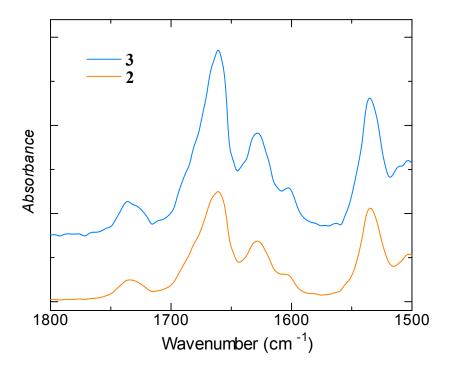
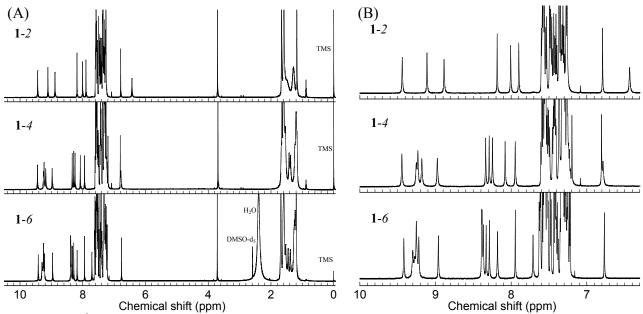
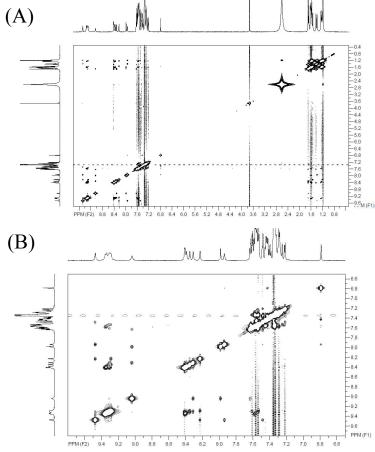
## **Supporting Information I**


## Transfer of Noncovalent Chiral Information along an Optically Inactive Helical Peptide Chain: Allosteric Control of Asymmetry of the C-Terminal Site by External Molecule that Binds to the N-Terminal Site

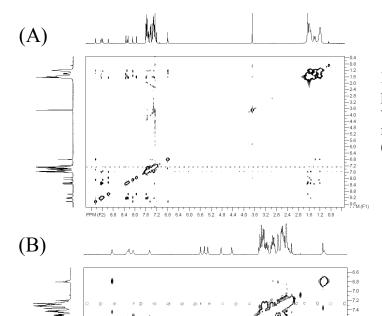
Naoki Ousaka<sup>§</sup> and Yoshihito Inai<sup>†,\*</sup>


§Department of Environmental Technology and Urban Planning, †Department of Frontier Materials, Shikumi College, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

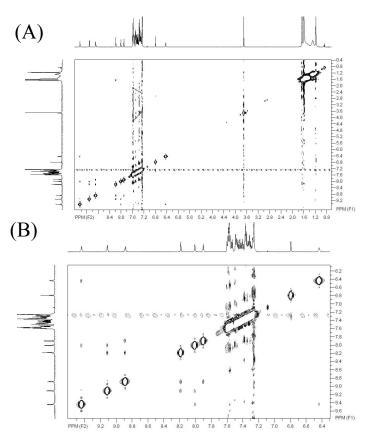
\*Correspondence to Y. Inai (inai.yoshihito@nitech.ac.jp)


