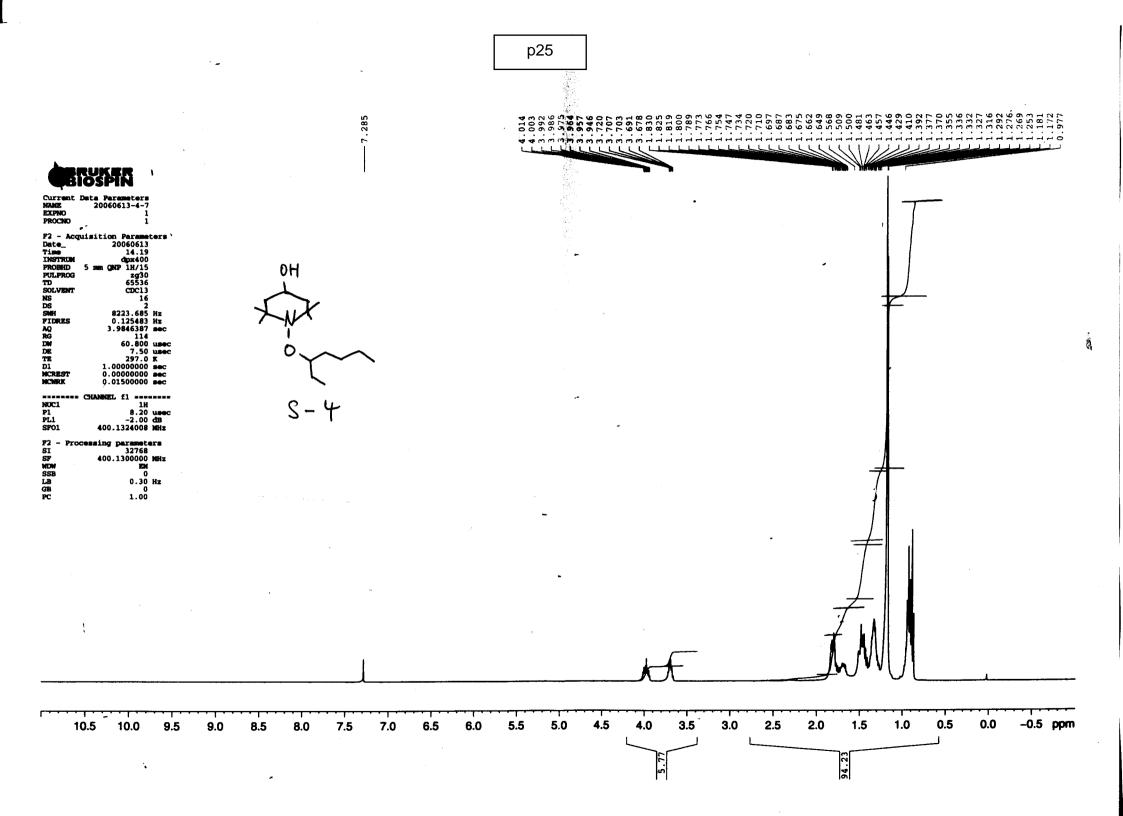

2,2,6,6-Tetramethyl-1-(2,2,2-trifluoro-ethoxy)-piperidin-4-ol (S-24). To a solution of 0.50 g (2.9 mmol) 4-hydroxy-TEMPO in 4 ml *tert*-butanol/water (1:1) was added CuCl (10 mg, 3.5 mol%) and 3,3,3-trifluoropropanal (0.32 ml, 3.75 mmol). 0.30 g (4.35 mmol) 50 % H₂O₂ was added over a period of 30 min while keeping the temperature below 30 °C. After 72 h of stirring at rt, the mixture was extracted with MTBE. The combined organic layers were washed with 10% ascorbic acid solution, 1 N NaOH, water, and brine. After drying over Na₂SO₄, the organic phase was concentrated *in vacuo* to leave a yellow oil which was purified by column chromatography (80 g silica gel, hexane/ethyl acetate 1:1) to give **S-24** (0.55 g, 2.15 mmol, 74%) as a colourless oil, which quickly solidified into a white wax. ¹H-NMR (400 MHz, CDCl₃): δ 4.15 (dd, ²*J*_{H,H} = 8.7 Hz, ³*J*_{H,F} = 17.5 Hz, 2H), 3.97 (m, 1H), 1.82 (ddd, *J* = 5.4, 4.2, 1.8 Hz, 2H), 1.46 (ps t, *J* = 12.0 Hz, 2H), 1.22 (s, 6H), 1.19 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 123.1 (d, ¹*J*_{C,F} = 278.7 Hz), 73.8 (q, ²*J*_{C,F} = 31.7 Hz), 62.8, 60.7, 48.1, 32.7, 20.8; ¹⁹F-NMR (282 MHz, CDCl₃, d CF₃COOH = - 76.0 ppm): d -73.12; IR (neat): v max 3231, 2976, 3005, 2932, 1364, 1264, 1165, 1090, 1040, 1050 cm⁻¹; HRMS (+ESI) calcd. [C₁₁H₂₀F₃NO₂]⁺ [M+H]⁺ MS: 256.1524 found 256.1533.

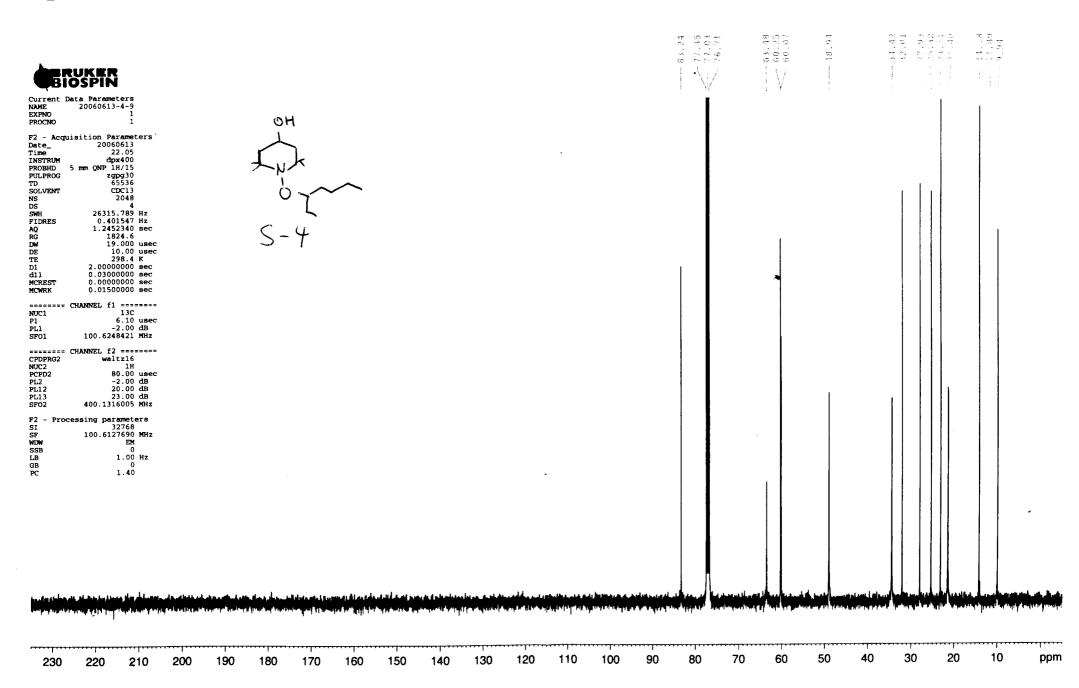

1-(2-Hydroxy-2-methyl-propoxy)-2,2,6,6-tetramethylpiperidin-4-ol (S-25). To a solution of 215.9 mg (1.25 mmol) 4-hydroxy-TEMPO and 160 mg (1.57 mmol) 3-hydroxy-3-methylbutanal in 1 ml *tert*-butanol/water (1:1) was added CuCl (5 mg, 3.5 mol%). 178 mg (1.57 mmol) 30 % H_2O_2 was added and the reaction mixture was stirred at rt over night. The green solution was diluted with MTBE and the organic phase was washed with 10 % ascorbic acid solution, 1 N

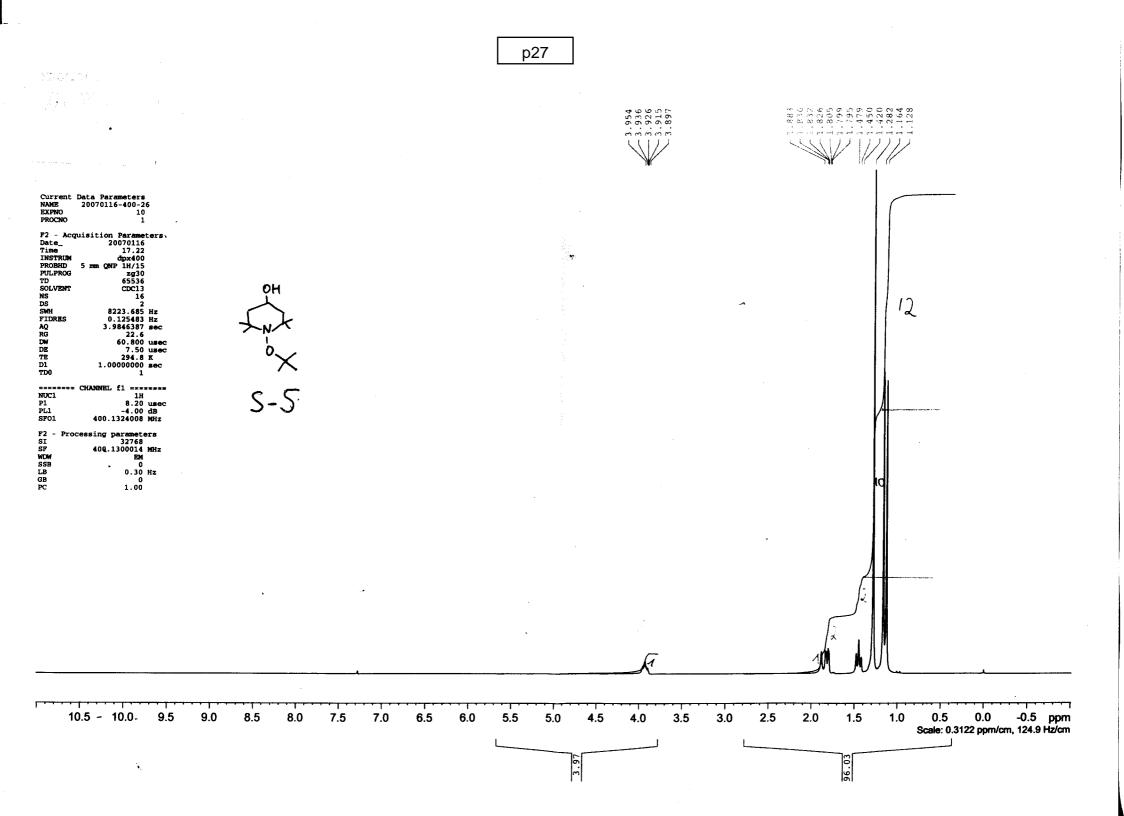

NaOH, water, and brine. After drying over MgSO₄, the organic phase was concentrated *in vacuo* to provide a pale yellow oil which solidified upon standing at rt. The crude product was recrystallized from hexane/ethyl acetate (10:1) to afford 210.3 mg (0.86 mmol, 69%) of **S-25**. ¹H-NMR (300 MHz, CDCl₃): δ 3.96 (m, 1H), 3.65 (s, 2H), 2.15 (br s, 1H), 1.81 (dd, *J* = 12.3, 4.2 Hz, 2H), 1.47 (ps t, *J* = 12.0 Hz, 2H), 1.25 (2s, 6H), 1.22 (2s, 6H), 1.19 (2s, 6H); ¹³C-NMR (75 MHz, CDCl₃): δ 84.0 (q), 70.7 (s), 63.1 (t), 60.5 (2q), 48.3 (2s), 33.2 (2p), 26.5 (2P), 21.2 (2p); IR (neat): v max 3342, 2966, 1488, 1376, 1166, 1047 cm⁻¹. MS: m/z = 264 [M+H]⁺. Anal. Calcd. for C₁₃H₂₇NO₃: C, 63.64; H, 11.09; N, 5.71. Found: C, 63.43; H, 11.17; N, 5.73.

