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Figure S1. FT-IR absorption spectra of peptides 2 and 3 in
chloroform at ambient temperature: [2] = 1 mM; [3] = 1.8 mM.
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Figure S2. '"H-NMR spectra of peptides 1-m in (A) a wide range and (B) an expanded scale: at 293

K; [peptide] = 3 mM; CDCl; for m = 2 and 4; CDCl3/(CD3),SO (100/3.7, v/v%) for m = 6.
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Figure S3. 2D NOESY spectra of peptide 1-6 in CDCl3/(CD3),SO (100/3.7, v/v%) at 273 K:
(A) wide region; (B) NH and aromatic region. [1-6] = 3 mM (prepared at room temperature);
mixing time = 0.2 s.
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Figure S4. 2D NOESY spectra of
peptide 1-4 in CDCl; at 293 K: (A)
wide region; (B) NH and aromatic
region. [1-4] = 3 mM; mixing time =
0.4s.

Figure S5. 2D NOESY spectra of
peptide 1-2 in CDCl; at 293 K: (A)
wide region; (B) NH and aromatic
region. [1-2] = 3 mM; mixing time =
0.4s.
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Figure S6. Solvent-composition dependence

of NH

chemical

shifts

of 1-2

in

CDCl3/(CD3),SO at 293 K: [1-2] = 3 mM
[prior to the addition of (CD3),SO].

angles and hydrogen-bonding parameters of 1-m in 3o-

helix
torsion angles hydrogen-bonding parameters
peptide® helix Bip® residues X 5 hqugen' O-H | 0N | c=0--H | O-~H-N
type for o | v | o | g x x® | bonding type/ A) A) ©) ©
average range
30n (Dco—(+3)n
helloix P 2-16 -41 | -40 | 178 | 2.5 | 45 | 40 | from [l « 4] 2.2 3.1 141 161
16 Voo ] to (14 17] | ]
30 (Dco—(+3)n
helloix M 2-16 -41 | -40 | 178 | -2.6 | -45 | -40 | from [l « 4] 2.2 3.1 141 161
to [14 «— 17]
3 (Dco—(i+3)nm:
helloix P 2-12 -41 | -40 | 178 | 2.6 | 45 | 40 | from [l « 4] 2.2 3.1 141 161
AR IR T O T w(o—13 | | ]
3 (Dco—(+3)nn:
helloix M 2-12 -41 | 40 | 178 | -2.6 | 45 | -40 | from[1 « 4] 2.2 3.0 142 161
to [10 « 13]
3 (Dco—(+3)nn:
helloix P 2-12 -40 | 40 | 177 | 2.6 | 46 | 40 | from[1 « 4] 2.2 3.1 142 160
U5, 2 DR S R IS I B S S S— o691 |l ]
3 (Dco—(+3)nn:
helloix M 2-12 -40 | -40 | 177 | 2.5 | -45 | -39 | from [1 « 4] 2.2 3.1 143 160
to [6 « 9]

*These conformations correspond to Figure 3 and Table 2 (3o-helices). "biphenyl orientation (x°).

S5



(A) 1-6/ M

Figure S7. Right-handed helical structures of 1-m energy-minimized from an a-helix: (A, B)
1-6, (C, D) 1-4, and (E, F) 1-2. M and P stand for the two orientations (x°) of the biphenyl
groups.
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Figure S8. CD spectra of peptides 2 or 3 with
(solid line) and without (broken line) Boc-L-
proline in chloroform: [2] = 0.1 mM; [3] = 0.15
mM. CD and absorption spectra of 3 were also
reported in ref 10a.
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Figure S9. Induced CD spectra of peptides 1-m with Boc-D-proline or Boc-L-proline. The spectra

for Boc-L-proline and for no chiral additive correspond to Figure 4.

:Z ;I S Im | ] Figure S10. CD spectra of Boc-protected 1-m

sl 0 [Boc-(Aib-A”Phe),-(Aib-A“Bip),-Aib-OMe]

20[ 4 (broken line) and with Boc-L-proline (solid
< 0: SR line) in chloroform: [1-2] = 0.13 mM; [1-4] =

20 ] 8.9x102 mM; [1-6] = 6.2x10> mM; [Boc-L-

“or ] proline] = 1.5x10* mM.

60| ]

300
Wavelength (nm)

S7



(A)120-' .

- O
100F | O
E A

80F

60F

Age

40F

20F

5040 60 80 700 120 140 160180 300 020 40 60 80 7100 120 140 160 180 200

[Boc--proline] (mM) [Boc--profine] (mM)
Figure S11. (A) Relationship between the induced CD intensity (Ag) and Boc-L-proline concentration in
chloroform at ambient temperature: [1-6] = 6.3x10? mM; [1-4] = 9.0x10” mM; [1-2] = 1.3x10"" mM. The
CD intensity indicated Ae value at 272.8 nm (1-6), 274.8 nm (1-4), and 278.4 nm (1-2). In the left panel, the
curve was obtained from nonlinear fitting for estimation of the binding constant (see ref 39). (B) A similar
experiment for 3—Boc-L-proline monitoring Ag at 270 nm: [3] = 0.15 mM. (The concentration dependence
of chiral additive was similar to that already reported in ref 10a.) In (A) and (B), Ae value at [Boc-L-
proline] = 0 mM was treated as zero.

Figure S12. Spatial arrangement of each AAA residue TDM (in the length form) along the right-
handed 3,o-helix of 1-6: (A) and (B) correspond to Figures 3A and 3B with the two types of A“Bip
side-chain orientations. The right-handed helix produces a left-handed twist of the neighboring
moments with respect to the helical axis.
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