## **Supporting Information**

# Remarkably Stable Fischer-type α-Carbonyl Copper(I) Carbene Complex: Synthesis, Structure and Activity in Stoichiometric Cyclopropanation of Alkenes

Peter Hofmann\*, Igor V. Shishkov, Frank Rominger

Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.

#### Contents

| Experimental section                                       | S1  |
|------------------------------------------------------------|-----|
| NMR spectra                                                | S7  |
| Calculation part                                           | S10 |
| Kinetic studies with $\alpha$ -carbonyl carbene <b>8g</b>  | S13 |
| Kinetic studies with diaryl carbene 8g                     | S17 |
| List of bond lengths and angles for <b>8g</b>              | S21 |
| Structural data for ethyl 2-(o-nitrophenyl)-2-diazoacetate | S24 |
| Structural data for <b>7b</b>                              | S25 |
| Structural data for 7d                                     | S26 |
| Structural data for 7f                                     | S27 |
| References                                                 | S28 |
|                                                            |     |

#### **Experimental section**

Unless otherwise stated, all experiments were performed under an Ar atmosphere using a Braun glove box or by Schlenk technique. Tetrahydrofurane, pentane, hexane, toluene and diethyl ether were distilled over benzophenone sodium-kethyl and kept under Ar. Toluene-d<sub>8</sub> was stirred over CaH<sub>2</sub> and then degassed trice prior to use. Tetrahydrofurane-d<sub>8</sub> was distilled over sodium and degassed trice. Pyridine, piperidine, *i*Pr<sub>2</sub>NH and NEt<sub>3</sub> were distilled under Ar over KOH. DBU was purified by vacuum distillation. Commercially available EDA was distilled in vacuum prior to use and filled with Ar. Styrene and p-methylstyrene were distilled in vacuum prior to use and degassed trice. p-Methoxystyrene and p-(trifluoromethyl)styrene were passed through a short neutral Al<sub>2</sub>O<sub>3</sub> column and degassed trice. All the other commercially available reagents were used as received. The solutions of LDA [lithium diisopropylamide] were freshly prepared from *i*Pr<sub>2</sub>NH and *n*BuLi and used immediately. Ethyl diazo(4-nitrophenyl)acetate,<sup>[1]</sup> TsN<sub>3</sub> [tosylazide],<sup>[2]</sup> TryN<sub>3</sub> [2,4,6-tri(izopropyl)benzenesulphonyl azide],<sup>[3]</sup> and complex 1,<sup>[4]</sup> were prepared according to known procedures.

The NMR spectra were recorded on Bruker 500, 300 or 250 MHz spectrometers at temperatures specified below. <sup>1</sup>H, <sup>13</sup>C NMR chemical shifts are reported in parts per million and are referenced to the deuterated solvent used. <sup>31</sup>P NMR spectra are calibrated either with external 85% H<sub>3</sub>PO<sub>4</sub> or, where possible, by traces of free iminophosphanamide ligand ( $\delta$  30.1). All the <sup>13</sup>C and <sup>31</sup>P NMR spectra were broad-band decoupled on <sup>1</sup>H. Mass-spectra were recorded on a JMS 700 (JOEL). Elemental analyses were performed in the "Mikroanalytisches Laboratorium der Chemischen Institute der Universität Heidelberg".

The solutions of copper carbenes **6** and **8g** and olefins for kinetic measurements were prepared using a volumetric flask, divided in equivalent portions and kept at -78 °C. All kinetic studies were performed by the <sup>1</sup>H NMR spectroscopy using Bruker 500 MHz NMR spectrometer equipped with an internal thermocouple sensor. The sample was allowed to reach thermo-equilibrium for ca. 4 min prior to measurements. The  $\sigma$  and  $\sigma^+$  values, the errors of the rate constants and the activation parameters were calculated as described in [5].

Ethyl diazo(2-nitrophenyl)acetate<sup>[6]</sup>.To a well-stirred solution ethyl (2-nitrophenyl)acetate (300 mg, 1.434 mmol), Bu<sub>4</sub>NBr (0.28 eq., 130 mg, 0.403 mmol), 18-crown-6 (13 mg), TsN<sub>3</sub> (230 mg) in 15 ml of C<sub>6</sub>H<sub>6</sub> was added dropwise a 20% aqueous solution of KOH (15 ml). Reaction mixture was stirred at 38 °C 1 h, and the benzene phase slowly acquired a yellow color. The temperature was maintained at 40 °C for 1.5 h, and the organic layer changed its color to red. TLC-control showed almost complete conversion of the starting material. Additional 40 mg of TsN<sub>3</sub> were added, and stirring was continued at 38 °C for 40 min. Et<sub>2</sub>O was added, and the organic phase was separated. Water phase was diluted with H<sub>2</sub>O (20 ml) and extracted with Et<sub>2</sub>O (15 ml). Combined organic extracts were washed with H<sub>2</sub>O (20 ml), brine (10 ml), dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated to give a yellow oil which was purified by column chromatography (100 ml SiO<sub>2</sub>, EtOAc/hexane 1:5) to yield 0.26 g (77%) of a yellow-orange oil. Crystallization from EtOH gave an analytical sample. M. p. 48 °C. <sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>, 298 K): 7.82-7.85 (m, 1H arom.); 7.42-7.49 (m, 1H arom.); 7.24-7.36 (m, 2H arom.); 4.08 (q, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, OCH<sub>2</sub>); 1.09 (t, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, CH<sub>3</sub>).

*tert*-Butyl (4-nitrophenyl)acetate<sup>[7]</sup>. A 100-ml flask equipped with a calcium chloride drying tube and a magnetic stirring bar was charged with (4-nitrophenyl)acetic acid (5 g, 27.6 mmol), dry CH<sub>2</sub>Cl<sub>2</sub> (50 ml), *t*BuOH (8 ml, 82.20 mmol) and (DMAP) (2.70 g, 22.08 mmol). The solution was stirred and cooled in an ice bath to 0 °C while carboxydiimide (8.20 g, 39.75 mmol) was added in three portions. The reaction mixture was stirred at 0 °C for 15 min, then the cool bath was removed and stirring was continued at r. t. for 34 hours. During this time, a white precipitate was formed. The reaction mixture was filtered through a celite. The celite was washed with CH<sub>2</sub>Cl<sub>2</sub> and the combined organic fractions were washed with cold concentrated citric acid (2×30 ml), cold saturated NaHCO<sub>3</sub> (2×30 ml), brine (30 ml), dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated. The product was purified by column chromatography (SiO<sub>2</sub>, EtOAc-hexane 1:7) to yield 6.05 g (75%) of colorless liquid, which crystallized on storage in the fridge. Analytical sample was obtained by recrystallization of the product from hexane. Yield 4.24 g (65%). M.p. 55 °C. <sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>, 298 8.17 (d,  ${}^{3}J_{HH} = 8.75$  Hz, 2H arom.); 7.43 (d,  ${}^{3}J_{HH} = 8.75$  Hz, 2H arom.); 3.63 (s, 2H, K): ArCH<sub>2</sub>); 1.43 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). Anal. Calc. for C<sub>12</sub>H<sub>15</sub>NO<sub>4</sub> (%): C 60.75, H 6.37, N 5.90. Found: C 60.72, H 6.38, N 5.90.