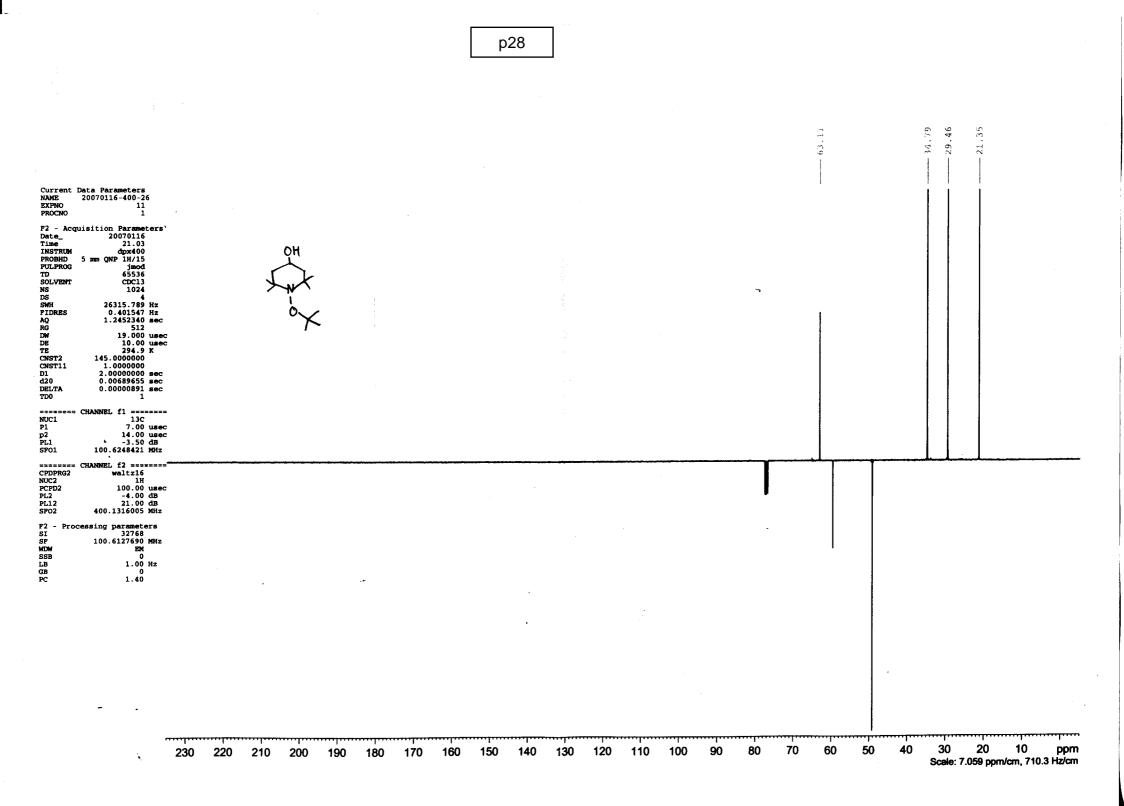

4-(4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-butane-1,2,3-triol (**S-26**). 1.00 g (7.46 mmol) 2-deoxy-D-ribose was dissolved in 3.5 ml acetic acid/water (3:1), and 2.0 g (11.6 mmol) 4-hydroxy-TEMPO and CuCl (20 mg, 0.20 mmol) were added. 0.6 g (8.82 mmol) 50 % H₂O₂ were added over a period of 2.5 h, and the reaction mixture was stirred over night at 30 °C. The reaction mixture was concentrated *in vacuo* at 35 °C. The residue was subjected to reversed phase column chromatography (25 g RP8 silica gel, methanol) to yield 1.22 g (4.40 mmol, 38%) **S-26** as a viscous, pale yellow oil. ¹H-NMR (300 MHz, MeOD): δ 4.00 (m, 1H), 3.91 (m, 2H), 3.72 (m, 2H), 3.59 (m, 2H), 1.70 (dd, J = 12.3, 3.6 Hz, 2H), 1.44 (m, 2H), 1.30 (s, 3H), 1.27 (s, 3H), 1.24 (s, 3H), 1.21 (s, 3H). ¹³C-NMR (75 MHz, MeOD): δ 79.8, 73.9, 72.5, 64.7, 63.5, 63.1, 62.3, 61.5, 61.4, 48.3, 48.1, 33.7, 31.6, 21.7, 21.2; IR (neat): v max 3334, 2973, 2931, 1736, 1593, 1456, 1362, 1046 cm⁻¹; HRMS (+ESI) calcd. [C₁₃H₂₇NO₅]⁺ [M+H]⁺ MS: 278.1962 found 278.1959.

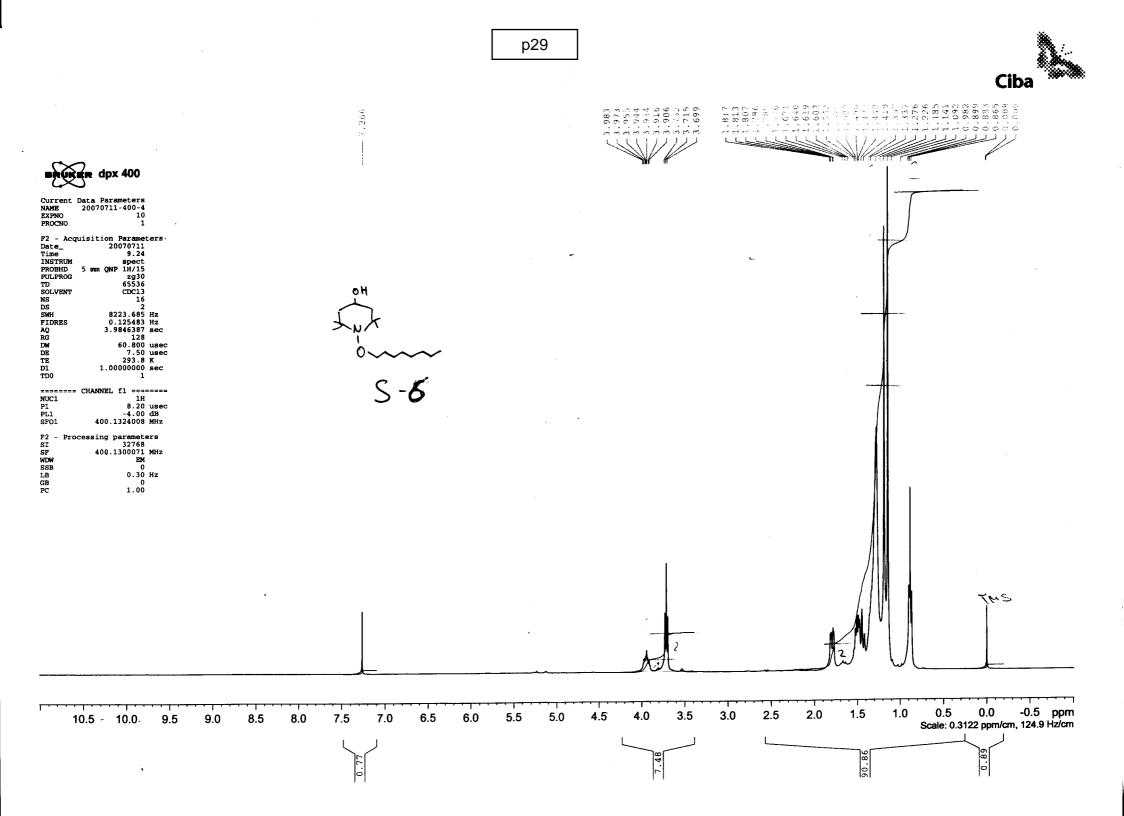

1-Hydroxy-2,2,6,6-tetramethyl-4-piperidinol (S-27). 2.00 g (11.6 mmol) 4-hydroxy-TEMPO was dissolved in 6 ml 20 % formalin. CuCl (10 mg, 0.10 mmol) and 1.18 g (17.4 mmol) 50 % H_2O_2 were added and the reaction mixture was stirred at 30 °C until complete disappearance of the nitroxide radical. The reaction mixture was concentrated in vacuo, and the crude product was subsequently recrystallized from ethanol under inert gas. S-27 was obtained as white crytals (1.75 g, 10.1 mmol, 87%). ¹H-NMR (300 MHz, DMSO-d6): δ 7.00 (s, 1H), 4.37 (d, *J* = 4.8 Hz, 1H), 3.74 (m, 1H), 1.71 (dd, *J* = 12.0, 4.2 Hz, 2H), 1.24 (ps t, *J* = 11.8, 2H), 1.04 (2s, 6H), 1.01 (2s, 6H). ¹³C-NMR (75 MHz, DMSO-d6): δ 62.0, 58.8, 49.0, 33.6, 21.1; MS: m/z = 174 [M+H]⁺.