| Contents                                                                                                                                                                                            | Pages |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure S1. FT-IR absorption spectra of peptides 2 and 3 in chloroform.                                                                                                                              | S2    |
| Figure S2. <sup>1</sup> H-NMR spectra of peptides 1- <i>m</i> at 293 K.                                                                                                                             | S3    |
| Figure S3. 2D NOESY spectra of peptide 1-6 in CDCl <sub>3</sub> /(CD <sub>3</sub> ) <sub>2</sub> SO (100/3.7, v/v%) at 273 K.                                                                       | S3    |
| Figure S4. 2D NOESY spectra of peptide 1-4 in CDCl <sub>3</sub> at 293 K.                                                                                                                           | S4    |
| Figure S5. 2D NOESY spectra of peptide 1-2 in CDCl <sub>3</sub> at 293 K.                                                                                                                           | S4    |
| Figure S6. Solvent-composition dependence of NH chemical shifts of 1-2 in CDCl <sub>3</sub> /(CD <sub>3</sub> ) <sub>2</sub> SO at 293 K.                                                           | S5    |
| <b>Table S1.</b> Average values of selected torsion angles and hydrogen-bonding parameters of $1-m$ in $3_{10}$ -helix.                                                                             | S5    |
| <b>Figure S7.</b> Right-handed helical structures of <b>1</b> - <i>m</i> energy-minimized from an $\alpha$ -helix: (A, B) <b>1</b> -6, (C, D) <b>1</b> -4, and (E, F) <b>1</b> -2.                  | S6    |
| Figure S8. CD spectra of peptides 2 or 3 with and without Boc-L-Pro-OH in chloroform.                                                                                                               | S7    |
| Figure S9. Induced CD spectra of peptides 1-m with Boc-D-Pro-OH or Boc-L-Pro-OH.                                                                                                                    | S7    |
| <b>Figure S10.</b> CD spectra of Boc-protected <b>1-</b> <i>m</i> [Boc-(Aib- $\Delta^Z$ Phe) <sub><i>m</i></sub> -(Aib- $\Delta^Z$ Bip) <sub>2</sub> -Aib-OMe] and with Boc-L-Pro-OH in chloroform. | S7    |
| <b>Figure S11.</b> Relationship between the indeed CD intensity ( $\Delta \varepsilon$ of 1- $m$ and 2) and Boc-L-Pro-OH concentration in chloroform at ambient temperature.                        | S8    |
| <b>Figure S12.</b> Spatial arrangements of each $\Delta AA$ residue TDM (in the length form) along the right-handed $3_{10}$ -helix.                                                                | S8    |

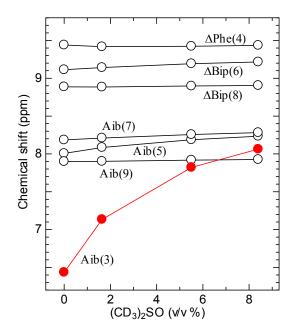



**Figure S1.** FT-IR absorption spectra of peptides **2** and **3** in chloroform at ambient temperature: [2] = 1 mM; [3] = 1.8 mM.




**Figure S2.** <sup>1</sup>H-NMR spectra of peptides **1-**m in (A) a wide range and (B) an expanded scale: at 293 K; [peptide] = 3 mM; CDCl<sub>3</sub> for m = 2 and 4; CDCl<sub>3</sub>/(CD<sub>3</sub>)<sub>2</sub>SO (100/3.7, v/v%) for m = 6.



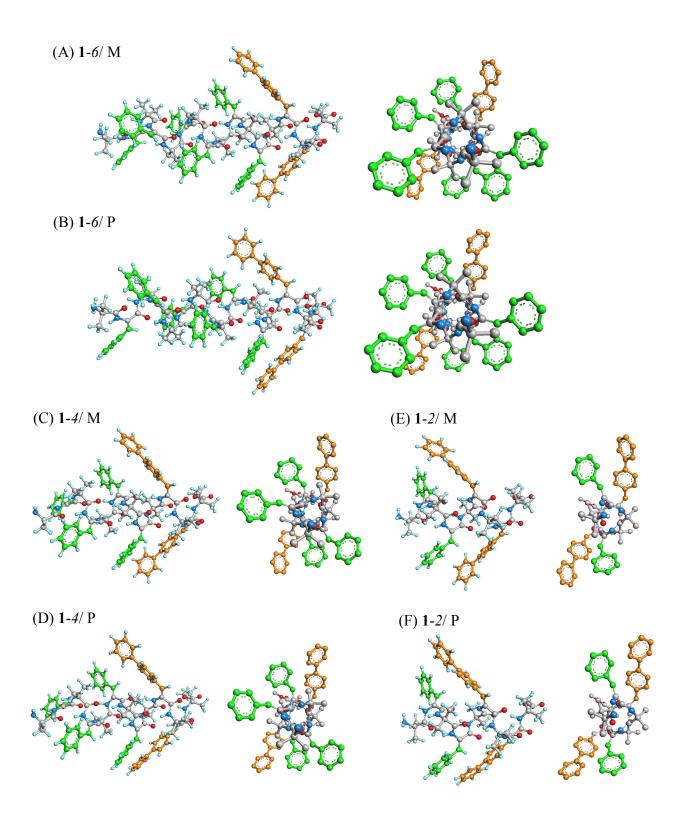

**Figure S3.** 2D NOESY spectra of peptide 1-6 in CDCl<sub>3</sub>/(CD<sub>3</sub>)<sub>2</sub>SO (100/3.7, v/v%) at 273 K: (A) wide region; (B) NH and aromatic region. [1-6] = 3 mM (prepared at room temperature); mixing time = 0.2 s.