*tert*-Butyl diazo(4-nitrophenyl)acetate (**7b**). To a mixture of *tert*-butyl (4-nitrophenyl)acetate (1.5 g, 6.325 mmol) and  $AzN_3$  (1.5 eq, 2.28 g, 9.488 mmol) in dry THF (10 ml) was added

Et<sub>3</sub>N (1.5 eq, 1.32 ml, 9.488 mmol). The reaction mixture color became yellow-brown. After 10 min of stirring at room temperature TLC showed the reaction to be not completed. DBU (1.5 eq, 1.42 ml, 9.488 mmol) was added slowly (exothermic reaction) and the reaction mixture was stirred at r. t. for another 10 min, until TLC showed the reaction to be complete. H<sub>2</sub>O was added, and the product was extracted two times with Et<sub>2</sub>O. Combined ether fractions were washed with conc. citric acid (2×30 ml) solution, water (2×30 ml), brine, dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and evaporated on votary to give a yellow oil. Column chromatography (EtOAc-hexane 1:7) afforded a yellow solid (1.62 g, 97.6 %) which can be recrystallized from EtOAc-hexane 1:7 with addition of small portions of CHCl<sub>3</sub>. Yield after recrystallization 1.46 g (88%), light-yellow solids, m.p. 118-119 °C. The experiment carried out with TsN<sub>3</sub>-piperidine diazo-transfer system gave **7b** in a lower yield (42%). <sup>1</sup>H NMR (500.13 MHz, CDCl<sub>3</sub>, 298 K): . 8.19 (d, <sup>3</sup>J<sub>HH</sub> = 8.95 Hz, 2H arom.); 7.63 (d, <sup>3</sup>J<sub>HH</sub> = 8.95 Hz, 2H arom.); 1.55 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (125.77 MHz, CDCl<sub>3</sub>, 298 K): . 162.9 (<u>C</u>=O); 144.8; 134.6; 124.2; 123.1; (all arom. H); 83.2 (<u>C</u>(CH<sub>3</sub>)<sub>3</sub>); 28.3 (C(<u>C</u>H<sub>3</sub>)<sub>3</sub>). Anal. Calc. for C<sub>12</sub>H<sub>13</sub>N<sub>3</sub>O<sub>4</sub> (%): C 54.75, H 4.98, N 15.96. Found: C 54.72, H 4.91, N 16.00.

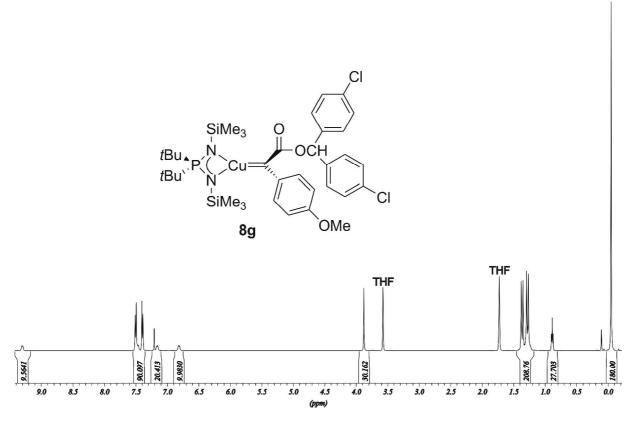
*N*,*N*-diisopropyl-2-(4-nitrophenyl)acetamide. From iPr<sub>2</sub>NH and (4-nitrophenyl)acetic acid chloride followed by purification of the product by column chromatography (EtOAc-petrol ether 1:2.5) and recrystallization from EtOAc-hexane 1:5. The crude product (m. p. 70-71 °C) was used further without additional purification. <sup>1</sup>H NMR (250 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K): 8.14 (d, <sup>3</sup>J<sub>HH</sub> = 8.8 Hz, 2H arom.), 7.39 (d, <sup>3</sup>J<sub>HH</sub> = 8.9 Hz, 2H arom.), 3.91 (sep, <sup>3</sup>J<sub>HH</sub> = 6.6 Hz, 1H, NC<u>H(CH<sub>3</sub>)<sub>2</sub>), 3.75 (s, 2H, CH<sub>2</sub>), 3.43 (br. s, 1H, NC<u>H(CH<sub>3</sub>)<sub>3</sub>), 1.37 (d, <sup>3</sup>J<sub>HH</sub> = 6.6 Hz, 6H, NCH(C<u>H<sub>3</sub>)<sub>3</sub>), 1.09 (d, <sup>3</sup>J<sub>HH</sub> = 6.6 Hz, 6H, NCH(C<u>H<sub>3</sub>)<sub>3</sub>).</u></u></u></u>

2-diazo-*N*,*N*-diisopropyl-2-(4-nitrophenyl)acetamide (**7d**). To a stirred solution of *N*,*N*diisopropyl-2-(4-nitrophenyl)acetamide (0.5 g, 1.89 mmol) and AzN<sub>3</sub> (0.5 g, 2.083 mmol) in absolute THF (8 ml) was added dropwise DBU (0.31 ml, 2.083 mmol) at 0 °C. The cool bath was removed and the reaction mixture was stirred at r. t. for ca. 1.5 h (TLC-control). Additional 80 mg of AzN<sub>3</sub> and 0.07 ml of DBU were added, and the dark solution was stirred for further 30 min. The solvent was removed on votary, and the residue was purified by column chromatography on deactivated SiO<sub>2</sub> (EtOAc-hexane 1:2.5) to give an orange oil which quickly crystallized on standing. The product was recrystallized from warm EtOAc-hexane 1:5. The mother liquor after crystallization was regenerated by evaporation followed by crystallization from light petroleum. Yield 50%, Rf = 0.95 (EtOAc-hexane = 1:2.5), m. p. 87-88 °C. <sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>, 298 K): <u>8.18 (d</u>, <sup>3</sup>J<sub>HH</sub> = 9.2 Hz, 2H arom.), 7.28 (d,  ${}^{3}J_{HH}$  = 9.2 Hz, 2H arom.), 3.74 (sep,  ${}^{3}J_{HH}$  = 6.7 Hz, 2H, NC<u>H</u>(CH<sub>3</sub>)<sub>2</sub>), 1.35 (d,  ${}^{3}J_{HH}$  = 6.7 Hz, 12H, NCH(C<u>H</u><sub>3</sub>)<sub>3</sub>). Anal. Calc. for C<sub>14</sub>H<sub>18</sub>N<sub>4</sub>O<sub>3</sub> (%): C 57.92, H 6.25, N 19.30. Found: C 57.77, H 6.20, N 19.18.

*N*,*N*-dimethyl-2-(4-nitrophenyl)acetamide. (4-nitrophenyl)acetic acid chloride (3 g, 15.04 mmol) was dissolved in dry C<sub>6</sub>H<sub>6</sub> (100 ml) and the solution was cooled to 0 °C. Me<sub>2</sub>NH gas was bubbled through the solution, and a precipitate was formed. The reaction mixture was poured on water, the organic layer was separated, washed with water, dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated to give a solid, which was recrystallized from EtOAc-hexane = 1:5 with addition of some EtOAc. Yield 2.58 g (82.4 %), m. p. 89-90 °C. <sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>, 298 K): 8.15 (d, <sup>3</sup>J<sub>HH</sub> = 8.8 Hz, 2H arom.), 7.40 (d, <sup>3</sup>J<sub>HH</sub> = 8.8 Hz, 2H arom.), 3.78 (s, 2H, CH<sub>2</sub>), 3.03 (s, 3H, NCH<sub>3</sub>), 2.96 (s, 3H, NCH<sub>3</sub>). Anal. Calc. for C<sub>10</sub>H<sub>12</sub>N<sub>2</sub>O<sub>3</sub> (%): C 57.69, H 5.81, N 13.45. Found: C 57.59, H 5.78, 13.40.