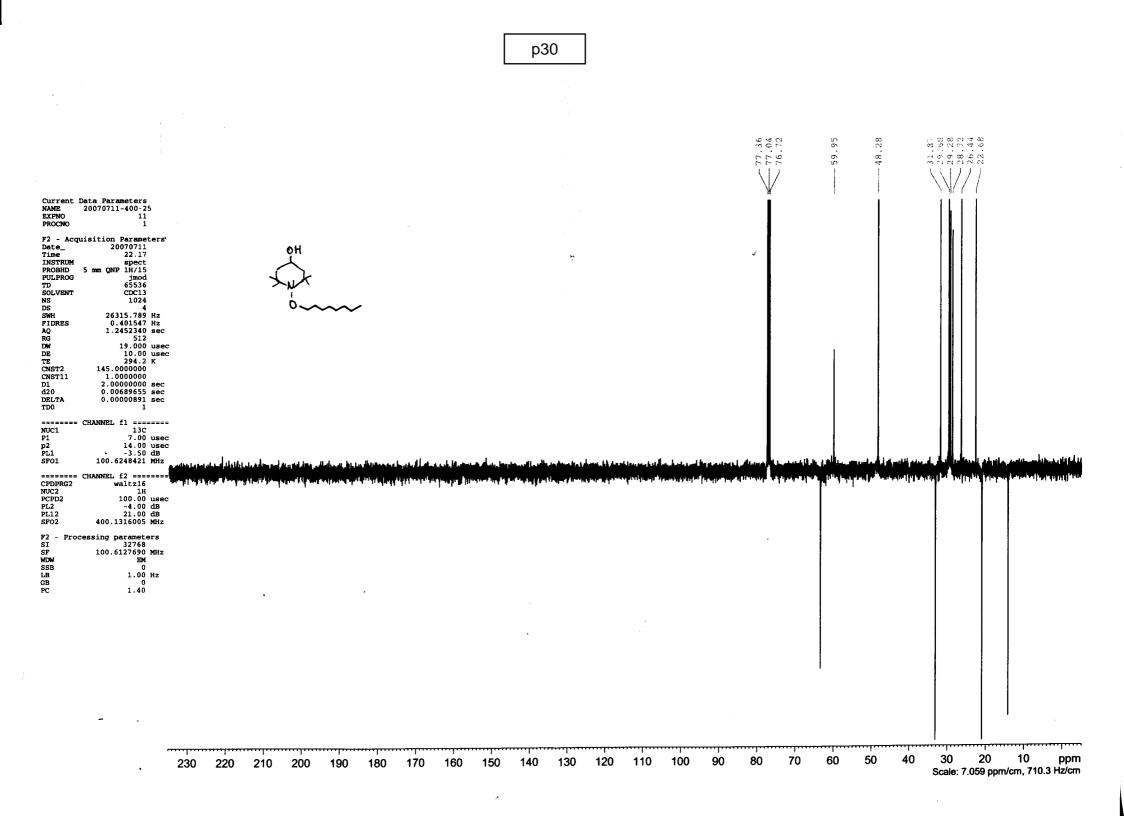


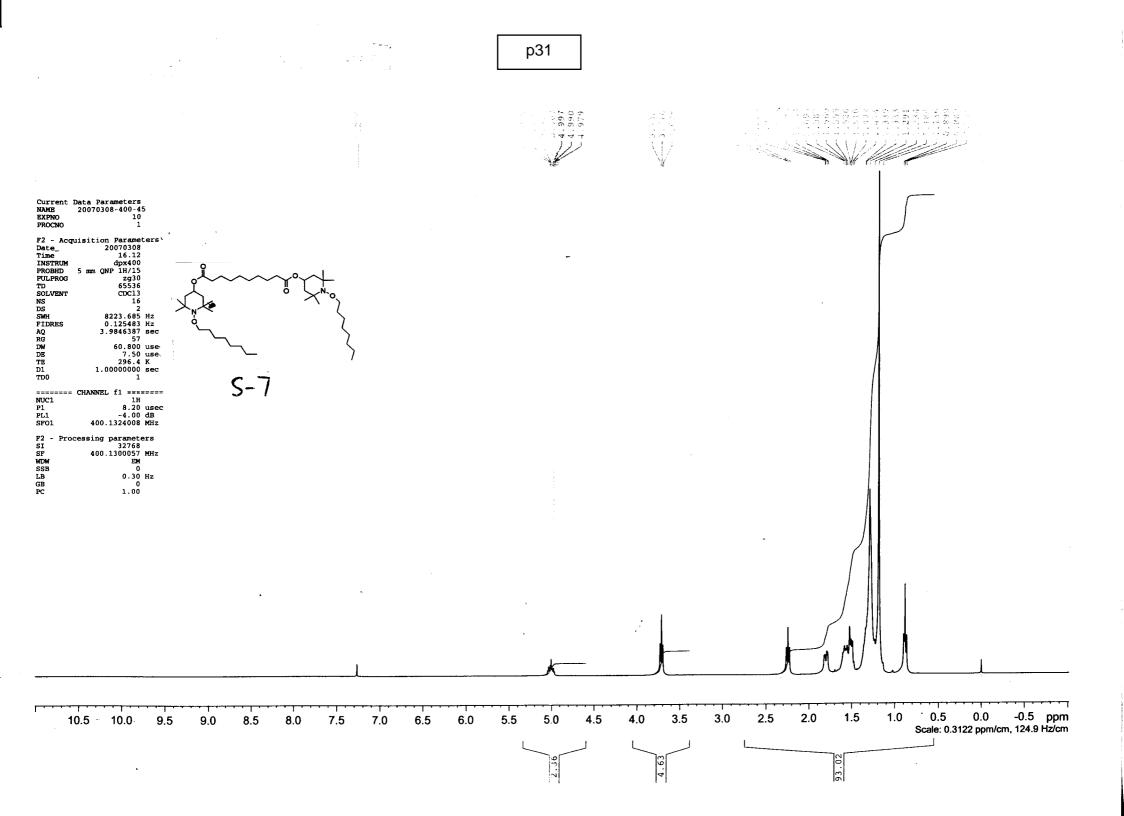


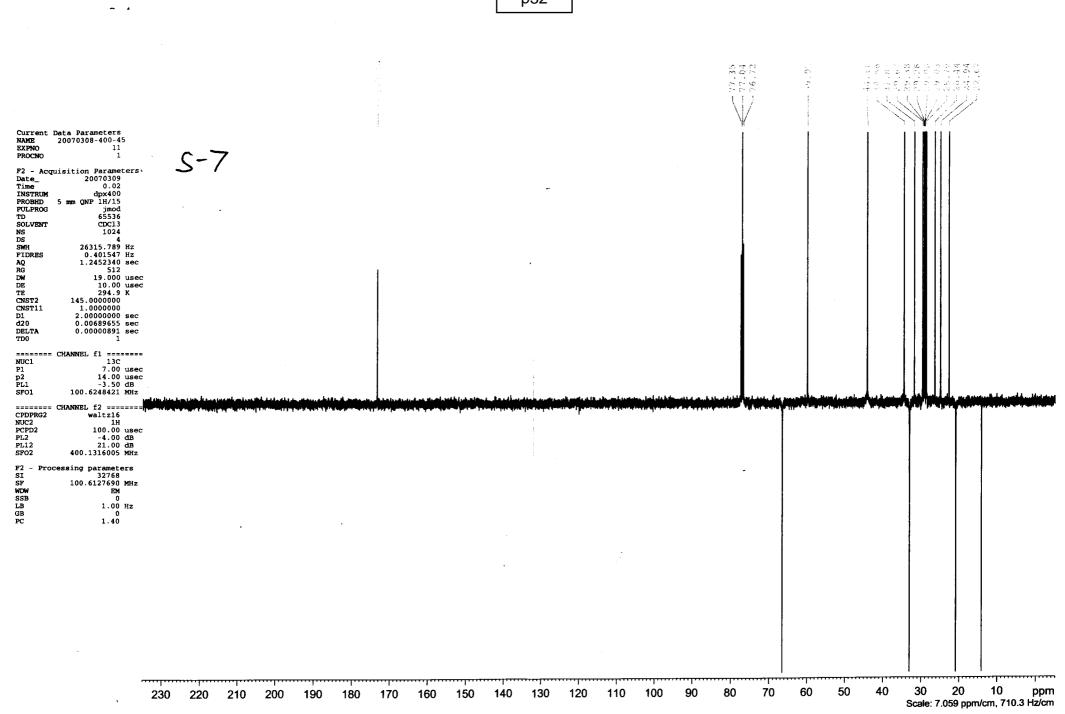

			_		-							
	-			p24								
						5 15 m Q	а с	6	54	.18		
						77.3 77.0 76.7 75.2	63.4 59.9	48.7	34.5	22.3		
BIOSPIN				dand Ab M		$\mathbb{V}/$						
rent Data Parameters E 20060317-4-51 NO 2 ENO 1							L T	,				
- Acquisition Parameters` 20060317				11 - 1 								
e 8.06 TRUM dipx400 SHD 5 mm QNP 1H/15		;		11 5 1 11 1								
PROG 2gpg30 65536 7ENT CDC13	OH											
256 4 26315.789 Hz XES 0.401547 Hz	Sur											
1.2452340 sec 5160.6 19.000 usec	Ĩ											
10.00 usec 297.0 K 2.00000000 sec	Ý											
0.03000000 sec ST 0.00000000 sec UK 0.01500000 sec												
CHANNEL f1 13C 6.10 usec				1								
-2.00 dB 100.6248421 MHz												
rese CHANNEL f2 ====== rG2 waltz16 1H				1								
D2 80.00 usec -2.00 dB 20.00 dB 2 20.00 dB 3 23.00 dB												
23.00 dB 400.1316005 MHz Processing parameters												
32768 100.6127690 MHz EM							-					
1.00 Hz												
1.40		~*										
				L.								
				· ·	.'							
alle alle selver alle it developing i general de selver al de selver de selver al de selver al de selver de se L'her beginne server al selver regeneral de selver preserver al selver al selver selver selver al selver al selv	أطريبة ويشافر بأروار أنهيالكم ويتشاحك ورائ	had been been been been been been been bee	أرار يعتريانها لعرغتها سطران	and the part of the start office	han hudrasti hit	بالعلالها أسعا أوغاله	Constal Labor	Hilling and a second	يوالدسه الخريد			d
					anandaherdine segre birked	Alepenna Vereir	haaraali.dad waha	and the light we	ardeal and a state of	and a straight ware	n ter fill frans	Ţ
	ı , .	• 1				•						
30 220 210 200		160 150 1	140 130 [·]					 50	40 30	 20	•••• ₁ •••••	ייי ק
JV ALV AIV 200	130 100 170	100 100						-				

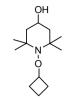



AD_C13PD2k CDCl3

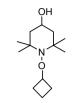



p26

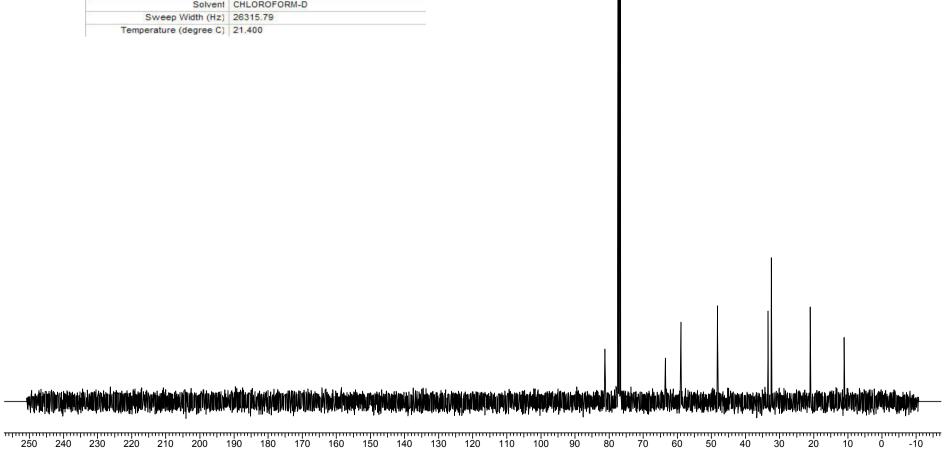


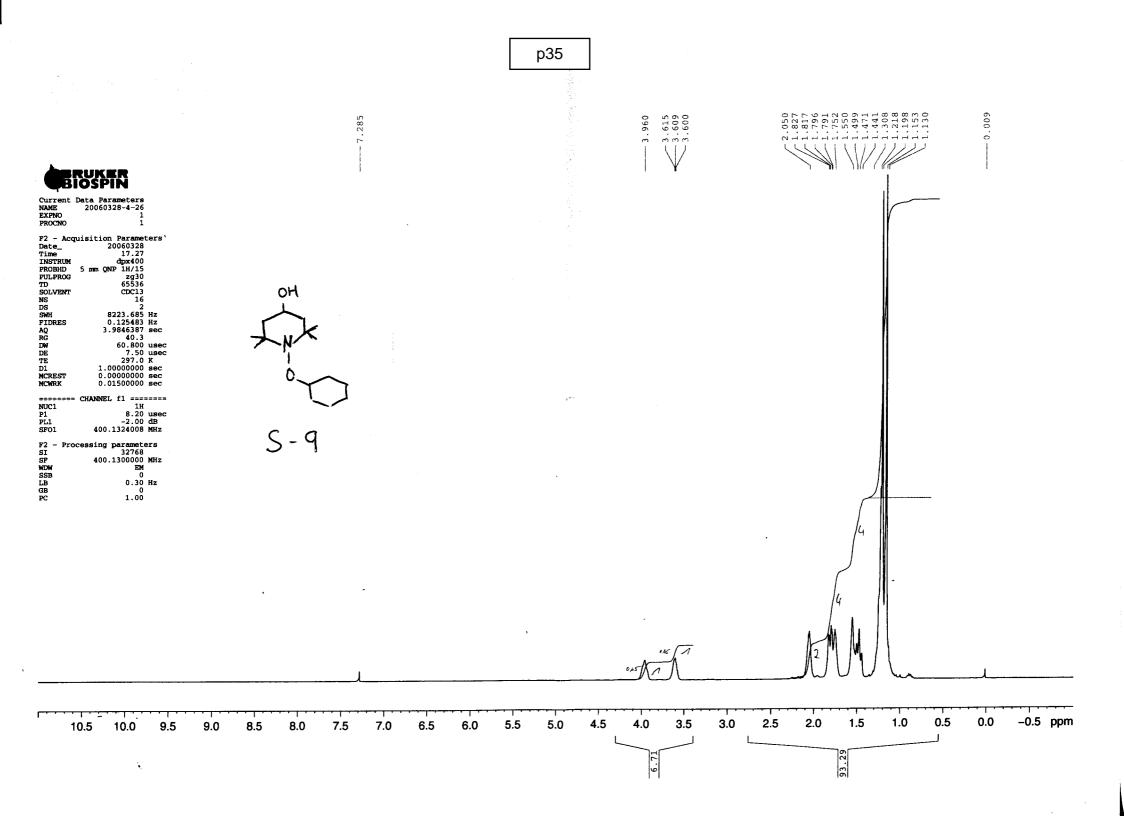


p32

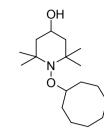

p33

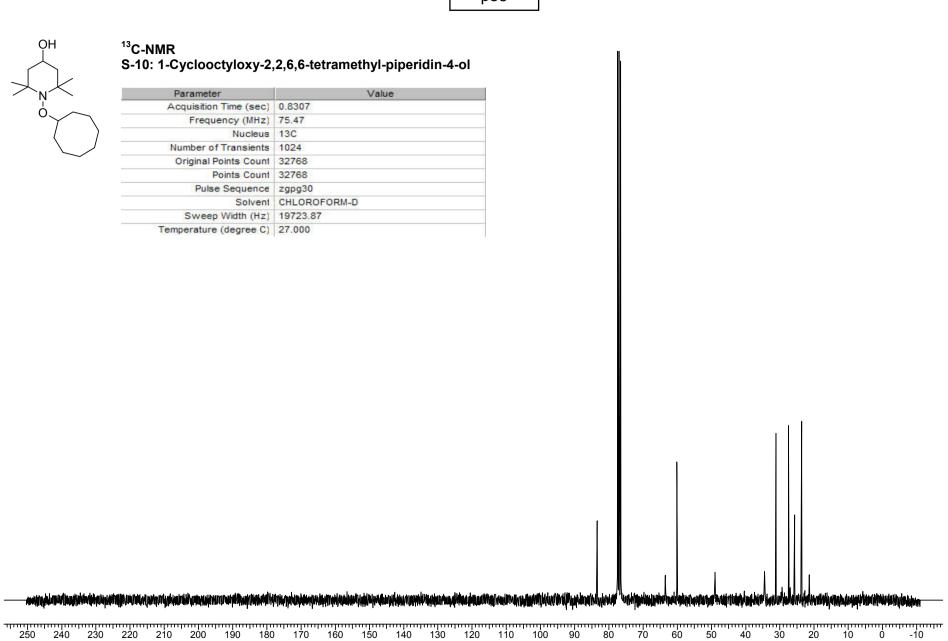
¹H-NMR: S-8: 1-Cyclobutoxy-2,2,6,6-tetramethyl-piperidin-4-ol


Parameter	Value
Acquisition Time (sec)	1.9923
Frequency (MHz)	400.13
Nucleus	1H
Number of Transients	16
Original Points Count	32768
Points Count	32768
Pulse Sequence	zg30
Solvent	CHLOROFORM-D
Sweep Width (Hz)	8223.68
Temperature (degree C)	21.900



¹³C-NMR S-8: 1-Cyclobutoxy-2,2,6,6-tetramethyl-piperidin-4-ol


Parameter	Value
Acquisition Time (sec)	0.6226
Frequency (MHz)	100.61
Nucleus	130
Number of Transients	256
Original Points Count	32768
Points Count	32768
Pulse Sequence	zgpg30
Solvent	CHLOROFORM-D
Sweep Width (Hz)	26315.79
Temperature (degree C)	21 400


_C13PD2k CDCl3 x											
BIOSPIN							81.87 77.38 77.06 76.74	63.38 60.03	48.78	34.53 32.83 25.90 25.04 21.19	
nt Data Parameters 20060328-4-26 2 10 1 Acquisition Parameters 20060329							: u•	, ,	,		
3.02 UM dpx400 D 5 mm QNP 1H/15 OG 2gpg30 65536 NT CDC13 2048 4 26315.789 Hz S 0.401547 Hz 1.2452340 sec 5160.6 19.000 usec 297.0 K 2.00000000 sec	S-9										
0.0300000 sec T 0.0000000 sec 0.01500000 sec === CHANNEL fl ====== 13C 6.10 usec -2.00 dB 100.6248421 MHz											
=== CHANNEL f2 ====== G2 waltz16 1H 80.00 usec -2.00 dB 20.00 dB 23.00 dB 400.1316005 MHz											
Processing parameters 32768 100.6127690 MHz EM 0 1.00 Hz 0 1.40	·										
				•							
		ana ana ang sa kapatagina									
	190 180	170 160	50 140	130 120	110	100 90			 50	40 30 20	10

p36

¹H-NMR S-10: 1-Cyclooctyloxy-2,2,6,6-tetramethyl-piperidin-4-ol

Parameter	Value	
Acquisition Time (sec)	2.6542	
Frequency (MHz)	300.13	
Nucleus	1H	
Number of Transients	16	
Original Points Count	32768	
Points Count	32768	
Pulse Sequence	zg30	
Solvent	CHLOROFORM-D	
Sweep Width (Hz)	6172.84	
Temperature (degree C)	27.000	

