Supporting Information I ## Transfer of Noncovalent Chiral Information along an Optically Inactive Helical Peptide Chain: Allosteric Control of Asymmetry of the C-Terminal Site by External Molecule that Binds to the N-Terminal Site Naoki Ousaka[§] and Yoshihito Inai^{†,*} §Department of Environmental Technology and Urban Planning, †Department of Frontier Materials, Shikumi College, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan *Correspondence to Y. Inai (inai.yoshihito@nitech.ac.jp) | Contents | Pages | |---|-------| | Figure S1. FT-IR absorption spectra of peptides 2 and 3 in chloroform. | S2 | | Figure S2. ¹ H-NMR spectra of peptides 1- <i>m</i> at 293 K. | S3 | | Figure S3. 2D NOESY spectra of peptide 1-6 in CDCl ₃ /(CD ₃) ₂ SO (100/3.7, v/v%) at 273 K. | S3 | | Figure S4. 2D NOESY spectra of peptide 1-4 in CDCl ₃ at 293 K. | S4 | | Figure S5. 2D NOESY spectra of peptide 1-2 in CDCl ₃ at 293 K. | S4 | | Figure S6. Solvent-composition dependence of NH chemical shifts of 1-2 in CDCl ₃ /(CD ₃) ₂ SO at 293 K. | S5 | | Table S1. Average values of selected torsion angles and hydrogen-bonding parameters of $1-m$ in 3_{10} -helix. | S5 | | Figure S7. Right-handed helical structures of 1 - <i>m</i> energy-minimized from an α -helix: (A, B) 1 -6, (C, D) 1 -4, and (E, F) 1 -2. | S6 | | Figure S8. CD spectra of peptides 2 or 3 with and without Boc-L-Pro-OH in chloroform. | S7 | | Figure S9. Induced CD spectra of peptides 1-m with Boc-D-Pro-OH or Boc-L-Pro-OH. | S7 | | Figure S10. CD spectra of Boc-protected 1- <i>m</i> [Boc-(Aib- Δ^Z Phe) _{<i>m</i>} -(Aib- Δ^Z Bip) ₂ -Aib-OMe] and with Boc-L-Pro-OH in chloroform. | S7 | | Figure S11. Relationship between the indeed CD intensity ($\Delta \varepsilon$ of 1- m and 2) and Boc-L-Pro-OH concentration in chloroform at ambient temperature. | S8 | | Figure S12. Spatial arrangements of each ΔAA residue TDM (in the length form) along the right-handed 3_{10} -helix. | S8 | **Figure S1.** FT-IR absorption spectra of peptides **2** and **3** in chloroform at ambient temperature: [2] = 1 mM; [3] = 1.8 mM. **Figure S2.** ¹H-NMR spectra of peptides **1-**m in (A) a wide range and (B) an expanded scale: at 293 K; [peptide] = 3 mM; CDCl₃ for m = 2 and 4; CDCl₃/(CD₃)₂SO (100/3.7, v/v%) for m = 6. **Figure S3.** 2D NOESY spectra of peptide 1-6 in CDCl₃/(CD₃)₂SO (100/3.7, v/v%) at 273 K: (A) wide region; (B) NH and aromatic region. [1-6] = 3 mM (prepared at room temperature); mixing time = 0.2 s. **Figure S4.** 2D NOESY spectra of peptide 1-4 in CDCl₃ at 293 K: (A) wide region; (B) NH and aromatic region. [1-4] = 3 mM; mixing time = 0.4 s. **Figure S5.** 2D NOESY spectra of peptide 1-2 in CDCl₃ at 293 K: (A) wide region; (B) NH and aromatic region. [1-2] = 3 mM; mixing time = 0.4 s. **Figure S6.** Solvent-composition dependence of NH chemical shifts of 1-2 in $CDCl_3/(CD_3)_2SO$ at 293 K: [1-2] = 3 mM [prior to the addition of $(CD_3)_2SO$]. Table S1. Average values of selected torsion angles and hydrogen-bonding parameters of 1-m in 3_{10} -helix | nenx | | | | | | | | | | | | | | | |----------------------|----------------------------|-------|----------------------------|-----|-----|-----|----------|----------|----------------|--|------------|------------|---------|----------| | peptide ^a | helix
type | I Bin | torsion angles | | | | | | | hydrogen-bonding parameters | | | | | | | | | residues