2-diazo-*N*,*N*-dimethyl-2-(4-nitrophenyl)acetamide (**7c**). To a stirred solution of *N*,*N*-dimethyl-2-(4-nitrophenyl)acetamide (1.2 g, 5.77 mmol) and AzN<sub>3</sub> (1.52 g, 6.34 mmol) in THF (10 ml) was added DBU (0.95 ml, 6.34 mmol) at 0 °C. The reaction mixture was stirred at r. t. for 1 h, but TLC showed that the reaction had not been completed. Additional AzN<sub>3</sub> (0.2 g) and DBU (0.2 ml) were added, and the mixture was stirred further for 1 h and then poured on water. The green solution was quenched with ether and shaken. The organic phase was separated and washed with water until no more green (5-6 times). The orange etheral layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated. The residue was purified by column chromatography on SiO<sub>2</sub> (EtOAc-hexane 2:1) to give a yellow-orange product. Crystallization from EtOAc-hexane 1:5 (with addition of some EtOAc) gave red-orange plates. Yield 0.61 g (45%), m. p. 118-119 °C. <sup>1</sup>H NMR (500 MHz, toluene-d<sub>8</sub>, 298 K): 7.91 (d, <sup>3</sup>J<sub>HH</sub> = 8.9 Hz, 2H arom.), 6.98 (d, <sup>3</sup>J<sub>HH</sub> = 8.9 Hz, 2H arom.), 2.48 (s, 6H, N(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C NMR (125.77 MHz, toluene-d<sub>8</sub>, 298 K): 162.9 (s, <u>C</u>=O), 145.2, 135.7, 124.2, 123.4 (all s, arom. C), 62.6 (s, <u>C</u>=N<sub>2</sub>), 36.8 (s, N(CH<sub>3</sub>)<sub>2</sub>). Anal. Calc. for C<sub>10</sub>H<sub>10</sub>N<sub>4</sub>O<sub>3</sub> (%): C 51.28, H 4.30, N 23.92. Found: C 51.26, H 4.29, N 23.92.

Methyl diazo(4-methoxyphenyl)acetate (**7e**). Method A. To a stirred solution of LDA (1.1 eq., 2.05 mmol) in dry THF (7 ml) at -75 °C was added dropwise via a syringe methyl (4-methoxyphenyl)acetate (0.3 ml, 0.335 g, 1.86 mmol). The reaction mixture was stirred at – 75 °C for 1 h followed by dropwise addition of a solution of  $TsN_3$  (1.15 eq, 420 mg, 2.14 mmol) in THF (2 ml). The reaction mixture was stirred at –75 °C for 10 min, the cool bath


was removed and the mixture was allowed to warm to ambient temperature. Upon warming, a white precipitate was formed, and the viscosity increased. The reaction mixture was stirred at r. t. for 3 h (color change white→orange). After the reaction had been completed (TLC), THF was removed *in vacuo* at <40 °C, the residue was quenched with Et<sub>2</sub>O (40 ml) and H<sub>2</sub>O (30 ml), and the layers separated. The water phase was washed with ether (20 ml), and the combined organic extracts were washed with water (30 ml), brine (20 ml), dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated, to give an orange oil which was purified by column chromatography (50 ml SiO<sub>2</sub>, EtOAc-hexane 1:7). Orange solid, 0.34 g (88.7 %). An analytical sample and a sample for carbene synthesis were prepared by crystallization of the product from EtOAc-hexane 1:7 (m. p. 50 °C). <sup>1</sup>H NMR (500.13 MHz, CDCl<sub>3</sub>, 298 K): .7.37 (d,  $^{3}J_{HH} = 8.55$  Hz, 2H arom.); 6.93 (d,  $^{3}J_{HH} = 8.55$  Hz, 2H arom.); 3.84 (s, 3H, OCH<sub>3</sub>); 3.80 (s, 3H, OCH<sub>3</sub>). Anal. calc. for C<sub>10</sub>H<sub>10</sub>N<sub>2</sub>O<sub>3</sub> (%): C 58.25, H 4.89, N 13.59. Found: C 58.17, H 4.84, N 13.63.

Method B.<sup>[6]</sup> To a well-stirred mixture of methyl (4-metoxyphenyl)acetate (0.5 g, 2.78 mmol), Bu<sub>4</sub>NBr (250 mg, 0.778 mmol), TryN<sub>3</sub> (1.2 eq.,1.03 g, 3.336 mmol), 18-crown-6 (30 mg) and C<sub>6</sub>H<sub>6</sub> (10 ml) was added dropwise a 66% aqueous solution of KOH (15 ml). The reaction mixture was stirred at 39 °C for 25 min, and additional 100 mg (0.4 eq.) of trizylazide were added, and the mixture was stirred at 38 °C for another 15 min. Ether was added, and the layers separated. The organic phase was washed with water, brine, dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated. Yield of the product after chromatography (EtOAc-hexane 1:7) 86 mg (15%). Spectroscopic data were identical to a sample prepared by method A.

Bis(4-chlorophenyl)methyl (4-methoxyphenyl)acetate. То а solution of bis(4chlorophenyl)methanol (3.06 g, 12.10 mmol) and pyridine (2.57 ml, 31.85 mmol) in toluene (150 ml) at 0 °C was added dropwise acid chloride (2 ml, 12.74 mmol). The reaction mixture was stirred at r. t. for 2 h, guenched with EtOAc (50 ml) and shaken. The organic phase was separated and washed 3 times with H<sub>2</sub>O and one time with NaHCO<sub>3</sub>, dried and evaporated. The residue was recrystallized from EtOAc-Petrol ether 1:5 and then purified by chromatography (SiO<sub>2</sub>, EtOAc-Petrol ether 1:5). Recrystallization from the same solvent mixture afforded 2.68 g (54.5 %) of analytically pure material, m. p. 95-96 °C. <sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>, 298 K):  $_{.}$  7.31 (d,  $^{3}J_{HH}$  = 8.6 Hz, 4H arom.), 7.21 (d,  $^{3}J_{HH}$  = 8.8 Hz, 2H arom), 7.19 (d,  ${}^{3}J_{HH} = 8.6$  Hz, 4H arom.), 6.89 (d,  ${}^{3}J_{HH} = 8.8$  Hz, 2H arom.), 6.80 (s, 1H, OCH), 3.84 (s, 3H, OCH<sub>3</sub>), 3.69 (s, 2H, ArCH<sub>2</sub>). Anal. calc. for C<sub>22</sub>H<sub>18</sub>Cl<sub>2</sub>O<sub>3</sub> (%): C 65.85, H 4.52, Cl 17.67. Found: C 65.64, H 4.54, Cl 17.53.

Bis(4-chlorophenyl)methyl diazo(4-methoxyphenyl)acetate (**7g**). Bis(4-chlorophenyl)methyl (4-methoxyphenyl)acetate (1 g, 2.46 mmol) and AzN<sub>3</sub> (0.89 g, 3.692 mmol) were suspended in absolute THF, when DBU (0.55 ml, 0.562 g, 3.69 mmol) was added in one portion. The reaction mixture was stirred for 1 h at r. t. and then allowed to stand at ambient temperature in a dark place for 7 days. TLC (EtOAc-hexane 1:7) showed complete conversion of the starting material. The solvent was removed on votary, and the residue was purified by column chromatography (SiO<sub>2</sub>, EtOAc-hexane 1:5) to give a red-orange oil that was dried at 10<sup>-3</sup> mbar. Yield 1.05 g of an orange oil, purity > 90%. The product is light sensitive and slowly decomposes at r. t. so it must be stored under Ar in a dark, cold (-35 °C) place. <sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>, 298 K): \_ 7.27-7.41 (m, 10H arom.), 7.00 (s, OC<u>H</u>), 6.97 (d, <sup>3</sup>J<sub>HH</sub> = 8.9 Hz, 2H arom.), 3.84 (s, 3H, OCH<sub>3</sub>). MS-EI: m/z 398.0 (2%) [(M-N<sub>2</sub>)<sup>+</sup>].