624 604 591 584 588 588 588 559 559 559 166 7.285 69 NNNNNNNNNNN t m m m 1 1 1 1 RUKER IOSPIN Current Data Parameters NAME 20060828-4-7 EXPNO 1 PROCINO ī
 F2 - Acquisition Parameters

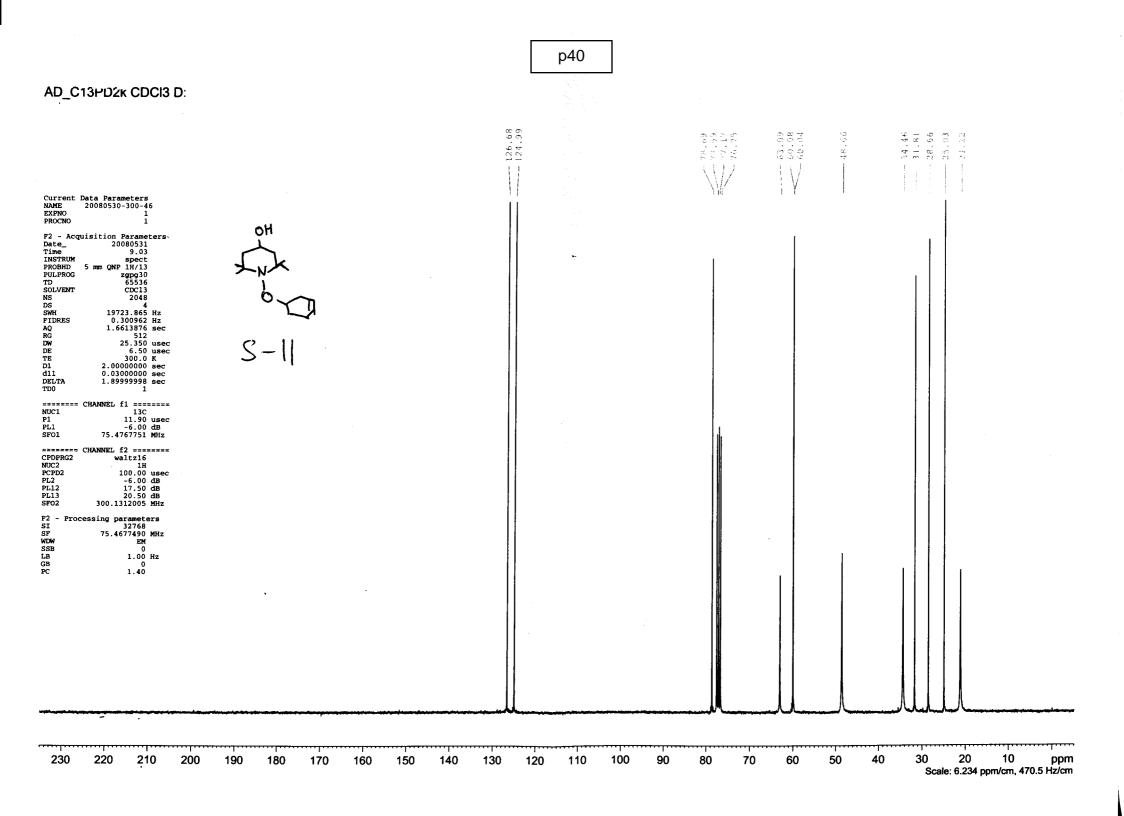
 Date______

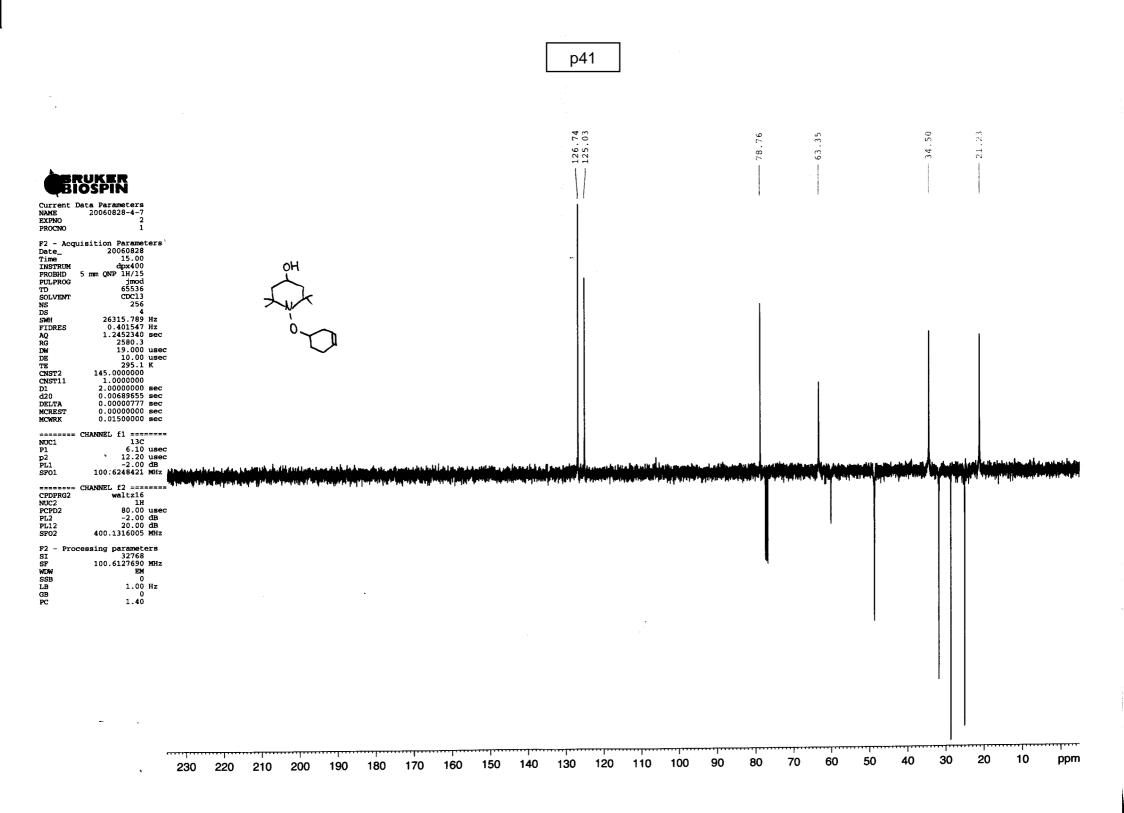
 20060828

 Time
 14.45
Date_ Time INSTRUM dpx400 5 mm QNP 1H/15 PROBHD PULPROG zg30 65536 CDC13 PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 MCREST MCWBK 16 2 8223.685 Hz 0.125483 Hz 3.9846387 sec 3.9846387 sec 45.3 60.800 usec 7.50 usec 294.9 K 1.0000000 sec 0.0000000 sec O MCWRK 0.01500000 sec ======= CHANNEL f1 ======= S-11 1H 8.20 usec -2.00 dB NUC1 P1 PL1 SF01 400.1324008 MHz
 P2
 Processing parameters

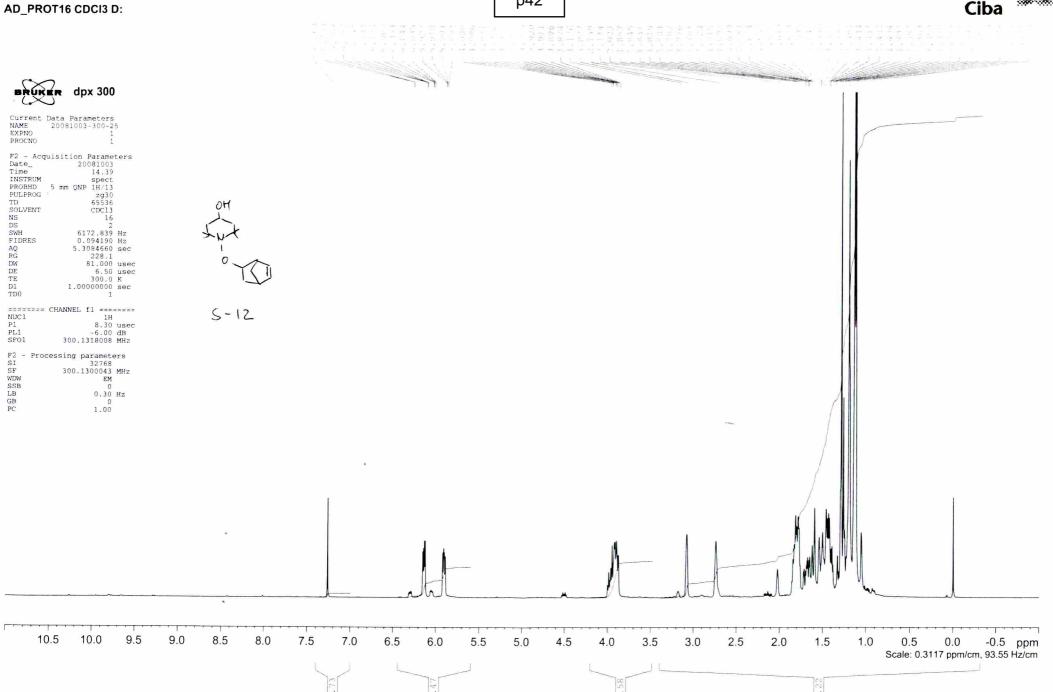
 SI
 32768

 SF
 400.1300000 MHz


 WDW
 EM

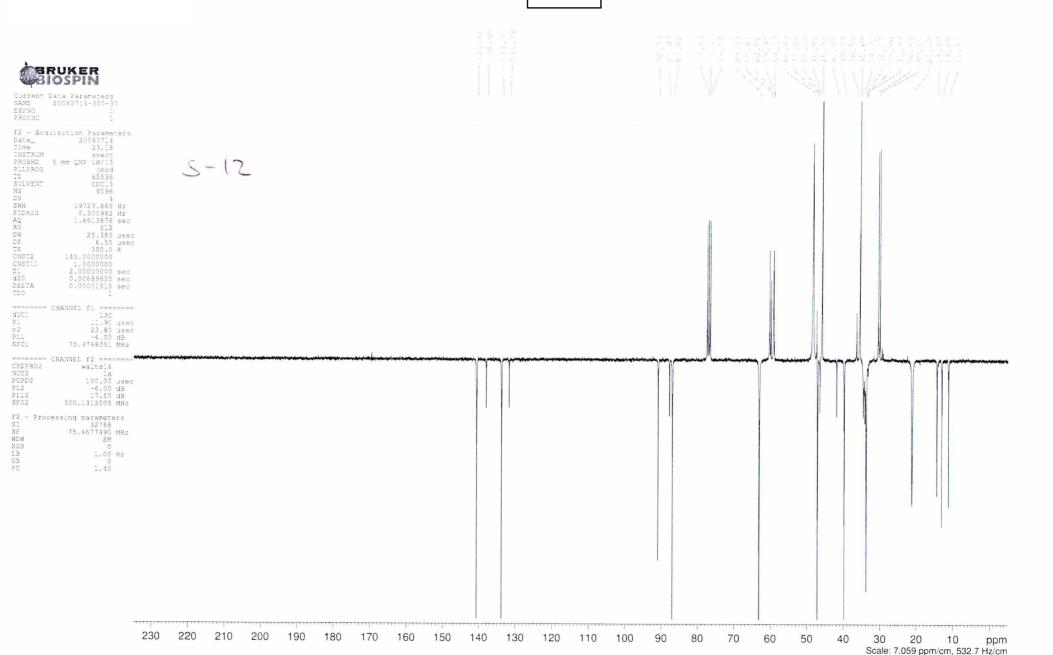

 SSB
 0

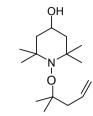
 LB
 0.30 Hz


 GB
 0

 PC
 1.00
 –0.5 ppm 10.5 10.0 2.0 0.5 0.0 2.5 1.5 1.0 9.5 9.0 8.5 5.5 5.0 4.5 4.0 3.5 3.0 8.0 7.5 7.0 6.5 6.0 4 84.12 .