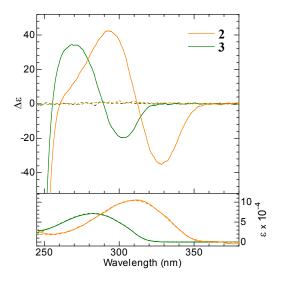
**Figure S4.** 2D NOESY spectra of peptide 1-4 in CDCl<sub>3</sub> at 293 K: (A) wide region; (B) NH and aromatic region. [1-4] = 3 mM; mixing time = 0.4 s.



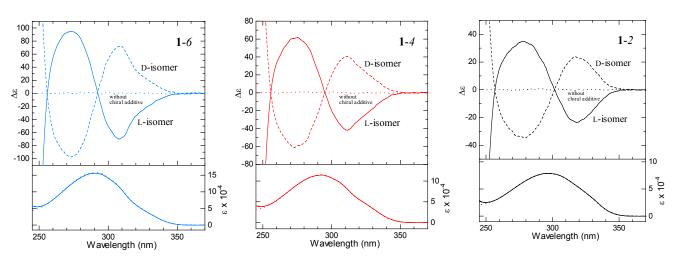
**Figure S5.** 2D NOESY spectra of peptide 1-2 in CDCl<sub>3</sub> at 293 K: (A) wide region; (B) NH and aromatic region. [1-2] = 3 mM; mixing time = 0.4 s.



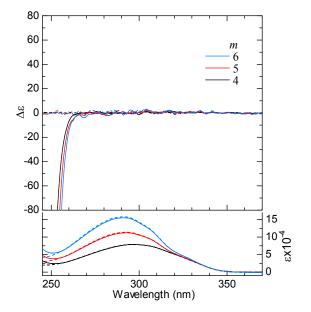

**Figure S6.** Solvent-composition dependence of NH chemical shifts of 1-2 in  $CDCl_3/(CD_3)_2SO$  at 293 K: [1-2] = 3 mM [prior to the addition of  $(CD_3)_2SO$ ].


Table S1. Average values of selected torsion angles and hydrogen-bonding parameters of 1-m in  $3_{10}$ -helix

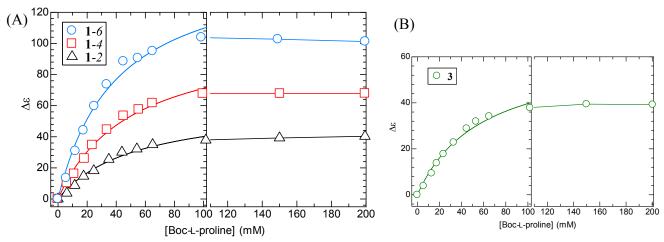
| nenx                 |                            |       |                            |     |     |     |          |          |                |                                                                                                        |            |            |         |          |
|----------------------|----------------------------|-------|----------------------------|-----|-----|-----|----------|----------|----------------|--------------------------------------------------------------------------------------------------------|------------|------------|---------|----------|
| peptide <sup>a</sup> | helix<br>type              | I Bin | torsion angles             |     |     |     |          |          |                | hydrogen-bonding parameters                                                                            |            |            |         |          |
|                      |                            |       | residues<br>for<br>average | ф   | Ψ   | ω   | $\chi^1$ | $\chi^2$ | χ <sup>6</sup> | hydrogen-<br>bonding type/<br>range                                                                    | О…Н<br>(Å) | O…N<br>(Å) | C=O···H | O····H-N |
| 1-6                  | 3 <sub>10</sub> -<br>helix | Р     | 2–16                       | -41 | -40 | 178 | -2.5     | -45      | 40             | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$ :<br>from $[1 \leftarrow 4]$<br>to $[14 \leftarrow 17]$ | 2.2        | 3.1        | 141     | 161      |
|                      | 3 <sub>10</sub> -<br>helix | М     | 2–16                       | -41 | -40 | 178 | -2.6     | -45      | -40            | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$ :<br>from $[1 \leftarrow 4]$<br>to $[14 \leftarrow 17]$ | 2.2        | 3.1        | 141     | 161      |
| 1-4                  | 3 <sub>10</sub> -<br>helix | Р     | 2–12                       | -41 | -40 | 178 | -2.6     | -45      | 40             | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$ :<br>from $[1 \leftarrow 4]$<br>to $[10 \leftarrow 13]$ | 2.2        | 3.1        | 141     | 161      |
|                      | 3 <sub>10</sub> -<br>helix | M     | 2–12                       | -41 | -40 | 178 | -2.6     | -45      | -40            | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$ :<br>from $[1 \leftarrow 4]$<br>to $[10 \leftarrow 13]$ | 2.2        | 3.0        | 142     | 161      |
| 1-2                  | 3 <sub>10</sub> -<br>helix | P     | 2–12                       | -40 | -40 | 177 | -2.6     | -46      | 40             | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$ :<br>from $[1 \leftarrow 4]$<br>to $[6 \leftarrow 9]$   | 2.2        | 3.1        | 142     | 160      |
|                      | 3 <sub>10</sub> -<br>helix | M     | 2–12                       | -40 | -40 | 177 | -2.5     | -45      | -39            | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$ :<br>from $[1 \leftarrow 4]$<br>to $[6 \leftarrow 9]$   | 2.2        | 3.1        | 143     | 160      |