# Spectra of compound 8g, its reaction with styrene and <sup>31</sup>P NMR spectra of compounds 8g and 6 after complete decomposition.



**Figure 1**. <sup>1</sup>H NMR (500.13 MHz, THF-d<sub>8</sub>, 238 K) spectrum of the **8g** $\cdot$ 0.46 C<sub>5</sub>H<sub>12</sub> demonstrating a hindered rotation around the C<sub>carbene</sub>-C<sub>Ar</sub> bond on NMR time scale at 238K.

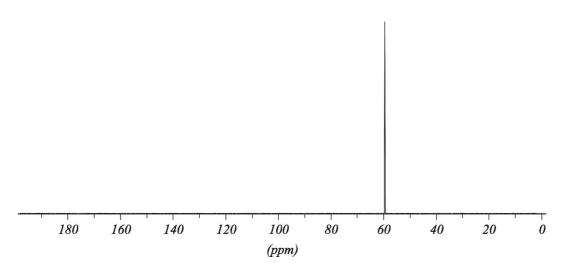



Figure 2. <sup>31</sup>P NMR (202.47 MHz, THF-d<sub>8</sub>, 238 K) spectrum of the **8g**·0.46 C<sub>5</sub>H<sub>12</sub>.

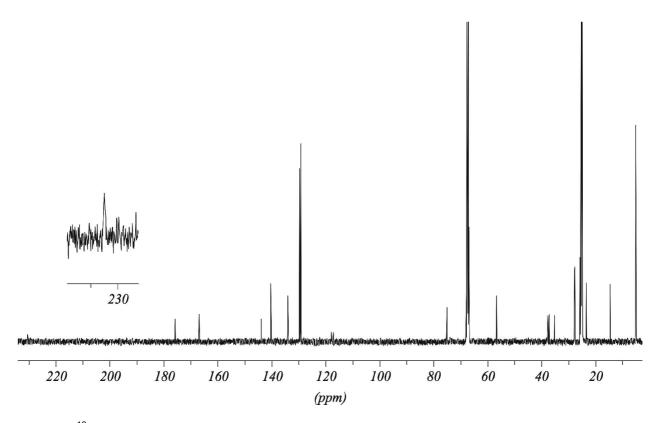
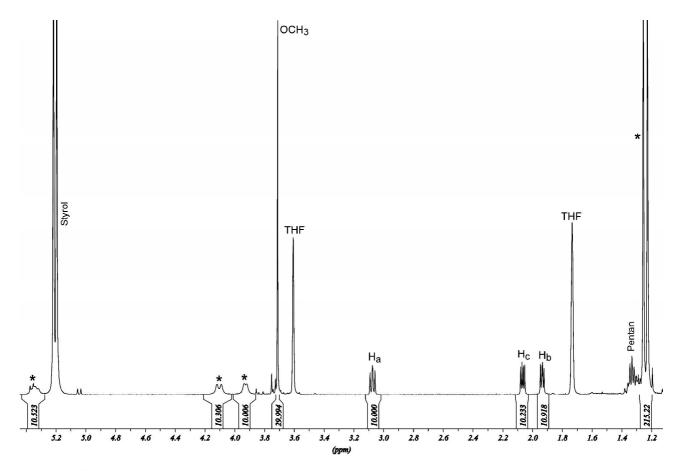
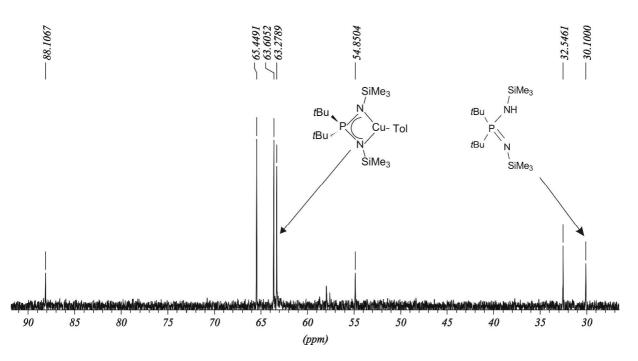
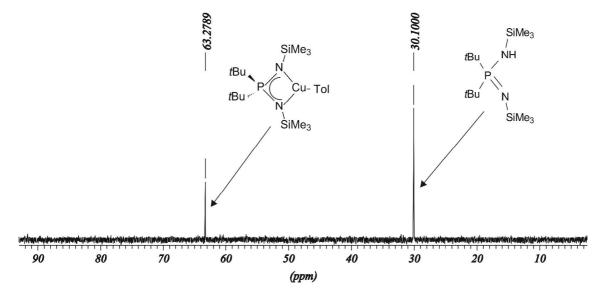
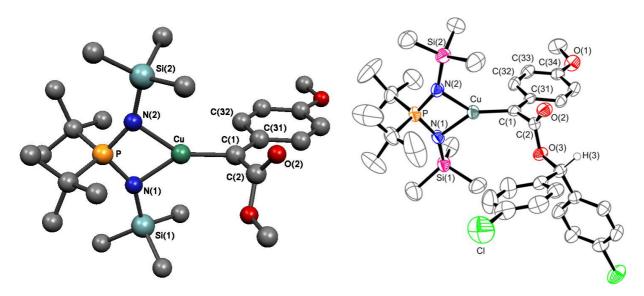




Figure 3. <sup>13</sup>C NMR (125.77 MHz, THF-d<sub>8</sub>, 238 K) spectrum of the 8g.0.46 C<sub>5</sub>H<sub>12</sub>.



**Figure 4.** <sup>1</sup>H NMR spectrum (500.13 MHz, THF-d<sub>8</sub>, 298 K) of a mixture of carbene **8g** and an excess of styrene after ca. 2 h at room temperature. Signals marked with a star were assigned to copper styrene complex [ $tBu_2P(NSiMe_3)_2-\kappa^2N$ ]Cu( $\eta^2$ -CH=CHPh), whereas signals H<sub>a-c</sub> were assigned to three cyclopropane protons.



Figure 5. <sup>31</sup>P NMR (202.46 MHz, toluene-d<sub>8</sub>) spectrum of **8g** after complete decomposition.



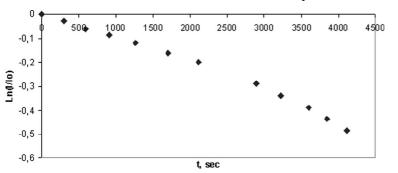
**Figure 6**. <sup>31</sup>P NMR (202.46 MHz, toluene-d<sub>8</sub>) spectrum of  $[tBu_2P(NSiMe_3)_2-\kappa^2N]Cu=C[p-NO_2-C_6H_4]_2$  (6) after complete decomposition.

#### **Calculation part**

The calculations were carried out on 56 CPU cluster with Intel Xeon processors (2.66 GHz) with Turbomole (version 5.7)<sup>8</sup> software package. For the DFT calculations, BP86 method (Becke's exchange<sup>9</sup> and Perdew's gradient corrected<sup>10</sup> correlation functional) was utilized. Implemented split-valence SV(P) basis set was employed for geometry optimisation of **8e** with Turbomole program, whereas triple- $\xi$  quality basis TZVP was used for single-point energy calculation on SV(P)-optimised structure of **8e**.