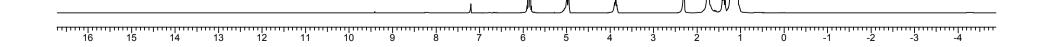
AD_PROT16 CDCI3 D:

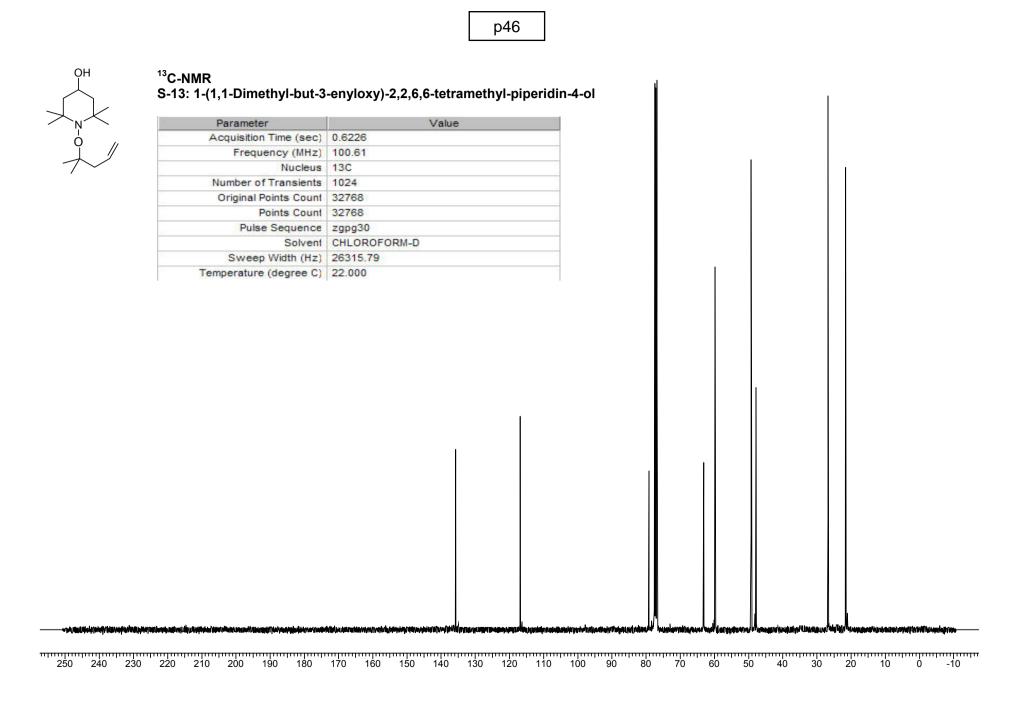

	°6 41		
		44, 24 42, 24 82, 24 82, 24 71, 48 71, 48 72, 24 72, 24 72, 24 72, 26 89, 27 73, 16 89, 26 73, 16 73, 16 74 74, 16 75 75 75 75 75 75 75 75 75 75 75 75 75	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
BIOSPIN			
Current Data Parameters NAME 20080710-300-41 EXPNO 2 PROCNO 1	5-12		
F2 Acquisition Parameters Date_ 20080710 Time 21.19 INSTRUM Spect PROBHD 5 mm RVP 1H/13 PULPROG zgog30 TD 65536 SOLVENT CDC13 NS 1024 DS 4			
SWH 19723.865 Hz FIDRES 0.300962 Hz AQ 1.6613876 sec RG 512 DW 25.350 usec TE 500.0 K DE 2.000000 sec d11 0.0300000 sec DELTA 1.89999998 sec TD0 1			
NUCL CHANNEL fl ======= NUCL 13C Pl 11.90 usec PLI -6.00 d3 SF01 75.4767751 MHz			
CHANNEL f2 CPDPRC2 walrzić NUC2 IH PCPD2 100.00 isec PL2 -6.00 dB PL12 17.50 dB PL13 20.50 dB SF02 300.1312005 MHz			
F2 - Processing parameters SI 32768 SF 75.4677490 MHz WEW EM SSB 0 L3 1.00 Hz GB 0 PC 1.40			
da andarata ing sila silang kunan kunan kunan kunan sila sila sila sila sila sila sila sila	ning and do a shall be word to be all the line of a basis of a basis of a basis of the second states of the se second states of the second states of the se		

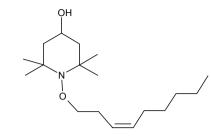

1.11

VOOLOUS SE

· · · · ·

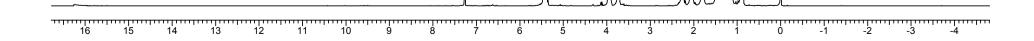


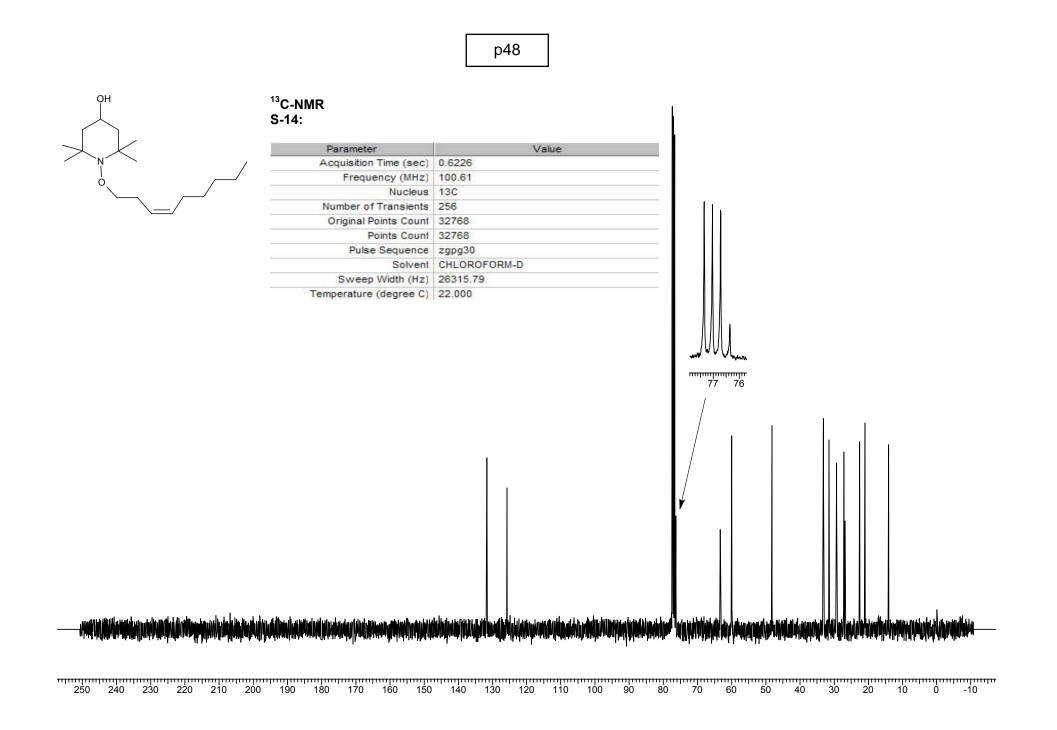


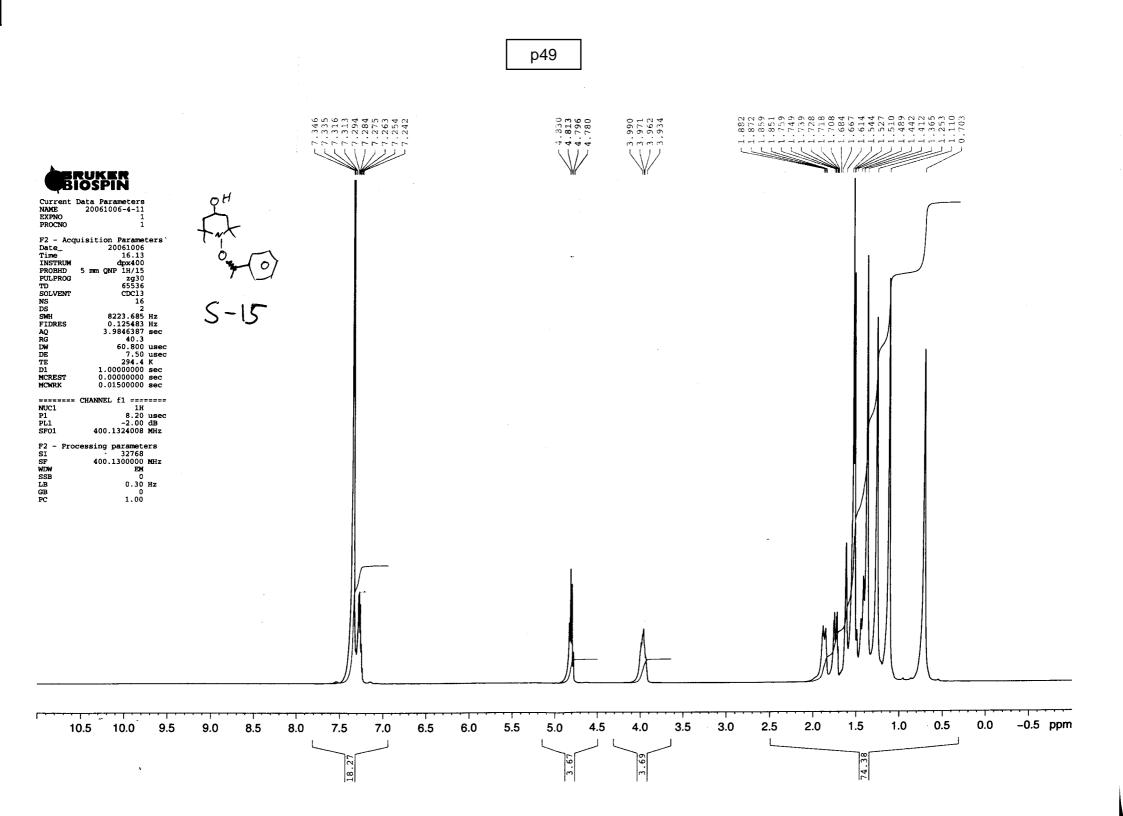

¹H-NMR

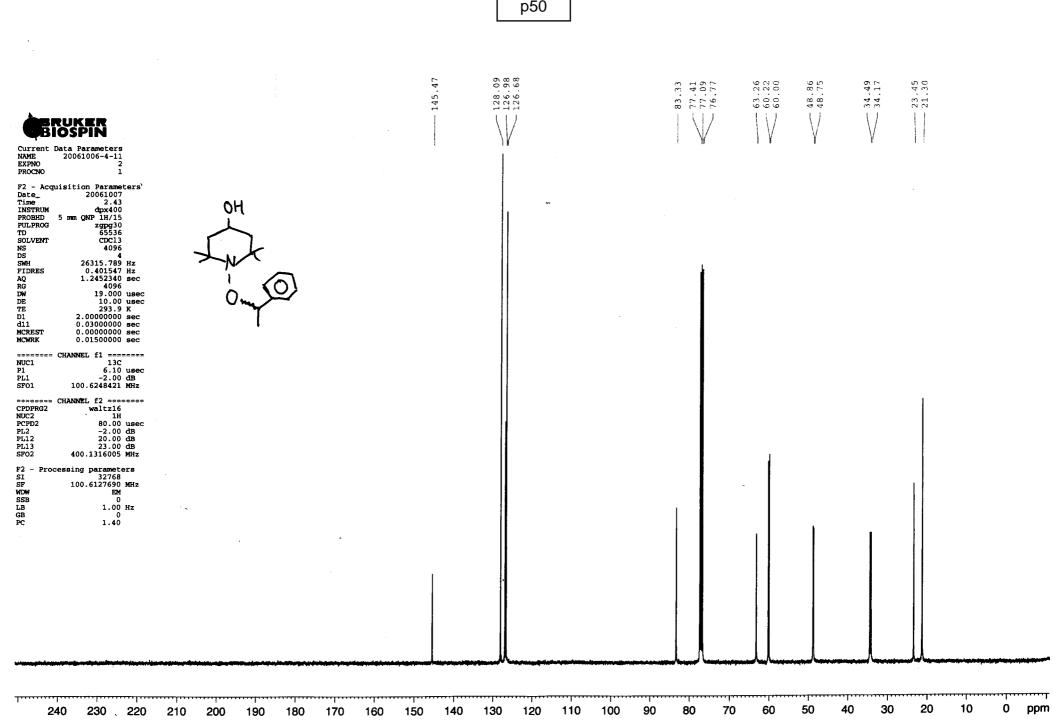
S-13: 1-(1,1-Dimethyl-but-3-enyloxy)-2,2,6,6-tetramethyl-piperidin-4-ol

Parameter	Value			
Acquisition Time (sec)	1.9923			
Frequency (MHz)	400.13			
Nucleus	1H			
Number of Transients	16			
Original Points Count	32768			
Points Count	32768			
Pulse Sequence	zg30			
Solvent	CHLOROFORM-D			
Sweep Width (Hz)	8223.68			
Temperature (degree C)	22.000			

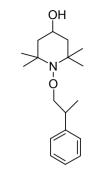


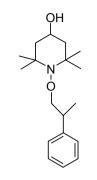




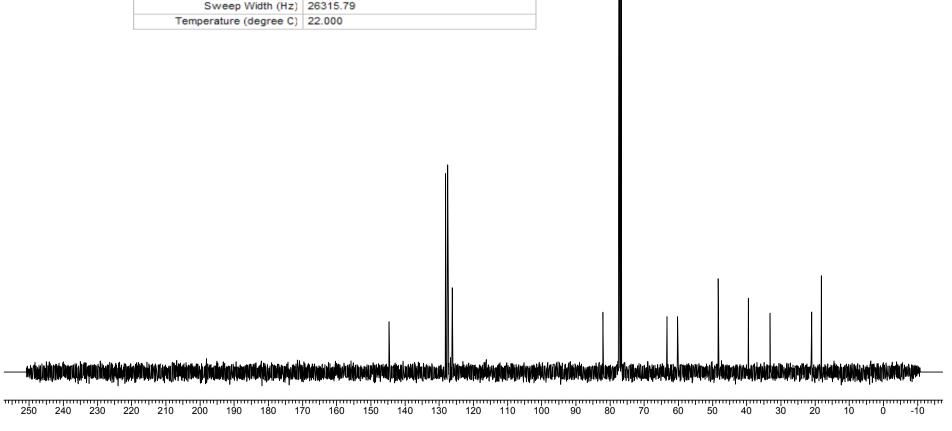

¹H-NMR S-14:

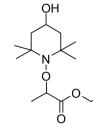
Parameter	Value
Acquisition Time (sec)	1.9923
Frequency (MHz)	400.13
Nucleus	1H
Number of Transients	16
Original Points Count	32768
Points Count	32768
Pulse Sequence	zg30
Solvent	CHLOROFORM-D
Sweep Width (Hz)	8223.68
Temperature (degree C)	22.000





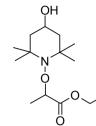
¹H-NMR: S-16: 2,2,6,6-Tetramethyl-1-(2-phenyl-propoxy)-piperidin-4-ol


Parameter	Value
Acquisition Time (sec)	1.9923
Frequency (MHz)	400.13
Nucleus	1H
Number of Transients	16
Original Points Count	32768
Points Count	32768
Pulse Sequence	zg30
Solvent	CHLOROFORM-D
Sweep Width (Hz)	8223.68
Temperature (degree C)	22.000

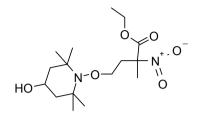


¹³C-NMR: S-16: 2,2,6,6-Tetramethyl-1-(2-phenyl-propoxy)-piperidin-4-ol

Parameter	Value
Acquisition Time (sec)	0.6226
Frequency (MHz)	100.61
Nucleus	13C
Number of Transients	256
Original Points Count	32768
Points Count	32768
Pulse Sequence	zgpg30
Solvent	CHLOROFORM-D
Sweep Width (Hz)	26315.79
Temperature (degree C)	22.000

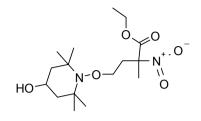


¹H-NMR

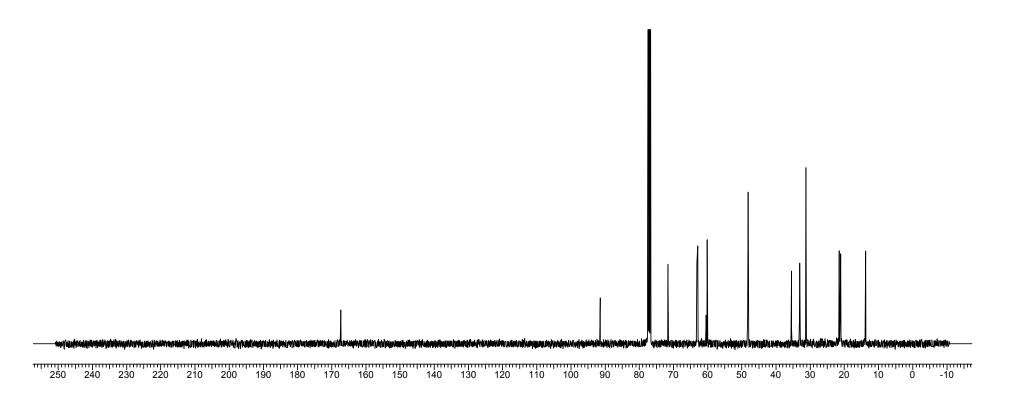

S-17: 2-(4-Hydroxy-2,2,6,6-tetramethyl-piperidin-1-yloxy)-propionic acid ethyl ester

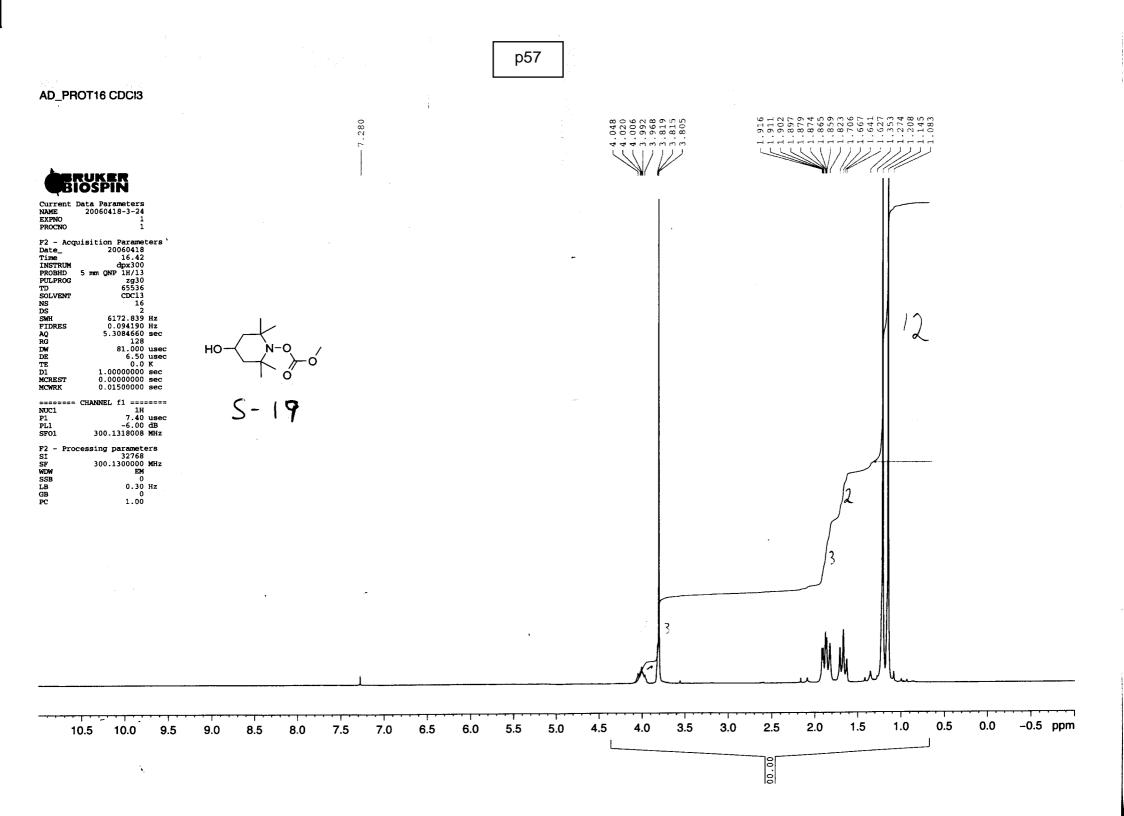
Parameter	Value		
Acquisition Time (sec)	1.9923		
Frequency (MHz)	400.13		1
Nucleus	1H		
Number of Transients			
Original Points Count	32768		
Points Count	32768		
Pulse Sequence			
Solvent	CHLOROFORM-D		
Sweep Width (Hz) Temperature (degree C)			
		1	

¹³C-NMR S-17: 2-(4-Hydroxy-2,2,6,6-tetramethyl-piperidin-1-yloxy)-propionic acid ethyl ester


`N´ `	Parameter	Value			
ó	Acquisition Time (sec)				
\downarrow 0. \checkmark	Frequency (MHz)	100.61			
γ	Nucleus	13C			
Ö	Number of Transients	256			
	Original Points Count	32768	-		
	Points Count	32768			
	Pulse Sequence	zgpg30			
	Solvent	CHLOROFORM-D			
	Sweep Width (Hz)	26315.79	-		
	Temperature (degree C)	22.800			

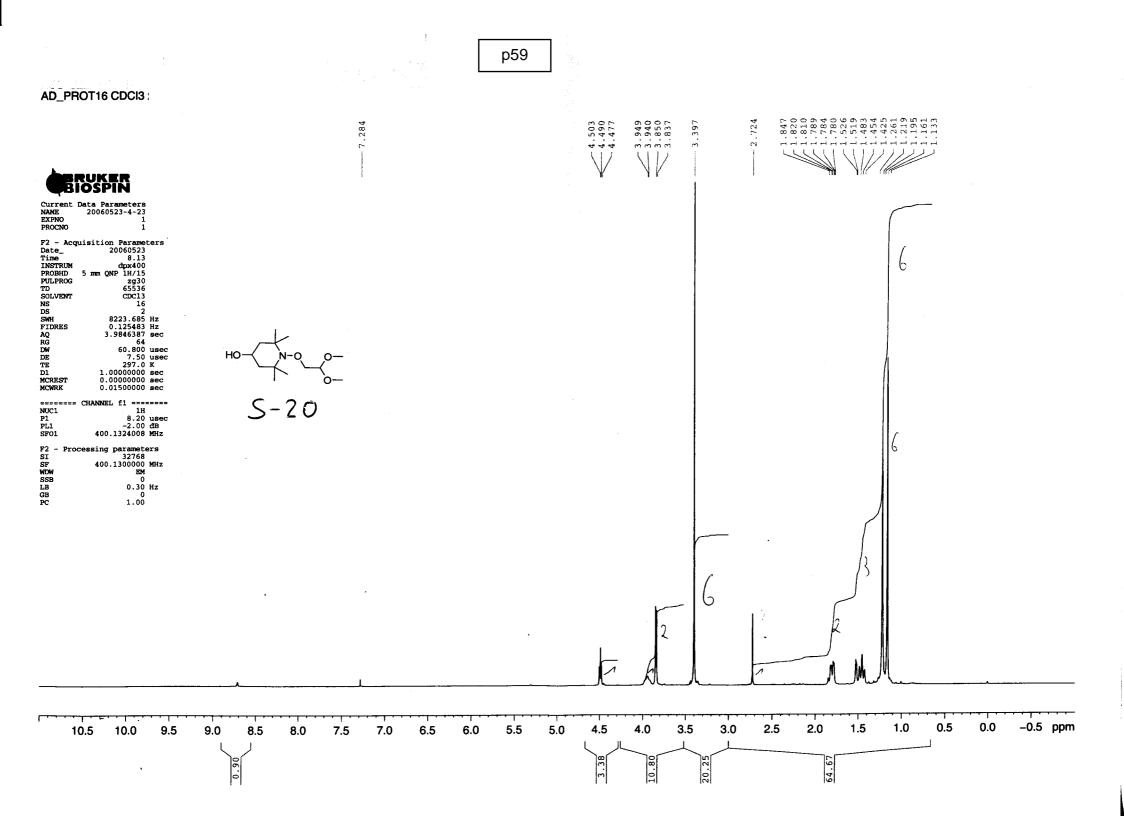
¹H-NMR S-18: 4-(4-Hydroxy-2,2,6,6-tetramethyl-piperidin-1-yloxy)-2-methyl-2-nitro-butyric acid ethyl ester

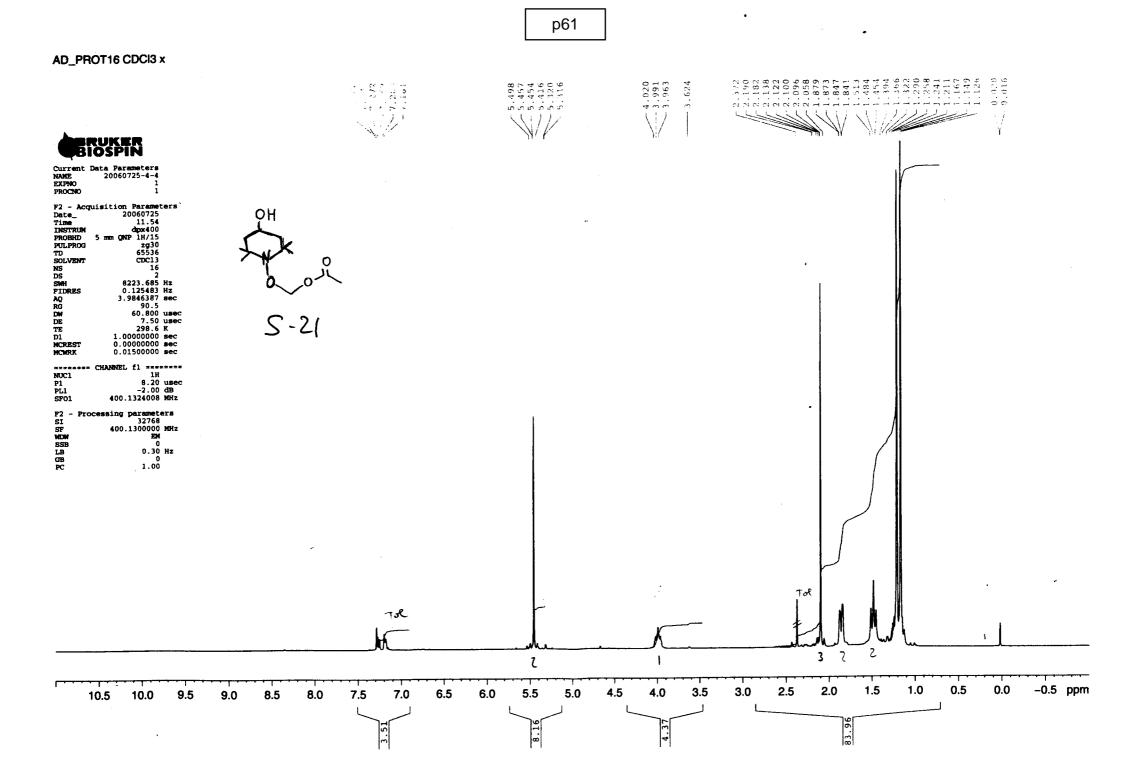

Parameter	Value		
Acquisition Time (sec)	1.9923		
Frequency (MHz)	400.13		
Nucleus	1H		
Number of Transients	16		
Original Points Count	32768		
Points Count	32768		
Pulse Sequence	zg30		
Solvent	CHLOROFORM-D		
Sweep Width (Hz)	8223.68		
Temperature (degree C)	22.000		