<sup>&</sup>lt;sup>a</sup>These conformations correspond to Figure 3 and Table 2 ( $3_{10}$ -helices). <sup>b</sup>biphenyl orientation ( $\chi^6$ ).

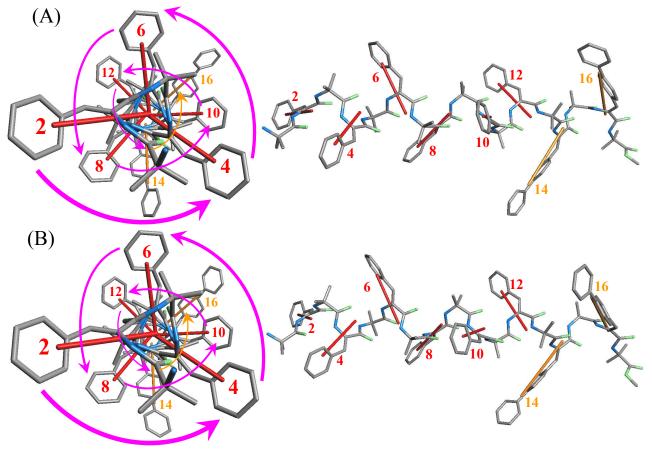



**Figure S7.** Right-handed helical structures of **1**-*m* energy-minimized from an  $\alpha$ -helix: (A, B) **1**-6, (C, D) **1**-4, and (E, F) **1**-2. M and P stand for the two orientations ( $\chi^6$ ) of the biphenyl groups.




**Figure S8.** CD spectra of peptides **2** or **3** with (solid line) and without (broken line) Boc-L-proline in chloroform: [2] = 0.1 mM; [3] = 0.15 mM. CD and absorption spectra of **3** were also reported in ref 10a.




**Figure S9.** Induced CD spectra of peptides **1**-*m* with Boc-D-proline or Boc-L-proline. The spectra for Boc-L-proline and for no chiral additive correspond to Figure 4.



**Figure S10.** CD spectra of Boc-protected **1**-*m* [Boc-(Aib- $\Delta^{Z}$ Phe)<sub>*m*</sub>-(Aib- $\Delta^{Z}$ Bip)<sub>2</sub>-Aib-OMe] (broken line) and with Boc-L-proline (solid line) in chloroform: [**1**-2] = 0.13 mM; [**1**-4] = 8.9x10<sup>-2</sup> mM; [**1**-6] = 6.2x10<sup>-2</sup> mM; [Boc-L-proline] = 1.5x10<sup>2</sup> mM.



**Figure S11.** (A) Relationship between the induced CD intensity ( $\Delta \epsilon$ ) and Boc-L-proline concentration in chloroform at ambient temperature: [1-6] = 6.3x10<sup>-2</sup> mM; [1-4] = 9.0x10<sup>-2</sup> mM; [1-2] = 1.3x10<sup>-1</sup> mM. The CD intensity indicated  $\Delta \epsilon$  value at 272.8 nm (1-6), 274.8 nm (1-4), and 278.4 nm (1-2). In the left panel, the curve was obtained from nonlinear fitting for estimation of the binding constant (see ref 39). (B) A similar experiment for 3–Boc-L-proline monitoring  $\Delta \epsilon$  at 270 nm: [3] = 0.15 mM. (The concentration dependence of chiral additive was similar to that already reported in ref 10a.) In (A) and (B),  $\Delta \epsilon$  value at [Boc-L-proline] = 0 mM was treated as zero.



**Figure S12.** Spatial arrangement of each  $\triangle AA$  residue TDM (in the length form) along the right-handed 3<sub>10</sub>-helix of **1**-6: (A) and (B) correspond to Figures 3A and 3B with the two types of  $\triangle^Z$ Bip side-chain orientations. The right-handed helix produces a left-handed twist of the neighboring moments with respect to the helical axis.