**Figure 7**. Optimized BP86/SV(P) optimized structure of **8e** (left) and X-ray structure of **8g** (right). Selected bond length (Å) and angles (<sup>o</sup>):


| Parameter    | X-ray (8g) | Calculated | Parameter          | X-ray (8g) | Calculated |
|--------------|------------|------------|--------------------|------------|------------|
| Cu-C(1)      | 1.822      | 1.850      | P-Cu-C(1)          | 177.9      | 178.2      |
| Cu-N(1)      | 2.003      | 2.040      | C(1)-Cu-N(2)       | 142.2      | 143.3      |
| Cu-N(2)      | 1.993      | 2.037      | C(1)-Cu-N(1)       | 140.0      | 139.6      |
| N-P (av.)    | 1.606      | 1.637      | Cu-C(1)-C(31)-C(2) | -179.6     | 174.8      |
| C(1)-C(2)    | 1.484      | 1.480      | N(2)-Cu-C(1)-C(31) | -95.8      | -92.5      |
| C(1)-C(31)   | 1.434      | 1.441      | N(2)-Cu-C(1)-C(2)  | 84.6       | 82.6       |
| C(2)-O(2)    | 1.202      | 1.227      | Cu-C(1)-C(2)-O(2)  | -88.3      | 107.4      |
| N(2)-Cu-N(1) | 77.8       | 77.0       |                    |            |            |

Atomic Cartesian coordinates for the optimized structure of 8e are given in 1 Å scale:

| Cu | -0.0981542 | 0.0994367  | 0.4023542  |
|----|------------|------------|------------|
| Ν  | 1.2702354  | -1.3173783 | -0.1300648 |
| Ν  | -1.2636716 | -1.4625607 | -0.1911050 |
| Ρ  | 0.0655659  | -2.3576251 | -0.5159180 |
| Si | 2.9665378  | -0.9558096 | 0.0685365  |

| 0: | 0 0000050  | 1 0000 400 | 0 4400054  |
|----|------------|------------|------------|
| Si | -2.9983858 | -1.2683498 | -0.1160351 |
| C  | -0.1551721 | 1.8311885  | 1.0517357  |
| C  | -0.3572887 | 1.8882819  | 2.5165384  |
| 0  | -1.4077922 | 2.2373378  | 3.0468266  |
| 0  | 0.7122772  | 1.4333183  | 3.2291630  |
| C  | 0.5305571  | 1.3842402  | 4.6522620  |
| С  | 0.1405264  | -3.9183175 | 0.6032209  |
| С  | 1.5801230  | -4.4645926 | 0.6917604  |
| н  | 2.2756043  | -3.7045750 | 1.1047963  |
| н  | 1.9757018  | -4.8027522 | -0.2880240 |
| н  | 1.5976995  | -5.3435213 | 1.3780131  |
| С  | -0.2879279 | -3.4358899 | 2.0076221  |
| н  | 0.3301973  | -2.5763597 | 2.3471094  |
| н  | -0.1561521 | -4.2676553 | 2.7381243  |
| н  | -1.3509075 | -3.1183839 | 2.0264587  |
| С  | -0.8133574 | -5.0346701 | 0.1328924  |
| н  | -1.8532961 | -4.6698636 | -0.0025473 |
| н  | -0.8436528 | -5.8427020 | 0.9015685  |
| н  | -0.4773645 | -5.5020302 | -0.8171926 |
| С  | 0.1288361  | -2.7948637 | -2.3870211 |
| С  | -1.2363209 | -3.3202285 | -2.8769883 |
| н  | -1.5346308 | -4.2709564 | -2.3884832 |
| н  | -1.1817624 | -3.5137470 | -3.9737338 |
| н  | -2.0409108 | -2.5745747 | -2.7066154 |
| C  | 1.2352186  | -3.8139082 | -2.7247518 |
| н  | 2.2274831  | -3.4976999 | -2.3393073 |
| н  | 1.3233441  | -3.9087245 | -3.8325667 |
| н  | 1.0113274  | -4.8275121 | -2.3284926 |
| c  | 0.4284582  | -1.4619681 | -3.1098335 |
| н  | 1.4377543  | -1.0769279 | -2.8553572 |
| н  | -0.3150646 | -0.6810838 | -2.8386760 |
| н  | 0.3791800  | -1.6208659 | -4.2121237 |
| C  | 3.3114142  | 0.7746655  | -4.2121237 |
| Н  | 2.6916578  | 1.5442749  | -0.1302884 |
|    | 3.0803224  | 0.8224274  | -0.1302004 |
| н  |            |            |            |
| Н  | 4.3824367  | 1.0524615  | -0.5104329 |
| С  | 3.4196178  | -0.9181592 | 1.9161045  |
| н  | 2.7495744  | -0.2055639 | 2.4471806  |
| н  | 4.4715968  | -0.5839670 | 2.0687044  |
| Н  | 3.3094768  | -1.9148915 | 2.4009056  |
| С  | 4.1540844  | -2.1520895 | -0.8308534 |
| н  | 4.0439662  | -2.0892727 | -1.9366019 |
| н  | 4.0238091  | -3.2151508 | -0.5327439 |
| н  | 5.2037799  | -1.8662956 | -0.5882581 |
| С  | -3.5635406 | -0.0675290 | -1.4823427 |
| н  | -3.3735215 | -0.4746849 | -2.5012082 |
| н  | -3.0128801 | 0.8959729  | -1.3962870 |
| н  | -4.6524740 | 0.1546178  | -1.4040738 |
| С  | -3.4730137 | -0.5231851 | 1.5648914  |
| н  | -3.1875761 | -1.2040151 | 2.3988122  |
| н  | -4.5735134 | -0.3584678 | 1.6279107  |
| н  | -2.9735079 | 0.4543010  | 1.7489632  |
| С  | -3.9891933 | -2.8914082 | -0.2906680 |
| H  | -3.7985567 | -3.5769266 | 0.5647485  |
|    |            |            |            |

| Н | -3.7735038 | -3.4451233 | -1.2302407 |
|---|------------|------------|------------|
| н | -5.0781363 | -2.6541803 | -0.2853939 |
| С | -0.1283111 | 3.0774828  | 0.3285408  |
| С | 0.0244895  | 3.0702887  | -1.0911697 |
| Н | 0.0968557  | 2.0936538  | -1.5982463 |
| С | 0.0954988  | 4.2437180  | -1.8416945 |
| Н | 0.2195441  | 4.1810797  | -2.9326118 |
| С | 0.0029151  | 5.4973886  | -1.1859266 |
| С | -0.1647371 | 5.5399591  | 0.2230871  |
| Н | -0.2432020 | 6.5261017  | 0.7073688  |
| С | -0.2265883 | 4.3629200  | 0.9576730  |
| Н | -0.3759232 | 4.4168828  | 2.0474113  |
| 0 | 0.0606306  | 6.6962023  | -1.8104379 |
| С | 0.2389146  | 6.7398521  | -3.2207132 |
| Н | 0.2671784  | 7.8140919  | -3.4907461 |
| Н | -0.6078415 | 6.2496070  | -3.7548506 |
| Н | 1.1969741  | 6.2587589  | -3.5254694 |
| Н | -0.2843849 | 0.6782150  | 4.9208134  |
| н | 0.2758251  | 2.3875408  | 5.0574202  |
| н | 1.4963646  | 1.0338650  | 5.0655490  |
|   |            |            |            |



#### **Decomposition of 8g**

Figure 8. . Plot of  $Ln(I/I_o)$  vs. time for thermal decomposition of carbene 8g at 313 K (data plot for ca. 40% conversion) showing a deviation from the first order after ca. 20% conversion.