¹³C-NMR S-18: 4-(4-Hydroxy-2,2,6,6-tetramethyl-piperidin-1-yloxy)-2-methyl-2-nitro-butyric acid ethyl ester

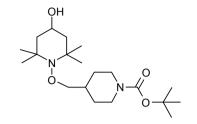
Parameter	Value
Acquisition Time (sec)	0.6226
Frequency (MHz)	100.61
Nucleus	13C
Number of Transients	1024
Original Points Count	32768
Points Count	32768
Pulse Sequence	zgpg30
Solvent	CHLOROFORM-D
Sweep Width (Hz)	26315.79
Temperature (degree C)	22.000




AD_C13PD2k CDCl3) 157.64 21.64 77.86 77.44 77.02 63.13 61.13 55.46 48.10 96 31 1 BRUKER BIOSPIN оH Current Data Parameters NAME 20060418-3-24 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ Time 20060418 0 ~ 70 9 23.29 INSTRUM dpx300 PROBHD 5 mm QNP 1H/13 PULPROG TD zgpg30 65536 5-SOLVENT CDC13 NS DS SWH FIDRES 2048 4 19723.865 Hz 0.300962 Hz AQ RG DW DE TE D1 1.6613876 sec 812.7 25.350 usec 6.50 usec 0.0 K 2.00000000 sec --0.03000000 sec 0.00000000 sec 0.01500000 sec d11 MCREST MCWRK ======= CHANNEL fl ======= 13C 5.00 usec -6.00 dB NUC1 P1 PL1 SF01 75.4767751 MHz ====== CHANNEL f2 ======= CPDPRG2 waltz16 1H 80.00 usec -6.00 dB 16.70 dB NUC2 PCPD2 PL2 PL12 19.70 dB 300.1312005 MHz PL13 SF02 F2 - Processing parameters SI 32768 SF WDW SSB LB GB 75.4677190 MHz EM 1.00 Hz Õ PC 1.40 30 20 10 0 100 90 80 70 60 50 40 ppm 240 230 . 220 210 200 190 180 170 160 - 150 140 130 120 110

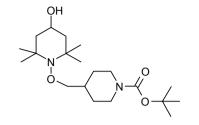
p58

. . . .



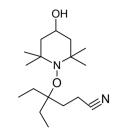
_C13PD256 CDCl3 x									_			
					- 102.37	r.	- 77.27 - 11.05 - 76.73	- 63.16 - 60.18 - 53.94	- 48.25	- 33,05 - 26,86	- 20.98	
ent Data Parameters 20060523-4-23						``	¥⁄		*******			
0 2 NO 1 - Acquisition Parameters - 20060523 - 8.29					-							
TRUM dpp:x400 SHD 5 mm QNP 1H/15 PROG zgpg30 65536 78MP CDC13	5-20											
256 4 26315.789 Hz 1.2452340 sec 13004 19.000 usec												
10.00 usec 297.0 K 2.0000000 sec 0.0300000 sec ST 0.0000000 sec K 0.0150000 sec												
									1		1	
CHANNEL f2 ====== RG2 waltz16 1H 2 80.00 usec												
-2.00 dB 20.00 dB 23.00 dB 400.1316005 MHz Processing parameters 32768 100.6127690 MHz												
EM 0 1.00 Hz 0												
1.40	• •											. •
an a thur a the termination of the second	ideo, lebus, and leo stabilitan de l	international de la fle≣ corre	All Marca al and Ala									
teresting to all of the high differences of the	nan an	a Roman da se se a la facto de la seda de la seconda d Na seconda de la seconda de	وسايد سلام وهد ومعاولا و	₩₽₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	and a sector sector states	وحافينا يلعامن مأتيا يتشبك يرقا	والمهمط والمساوي ويع	raa. <u>k</u> haa∦,	enenenstrition Ma		16.14 · · · · · · · · · · · · · · · · · · ·	. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19


AD_APTa CDCl3 x , 21.13 63.03 33.30 BIOSPIN Current Data Parameters NAME 20060725-4-7 EXPNO 1 PROCNO 1 5 ~ : F2 - Acquisition Parameters 20060725 Date_ Time ł. 14.22 dipx400 5 mm QNP 1H/15 INSTRUM 04 PROBHD jmod 65536 PULPROG TD SOLVENT S-21 CDC13 SOLVENT NS DS SWH FIDRES AQ RG DW DE TE CNST2 CNST2 CNST11 D1 5 m 256 4 26315.789 Hz 0.401547 Hz 1.2452340 sec 0 -0-¹¹/₂/ 2580.3 19.000 usec 10.00 usec 299.4 K 145.0000000 1.0000000 2.00000000 sec 0.00689655 sec 0.00000777 sec D1 d20 DELTA MCREST MCWRK 0.00000000 sec 0.01500000 sec -----NUC1 . P1 p2 PL1 SF01 P.+ 12.20 usec -2.00 dB 100.6248421 MHz ANALASSE CHANNEL f2 ------4,5 CPDPRG2 waltz16 1H 80.00 usec -2.00 dB 20.00 dB NUC2 PCPD2 PL2 PL12 SF02 400.1316005 MHz F2 - Processing parameters SI 32768 SF 100.6127690 MHz SI SF WDW SSB LB GB FC EM 0 . نر 1.00 Hz 1.40


> 50 30 20 10 ppm 80 70 60 40 170 160 150 140 130 120 110 100 90 230 220 210 200 190 180

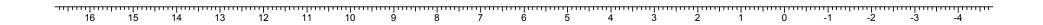
¹H-NMR S-22: 4-(4-Hydroxy-2,2,6,6-tetramethyl-piperidin-1-yloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester

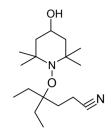
Parameter	Value
Acquisition Time (sec)	1.9923
Frequency (MHz)	400.13
Nucleus	1H
Number of Transients	16
Original Points Count	32768
Points Count	32768
Pulse Sequence	zg30
Solvent	CHLOROFORM-D
Sweep Width (Hz)	8223.68
Temperature (degree C)	22.000



¹³C-NMR S-22: 4-(4-Hydroxy-2,2,6,6-tetramethyl-piperidin-1-yloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester

Parameter	Value
Acquisition Time (sec)	0.6226
Frequency (MHz)	100.61
Nucleus	13C
Number of Transients	1024
Original Points Count	32768
Points Count	32768
Pulse Sequence	zgpg30
Solvent	CHLOROFORM-D
Sweep Width (Hz)	26315.79
Temperature (degree C)	22.000

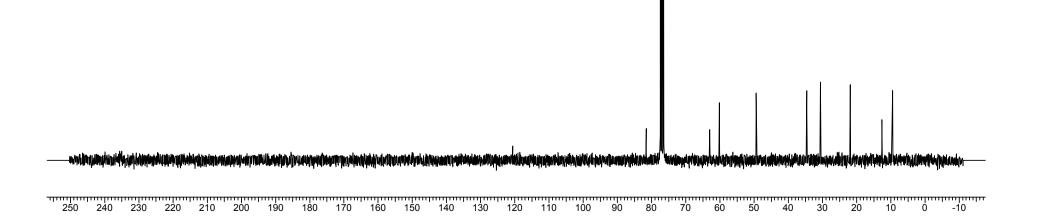

	mmm			րուրու		mmm		ուղուղ		mm	րուրող			mmm	mini	mm	րուրող	mm			րողու	րուրող	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mmmm		1000100010
250	240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	<u>an</u>	80	70	60	50	40	30	20	10	Ó	-10
200	240	200	220	210	200	100	100	170	100	100	1-0	100	120	110	100	00	00	10	00	00	40	00	20	10	0	10

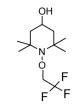


¹H-NMR

S-23: 4-Ethyl-4-(4-hydroxy-2,2,6,6-tetramethyl-piperidin-1-yloxy)-hexanenitrile

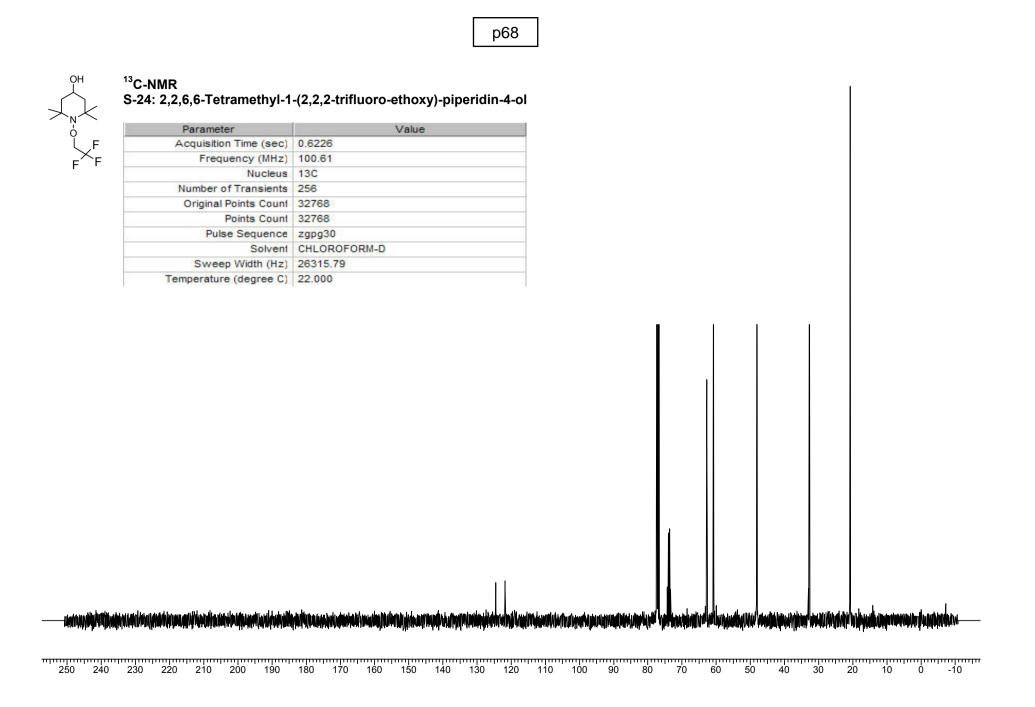
Parameter	Value	
Acquisition Time (sec)	2.6542	
Frequency (MHz)	300.13	
Nucleus	1H	
Number of Transients	16	
Original Points Count	32768	
Points Count	32768	
Pulse Sequence	zg30	
Solvent	CHLOROFORM-D	Ī
Sweep Width (Hz)	6172.84	
Temperature (degree C)	27.000	

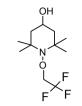




¹³C-NMR

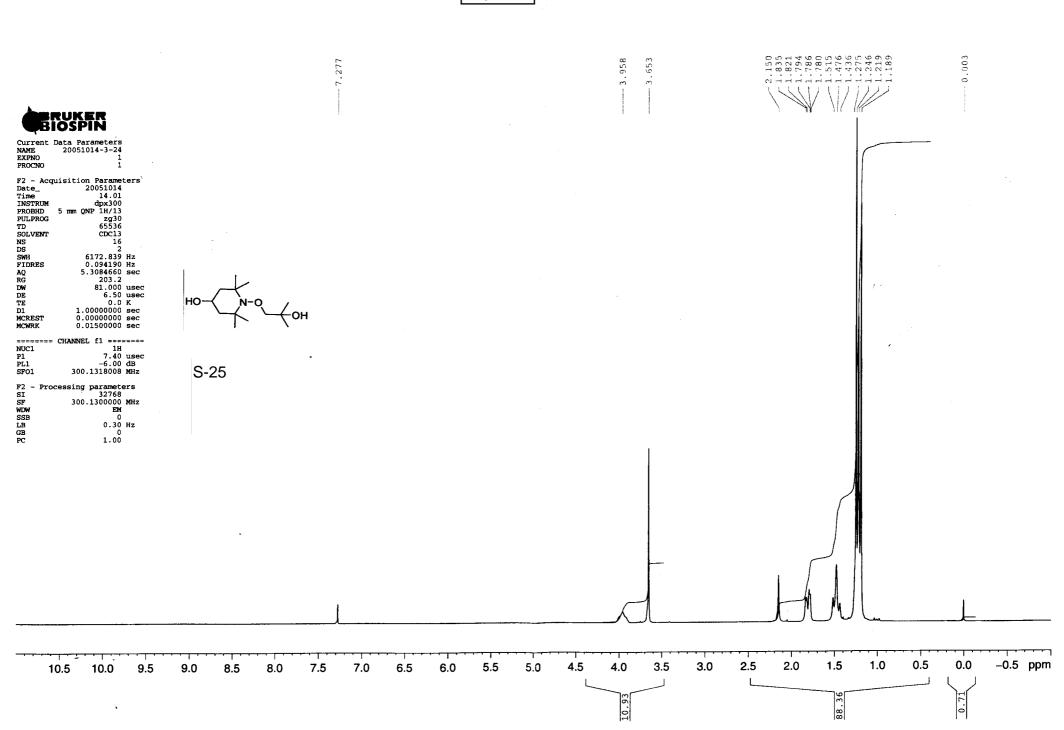
S-23: 4-Ethyl-4-(4-hydroxy-2,2,6,6-tetramethyl-piperidin-1-yloxy)-hexanenitrile