for
average | ф | Ψ | ω | χ^1 | χ^2 | χ ⁶ | hydrogen-
bonding type/
range | О…Н
(Å) | O…N
(Å) | C=O···H | O····H-N | | 1-6 | 3 ₁₀ -
helix | Р | 2–16 | -41 | -40 | 178 | -2.5 | -45 | 40 | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$:
from $[1 \leftarrow 4]$
to $[14 \leftarrow 17]$ | 2.2 | 3.1 | 141 | 161 | | | 3 ₁₀ -
helix | М | 2–16 | -41 | -40 | 178 | -2.6 | -45 | -40 | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$:
from $[1 \leftarrow 4]$
to $[14 \leftarrow 17]$ | 2.2 | 3.1 | 141 | 161 | | 1-4 | 3 ₁₀ -
helix | Р | 2–12 | -41 | -40 | 178 | -2.6 | -45 | 40 | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$:
from $[1 \leftarrow 4]$
to $[10 \leftarrow 13]$ | 2.2 | 3.1 | 141 | 161 | | | 3 ₁₀ -
helix | M | 2–12 | -41 | -40 | 178 | -2.6 | -45 | -40 | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$:
from $[1 \leftarrow 4]$
to $[10 \leftarrow 13]$ | 2.2 | 3.0 | 142 | 161 | | 1-2 | 3 ₁₀ -
helix | P | 2–12 | -40 | -40 | 177 | -2.6 | -46 | 40 | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$:
from $[1 \leftarrow 4]$
to $[6 \leftarrow 9]$ | 2.2 | 3.1 | 142 | 160 | | | 3 ₁₀ -
helix | M | 2–12 | -40 | -40 | 177 | -2.5 | -45 | -39 | $(i)_{\text{CO}} \leftarrow (i+3)_{\text{NH}}$:
from $[1 \leftarrow 4]$
to $[6 \leftarrow 9]$ | 2.2 | 3.1 | 143 | 160 | ^aThese conformations correspond to Figure 3 and Table 2 (3_{10} -helices). ^bbiphenyl orientation (χ^6). **Figure S7.** Right-handed helical structures of **1**-*m* energy-minimized from an α -helix: (A, B) **1**-6, (C, D) **1**-4, and (E, F) **1**-2. M and P stand for the two orientations (χ^6) of the biphenyl groups. **Figure S8.** CD spectra of peptides **2** or **3** with (solid line) and without (broken line) Boc-L-proline in chloroform: [2] = 0.1 mM; [3] = 0.15 mM. CD and absorption spectra of **3** were also reported in ref 10a. **Figure S9.** Induced CD spectra of peptides **1**-*m* with Boc-D-proline or Boc-L-proline. The spectra for Boc-L-proline and for no chiral additive correspond to Figure 4. **Figure S10.** CD spectra of Boc-protected **1**-*m* [Boc-(Aib- Δ^{Z} Phe)_{*m*}-(Aib- Δ^{Z} Bip)₂-Aib-OMe] (broken line) and with Boc-L-proline (solid line) in chloroform: [**1**-2] = 0.13 mM; [**1**-4] = 8.9x10⁻² mM; [**1**-6] = 6.2x10⁻² mM; [Boc-L-proline] = 1.5x10² mM. **Figure S11.** (A) Relationship between the induced CD intensity ($\Delta \epsilon$) and Boc-L-proline concentration in chloroform at ambient temperature: [1-6] = 6.3x10⁻² mM; [1-4] = 9.0x10⁻² mM; [1-2] = 1.3x10⁻¹ mM. The CD intensity indicated $\Delta \epsilon$ value at 272.8 nm (1-6), 274.8 nm (1-4), and 278.4 nm (1-2). In the left panel, the curve was obtained from nonlinear fitting for estimation of the binding constant (see ref 39). (B) A similar experiment for 3–Boc-L-proline monitoring $\Delta \epsilon$ at 270 nm: [3] = 0.15 mM. (The concentration dependence of chiral additive was similar to that already reported in ref 10a.) In (A) and (B), $\Delta \epsilon$ value at [Boc-L-proline] = 0 mM was treated as zero. **Figure S12.** Spatial arrangement of each $\triangle AA$ residue TDM (in the length form) along the right-handed 3₁₀-helix of **1**-6: (A) and (B) correspond to Figures 3A and 3B with the two types of \triangle^Z Bip side-chain orientations. The right-handed helix produces a left-handed twist of the neighboring moments with respect to the helical axis.