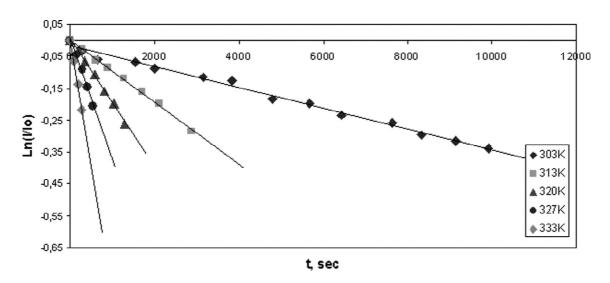



Figure 9. Decomposition of carbene 8g at various temperatures. Data collected for 20-25% conversion.

| Т, К | k <sub>dec</sub> , s⁻¹     |
|------|----------------------------|
| 303  | 3,27(9) × 10 <sup>-5</sup> |
| 313  | $9,71(21) \times 10^{-5}$  |
| 320  | 2,02(6) × 10 <sup>-4</sup> |
| 327  | $3,83(24) \times 10^{-4}$  |
| 333  | $8,09(29) \times 10^{-4}$  |
|      |                            |

Table 1. Decomposition constants of 43 over a temperature range 303-333 K.

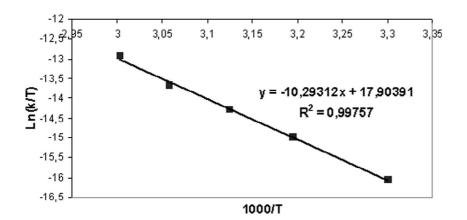
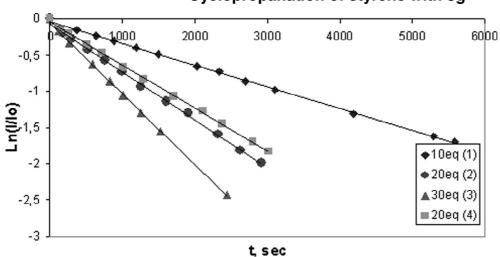
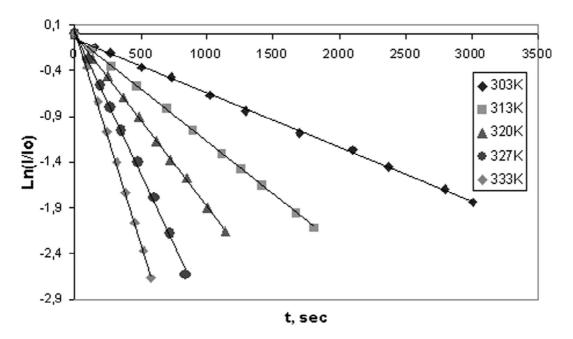




Figure 10. Eyring plot for the decomposition of copper carbene 8g in toluene-d<sub>8</sub> over a temperature range 303-333 K.




#### Cyclopropanation of styrene with 8g

Figure 11. Cyclopropanation of styrene with copper carbene 8g at various olefin/carbene ratios at 303 K under the pseudo-first order conditions.

**Table 2**. Observed first-order and actual second-order rate constants for styrene cyclopropanation with **8g** at various olefin/carbene ratios at 303 K under the pseudo-first order conditions. (Determination of the reaction order).

| Equiv.<br>Styrene | C <sub>carb</sub> x 10 <sup>-2</sup><br>mol/l | C <sub>olef</sub> × 10⁻¹<br>mol/l | $k_{obs} \times 10^{-4}$<br>s <sup>-1</sup> | k <sub>dec</sub> × 10 <sup>-5</sup><br>s <sup>-1</sup> | $k_{pseudo} \times 10^{-4}$<br>s <sup>-1</sup> | k <sub>cyclop</sub> × 10 <sup>-3</sup><br>I/(mol × s) |
|-------------------|-----------------------------------------------|-----------------------------------|---------------------------------------------|--------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|
| 10 (1)            | 1.72                                          | 1,71(2)                           | 3,01(2)                                     | 3,27(9)                                                | 2,68(3)                                        | 1,57(2)                                               |
| 20 (2)            | 1.37                                          | 2,75(1)                           | 5,94(6)                                     | 3,27(9)                                                | 5,61(6)                                        | 2,04(2)                                               |
| 30 (3)            | 1.72                                          | 5,14(2)                           | 9,86(11)                                    | 3,27(9)                                                | 9,53(11)                                       | 1,85(2)                                               |
| 20 (4)            | 1.72                                          | 3,44(2)                           | 6,63(9)                                     | 3,27(9)                                                | 6,30(9)                                        | 1,84(3)                                               |



**Figure 12**. Cyclopropanation of styrene with copper carbene **8g** at various temperatures in toluene-d<sub>8</sub> and 1:20 carbene/olefin ratio ( $C_{olef} = 2.75(1) \times 10^{-1}$  M).

**Table 3**. Observed first-order and actual second-order rate constants for styrene cyclopropanation with **8g** over a temperature range 303-333 K at 20:1 olefin/carbene ratio under the pseudo-first order conditions ( $C_{olef} = 2.75(1) \times 10^{-1}$  M).

| Т, К | k <sub>obs</sub><br>s⁻¹    | k <sub>dec</sub><br>s⁻¹     | k <sub>pseudo</sub>         | k <sub>cyclop</sub>         |
|------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
| .,   | S                          | S                           | S <sup>-</sup>              | l/(mol × s)                 |
| 303  | $5,94(6) \times 10^{-4}$   | 3,27(9) × 10 <sup>⁻⁵</sup>  | $5,61(6) \times 10^{-4}$    | $2,04(2) \times 10^{-3}$    |
| 313  | $1,160(4) \times 10^{-3}$  | 9,71(21) × 10 <sup>-5</sup> | 1,063(5) × 10 <sup>-3</sup> | $3,87(2) \times 10^{-3}$    |
| 320  | 1,89(1) × 10 <sup>-3</sup> | $2,02(6) \times 10^{-4}$    | 1,69(1) × 10 <sup>-3</sup>  | 6,14(5) × 10 <sup>-3</sup>  |
| 327  | $3,09(4) \times 10^{-3}$   | 3,83(24) × 10 <sup>-4</sup> | 2,71(5) × 10 <sup>-3</sup>  | 9,85(17) × 10 <sup>-3</sup> |
| 333  | $4,64(4) \times 10^{-3}$   | $8,09(29) \times 10^{-4}$   | $3,83(5) \times 10^{-3}$    | $1,39(2) \times 10^{-2}$    |

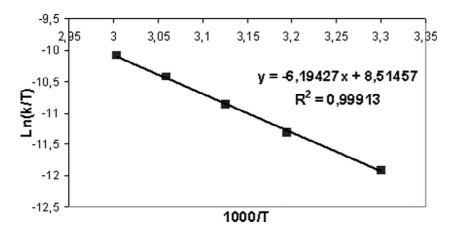
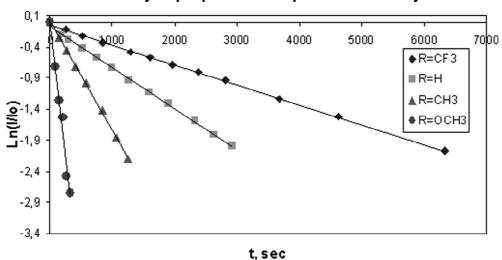
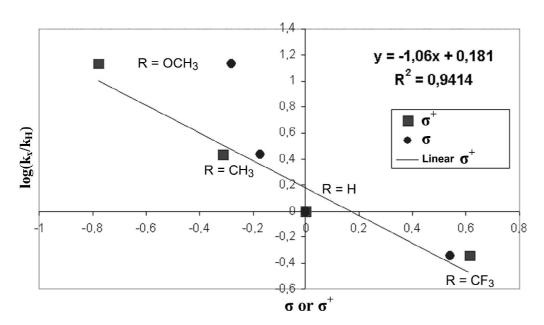
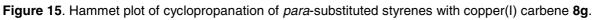
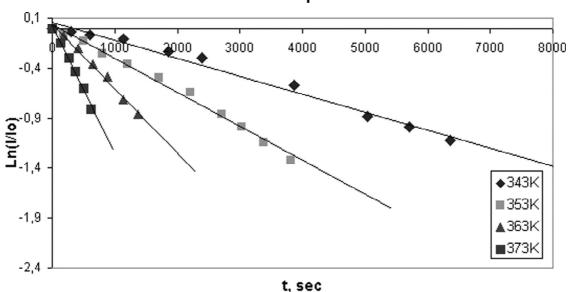




Figure 13. Eyring plot for the cyclopropanation of styrene by 8g in toluene-d<sub>8</sub> over the temperature range 303-333 K.