Parameter	Value
Acquisition Time (sec)	0.8307
Frequency (MHz)	75.47
Nucleus	13C
Number of Transients	1024
Original Points Count	32768
Points Count	32768
Pulse Sequence	zgpg30
Solvent	CHLOROFORM-D
Sweep Width (Hz)	19723.87
Temperature (degree C)	27.000

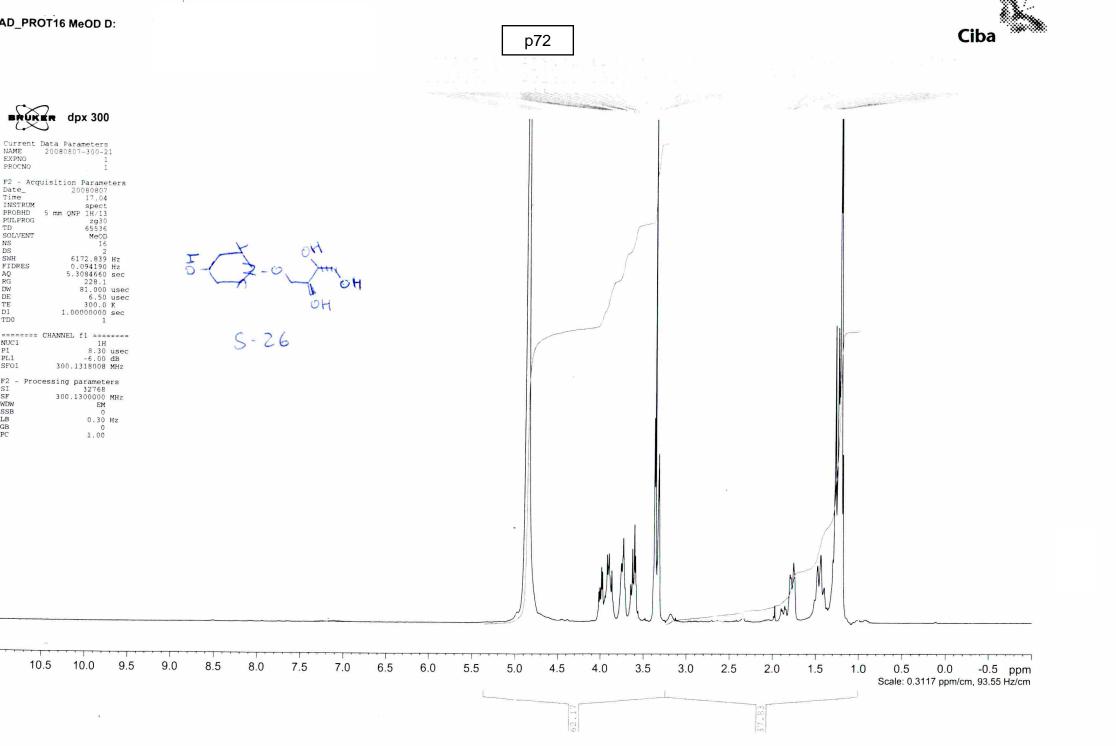


¹H-NMR S-24: 2,2,6,6-Tetramethyl-1-(2,2,2-trifluoro-ethoxy)-piperidin-4-ol

ParameterValueAcquisition Time (sec)1.9923Frequency (MHz)400.13Nucleus1HNumber of Transients16Original Points Count32768Points Count32768Pulse Sequencezg30SolventCHLOROFORM-DSweep Width (Hz)8223.68Temperature (degree C)22.000

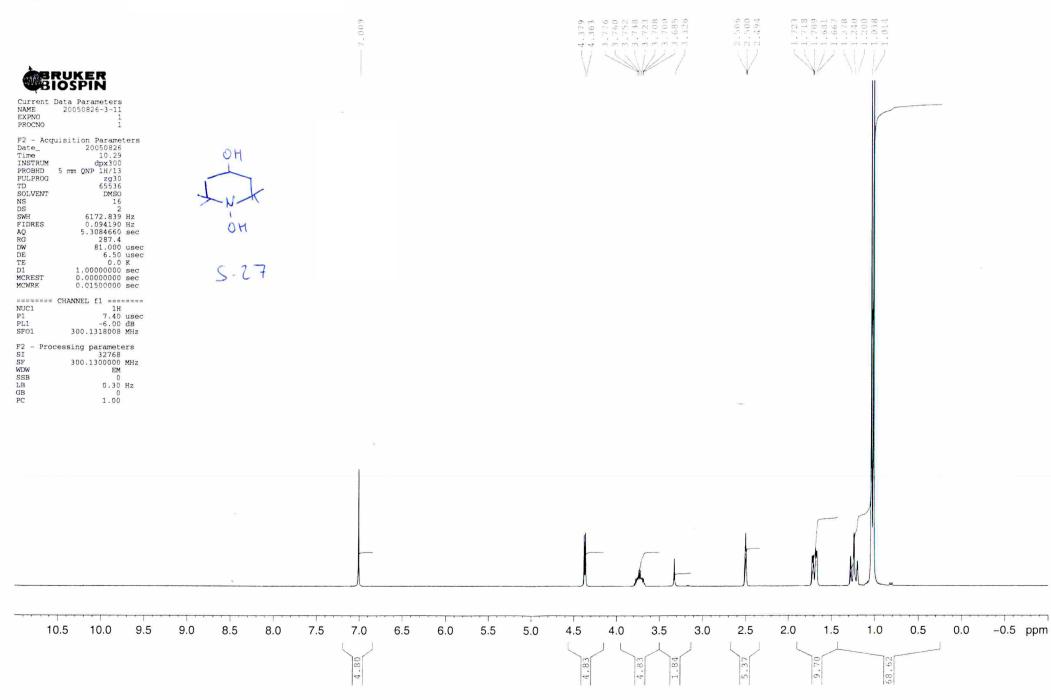


¹⁹F-NMR


S-24: 2,2,6,6-Tetramethyl-1-(2,2,2-trifluoro-ethoxy)-piperidin-4-ol (Reference: CF₃COOH: $\delta = -76$ ppm)

Parameter	Value
Acquisition Time (sec)	0.4456
Frequency (MHz)	282.40
Nucleus	19F
Number of Transients	32
Original Points Count	65536
Points Count	65536
Pulse Sequence	zgfhigqn
Solvent	CHLOROFORM-D
Sweep Width (Hz)	73529.41
Temperature (degree C)	27.000

10 0 -10 -20 -30 -40 -	-50 -60 -70 -80	-90 -100 -110 -120 -130	-140 -150 -160 -170 -180	-190 -200 -210 -220 -230 -240 -250 -260



		5											c •		0.6	63.06 60.48	48.33		 ; ;	
CHANNEL f1 iscrement C1 13C 2.00 dB 001 100.6344431 MHz CDTC2 walc15 CTC2 0.00 dB C22 -3.00 dB C23 -3.00 dB C24 -3.00 dB C2502 walc15 C702 walc35 C703 30.00 dB C24 -3.00 dB C25 -3.00 dB C26 -3.00 dB C27 -3.00 dB C24 -3.00 dB C25 -3.00 dB C26 -3.00 dB C27 -3.00 dB C2 -3.00 dB C31 -3.00 dB C32 -3.00 dB C32 -3.00 dB C33 -3.00 dB C3 -3.00 dB C4 -3.00 dB C5 </th <th>MME 20051017 (PNO VOCNO 2 - Acquisition P ime 200 ime 200 VSTRUM d VOBHD 5 mm QNP JLPROG z DUVENT 5 S 9 VH 2631 DRES 0.44 1 1.24 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 5 4 3 5 1 4 1 4 3 5 1 4</th> <th>meters 7-4-21 2 1 Parameters 051017 8.34 dpx400 1H/15 zgpg30 65536 CDC13 256 401547 Hz 452340 sec 5160.6 19.000 usec 10.00 usec 10.000 usec 000000 sec</th> <th>Ţ</th> <th>OH 2-0</th> <th>, Lo</th> <th>н</th> <th></th> <th>I</th> <th></th>	MME 20051017 (PNO VOCNO 2 - Acquisition P ime 200 ime 200 VSTRUM d VOBHD 5 mm QNP JLPROG z DUVENT 5 S 9 VH 2631 DRES 0.44 1 1.24 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 5 4 3 5 1 4 1 4 3 5 1 4	meters 7-4-21 2 1 Parameters 051017 8.34 dpx400 1H/15 zgpg30 65536 CDC13 256 401547 Hz 452340 sec 5160.6 19.000 usec 10.00 usec 10.000 usec 000000 sec	Ţ	OH 2-0	, Lo	н													I	
	====== CHANNEL f C1 100.62 ====== CHANNEL f DPRG2 wa C2 va PD2 2 13	f1 ====== 13C 6.10 usec -2.00 dB 248421 MHz f2 ======= altz16 1H 80.00 usec -2.00 dB 20.00 dB 23.00 dB													1					
	100.61 B	32768 127690 MHz EM 0 1.00 Hz 0								X						-				
	u anker juga betradart Paper paper	n al mar h bhail a lan Prior Syn Gowal I (19	a tal la a dial pi neo (taj generi	leres de la casa Nel constantes de la casa de Nel casa de la casa de	ulula ala ladi Terrete (terrete	dalı şalırasılı bi İstəfali yalırası	hi shidon di May kasa al	11110, da maturi 11110, da maturi 1111, da maturi	l barren an			Harry al an dead Ng ganja trees	and build a fi	41 dan 11 (111 12 (1)			1 jan an In Ian (1) 7 jan (1) jan (1) 7 jan (1) jan (1)	da la al pota su presenta de la c	interior a la seconda de la Natura de la seconda de la s	

			p73		
AD_C13PD4k MeOD I					
Current Data Parameters NAME 20080807-300-15 EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date_ 20080807 Time 23.18 INSTRUM spect PROBHD 5 mm ONP 1H/13 PULPROG zgpq30 TD 65536 SOLVENT MeOD NS 4096 DS 4 SWH 19723.865 Hz FIDRES 0.300962 Hz AQ 1.6613876 sec RG 512 DW 25.350 usec DE 65350 usec TE 300.0 K D1 2.0000000 sec d11 0.0300000 sec DELTA 1.8999998 sec TD0 1			*		
NUC1 13C P1 11,90 usec PL1 -6.00 dB SF01 75,4767751 MHz	S-26				
CFDPR62 CHANNEL 12 ======= CFDPR62 w1t216 NUC2 1H PCPD2 100.00 usec PL2 -6.00 dB PL13 20.50 dB SF02 300.1312005 MHz F2 - Processing parameters SI 32768 SF 75.4676418 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40					
	ffuit and development of static to be haven any have needed	lan pantanan mana akan di kata na minakir na taa	ng na mang na sa ng kala ng kal Ng kala ng kala		
230 220 210 200 190	180 170 16	50 150 140	130 120 110 100	90 80 70 60 50	40 30 20 10 ppm

						62.01 58.33		40.41 40.13 39.85 39.58 39.58 33.64	21.07	
Urrent Data Parameters AME 20050826-3-11 XPNO 2 ROCNO 1 2 - Acquisition Parameters ate_ 20050826 ime 10.46 NSTRUM dpx300 ROBHD 5 mm QNP 1H/13 Urpec								ra -		
JLPROG 2 gpg 30 0 65536 DLVENT DMSO 5 256 5 4 WH 19723.865 Hz IDRES 0.300962 Hz 0 1.6613876 sec 3 1149.4 W 25.350 usec 5 6.50 usec 5 0.0 K 1 0.03000000 sec 1 0.03000000 sec CREST 0.0000000 sec	OH JNT									
CHANNEL f1 ====== C1 13C L 5.00 usec L -6.00 dB C01 75.4767751 MHz	5-27									
PDPRG2 waltz16 C2 1H PPD2 80.00 L2 -6.00 L12 16.70 L3 19.70 C02 300.1312005						~~				
- Processing parameters 32768 75.4677190 MHz W 0 1.00 Hz 0 1.40							F			
na yana yana bara kanal wanya ya kana kana kana kana kata kana ka kana ka kana ka kana ka ka kana ka ka kana k Mara ngawa ngawa kana ya kana ka ya ya wana ya kana ka kana ya ka ka ya ka ka ya ka	na se sena a mai na	hand hand have be a provided for the second s	internal generative and the production of the set of the state of the set of	nan antan kilon jelin dala basa antala sitelah Mana antan kilon jelin dala basa antala sitelah			n ganan dan ya kanta ya kata kata	n an	ny finand terreral financial	the state of the second second
230 220 210 200	190 180 170	160 150 140	130 120	110 100	90 80	70 60	50	40 30	20	10 p