Cyclopropanation of p-substituted styrenes with 8g


Figure 14. Cyclopropanation of para-substituted styrenes  $R-C_6H_4CH=CH_2$  by copper carbene 8g at 303 K and 1:20 carbene/olefin ratio.

**Table 4**. Observed reaction constants for cyclopropanation of *para*-substituted styrenes  $R-C_6H_4CH=CH_2$  bycopper carbene **8g** at 303 K and 1:20 carbene/olefin ratio.

| R                | $k_{obs} (s^{-1})$          | $k_{dec} (s^{-1})$         | k <sub>pseudo</sub> (s <sup>-1</sup> ) | k <sub>x</sub> /k <sub>H</sub> | σ     | $\sigma^{+}$ |
|------------------|-----------------------------|----------------------------|----------------------------------------|--------------------------------|-------|--------------|
| Н                | $6,63(9) \times 10^{-4}$    | 3,27(9) × 10 <sup>-5</sup> | $6,30(9) \times 10^{-4}$               | 1,000                          | 0     | 0            |
| $CF_3$           | 3,20(3) × 10 <sup>-4</sup>  | 3,27(9) × 10 <sup>-5</sup> | $2,87(3) \times 10^{-4}$               | 0,4559                         | 0,54  | 0,612        |
| CH₃              | 1,75(2) × 10 <sup>-3</sup>  | 3,27(9) × 10 <sup>-5</sup> | 1,72(2) × 10 <sup>-3</sup>             | 2,725                          | -0,17 | -0,311       |
| OCH <sub>3</sub> | 8,64(56) × 10 <sup>-3</sup> | 3,27(9) × 10 <sup>-5</sup> | 8,61(56) × 10 <sup>-3</sup>            | 13,661                         | -0,28 | -0,778       |







**Decomposition of 6** 

**Figure 16**. Decomposition of carbene **6** in toluene-d<sub>8</sub> over a temperature range 343-373 K. The data were collected for ca. 1.5 half-lives.  $C_{carbene} = 1.56 \times 10^{-2} \text{ M}$ 

**Table 5**. Observed first-order rate constants of decomposition of **6** in tolene- $d_8$  over a temperature range 343-373 K.

| Т, К | $k_{dec}$ (s <sup>-1</sup> ) |
|------|------------------------------|
| 343  | $1,80(7) \times 10^{-4}$     |
| 353  | $3,40(10) \times 10^{-4}$    |
| 363  | 6,44(26) × 10 <sup>-4</sup>  |
| 373  | $1,27(5) \times 10^{-3}$     |

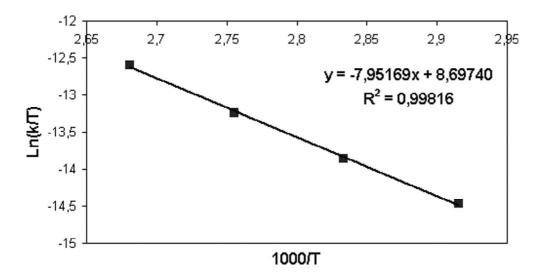



Figure 17. Eyring plot for the decomposition of copper carbene 6 in toluene-d<sub>8</sub> over a temperature range 343-373 K.

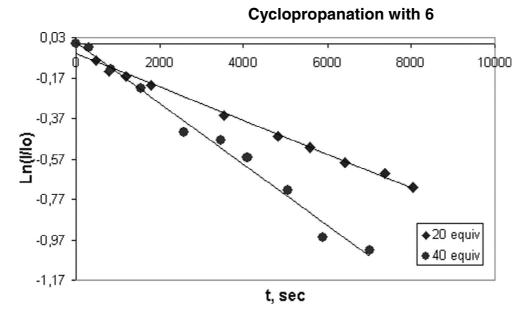
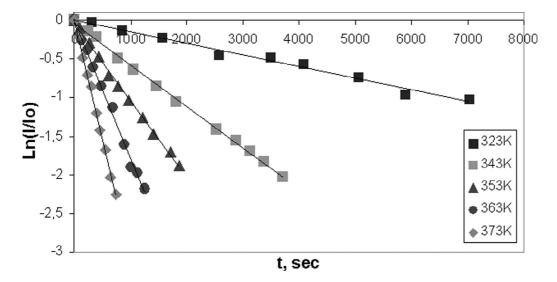




Figure 18. Cyclopropanation of styrene with carbene 6 at different carbene/olefin ratios at 323 K.

**Table 6**. Observed first-order and actual second-order rate constants for styrene cyclopropanation with **6** at various olefin/carbene ratios at 323 K under the pseudo-first order conditions. (Determination of the reaction order).

| Equiv.<br>styrene | C <sub>carb</sub> × 10 <sup>-2</sup><br>mol/l | C <sub>olef</sub> × 10 <sup>-1</sup><br>mol/l | k <sub>obs</sub> × 10 <sup>-5</sup><br>s <sup>-1</sup> | <sup>a</sup> k <sub>dec</sub> × 10 <sup>-5</sup><br>s <sup>-1</sup> | k <sub>pseudo</sub> x 10⁻⁵<br>s⁻¹ | k <sub>cyclop</sub> × 10 <sup>-4</sup><br>I/(mol × s) |
|-------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------|
| 20                | 1.56                                          | 3.13(2)                                       | 8,33(23)                                               | 3,93(16)                                                            | 4,40(28)                          | 1,41(9)                                               |
| 40                | 1.56                                          | 6.26(2)                                       | 15,1(6)                                                | 3,93(16)                                                            | 11,2(6)                           | 1,79(10)                                              |

<sup>a</sup> obtained by extrapolation of the Eyring plot depicted in Figure 17.



**Figure 19**. Cyclopropanation of styrene with carbene **6** over a temperature range 323-373 K at 1:40 carbene/olefin ratio under the pseudo-first order conditions ( $C_{olef} = 6.26(2) \times 10^{-1}$  M).

**Table 7**. Observed first-order and actual second-order rate constants for styrene cyclopropanation with **6** over a temperature range 303-333 K at 40:1 olefin/carbene ratio under the pseudo-first order conditions ( $C_{olef} = 6.26(2) \times 10^{-1}$  M).

|     | Т, К             | k <sub>obs</sub><br>s⁻¹    | k <sub>dec</sub><br>s⁻¹     | k <sub>pseµdo</sub><br>s⁻1 | k <sub>cyclop</sub><br>I/(mol × s) |
|-----|------------------|----------------------------|-----------------------------|----------------------------|------------------------------------|
|     | 323 <sup>a</sup> | $1,51(6) \times 10^{-4}$   | 3,93(16) × 10 <sup>-5</sup> | 1,11(6) × 10 <sup>-4</sup> | $1,78(10) \times 10^{-4}$          |
|     | 343              | $5,37(8) \times 10^{-4}$   | $1,80(7) \times 10^{-4}$    | $3,57(11) \times 10^{-4}$  | $5,71(17) \times 10^{-4}$          |
|     | 353              | 9,995(75) × 10⁻⁴           | $3,40(10) \times 10^{-4}$   | $6,60(12) \times 10^{-4}$  | 1,06(2) × 10 <sup>-3</sup>         |
|     | 363              | 1,78(4) × 10 <sup>-3</sup> | 6,44(26) × 10 <sup>-4</sup> | 1,13(5) × 10 <sup>-3</sup> | 1,81(8) × 10 <sup>-3</sup>         |
| . — | 373              | $3,08(5) \times 10^{-3}$   | $1,27(5) \times 10^{-3}$    | 1,81(8) × 10 <sup>-3</sup> | $2,89(12) \times 10^{-3}$          |

<sup>a</sup> k<sub>dec</sub> at 323 K was obtained by extrapolation of the Eyring plot depicted in Figure 17.

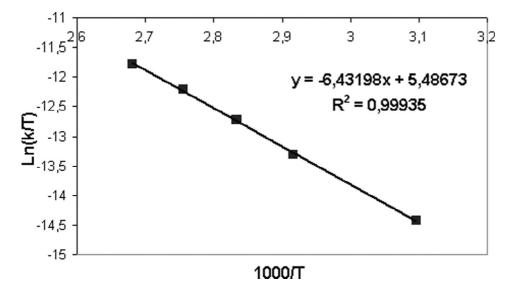
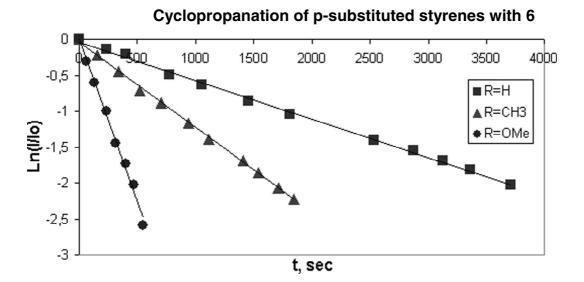




Figure 20. Eyring plot for the cyclopropanation of styrene by 6 over a temperature range 323-373 K in toluene- $d_8$ .



**Figure 21**. Cyclopropanation of para-substituted styrenes  $R-C_6H_4CH=CH_2$  by copper carbene **6** at 343 K and 1:40 carbene/olefin ratio.

**Table 8**. Observed reaction constants for cyclopropanation of *para*-substituted styrenes  $R-C_6H_4CH=CH_2$  by copper carbene 6 at 343 K and 1:40 carbene/olefin ratio.

| R    | $k_{obs} (s^{-1})$         | k <sub>dec</sub> (s⁻¹)   | k <sub>pseudo</sub> (s <sup>-1</sup> ) | k <sub>x</sub> /k <sub>H</sub> | σ     | $\sigma^{+}$ |
|------|----------------------------|--------------------------|----------------------------------------|--------------------------------|-------|--------------|
| Н    | 5,37(8) × 10 <sup>-4</sup> | $1,80(7) \times 10^{-4}$ | $3,57(11) \times 10^{-4}$              | 1,00                           | 0     | 0            |
| CH₃  | 1,18(1) × 10 <sup>-3</sup> | $1,80(7) \times 10^{-4}$ | 1,00(2) × 10 <sup>-3</sup>             | 2,808                          | -0,17 | -0,311       |
| OCH₃ | $4,47(14) \times 10^{-3}$  | $1,80(7) \times 10^{-4}$ | $4,29(14) \times 10^{-3}$              | 12,02                          | -0,28 | -0,778       |

## Complete list of bond length and angles of 8g

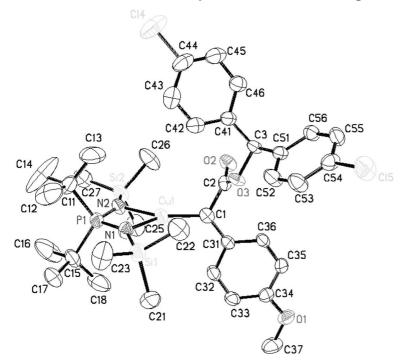
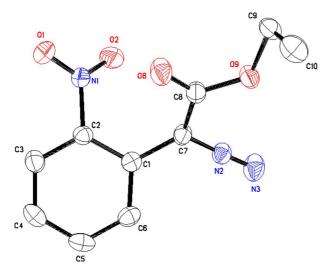
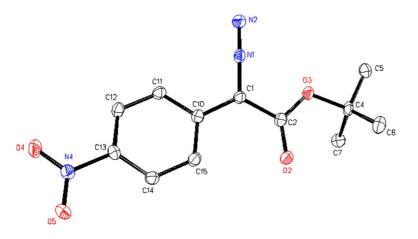




Figure 22. ORTEP plot of 8g, hydrogen atoms are omitted. Selected bond lengths (Å) and angles (°):

| <b>J</b>               | <b>J</b>             |           | 3 ( )      |
|------------------------|----------------------|-----------|------------|
|                        |                      | C321-C331 | 1.377(6)   |
| Cu11-C11               | 1.825(4)             | C331-C341 | 1.401(6)   |
| Cu11-N21               | 2.000(3)             | C341-O11  | 1.348(5)   |
| Cu11-N21<br>Cu11-N11   | 2.000(3)             | C341-C351 | 1.401(6)   |
| Cu11-N11<br>Cu11-P11   | 2.5561(12)           | C351-C361 | 1.357(5)   |
| N11-P11                | 1.606(3)             | O11-C371  | 1.442(5)   |
| N11-Si11               | 1.706(3)             | C411-C421 | 1.360(6)   |
| N21-P11                | 1.604(3)             | C411-C461 | 1.383(6)   |
| N21-F11<br>N21-Si21    | 1.698(3)             | C421-C431 | 1.390(7)   |
| P11-C151               | 1.858(5)             | C431-C441 | 1.386(7)   |
| P11-C151               | 1.874(5)             | C441-C451 | 1.354(7)   |
| Si11-C221              | 1.867(5)             | C451-C461 | 1.380(6)   |
| Si11-C231              | 1.874(5)             | C511-C521 | 1.378(6)   |
| Si11-C231<br>Si11-C211 | 1.881(5)             | C511-C561 | 1.379(5)   |
| Si11-C251              |                      | C521-C531 | 1.388(6)   |
| Si21-C251<br>Si21-C261 | 1.855(5)<br>1.869(5) | C531-C541 | 1.370(6)   |
| Si21-C201<br>Si21-C271 | · · /                | C541-C551 | 1.364(6)   |
| Cl41-C441              | 1.875(5)<br>1.739(5) | C551-C561 | 1.377(6)   |
| Cl51-C541              | 1.758(4)             | Cu12-C12  | 1.819(4)   |
| C11-C311               | 1.431(5)             | Cu12-N12  | 1.986(3)   |
| C11-C21                | 1.484(6)             | Cu12-N22  | 2.002(3)   |
| C21-O21                | 1.200(5)             | Cu12-P12  | 2.5579(12) |
| C21-O21<br>C21-O31     | 1.356(5)             | N12-P12   | 1.601(3)   |
| O31-C31                | 1.460(4)             | N12-Si12  | 1.708(3)   |
| C31-C411               | 1.511(5)             | N22-P12   | 1.610(3)   |
| C31-C411<br>C31-C511   | 1.513(5)             | N22-Si22  | 1.694(3)   |
| C111-C131              |                      | P12-C152  | 1.858(5)   |
| C111-C131              | 1.490(8)             | P12-C112  | 1.860(4)   |
| C111-C141<br>C111-C121 | 1.510(8)<br>1.521(7) | Si12-C222 | 1.855(5)   |
| C151-C121              | 1.524(7)             | Si12-C212 | 1.863(5)   |
| C151-C101              | 1.535(6)             | Si12-C232 | 1.878(5)   |
| C151-C171<br>C151-C181 | 1.538(7)             | Si22-C252 | 1.847(7)   |
| C311-C321              | 1.412(5)             | Si22-C262 | 1.847(7)   |
| C311-C321              |                      | Si22-C272 | 1.856(5)   |
| 0311-0301              | 1.416(5)             |           |            |

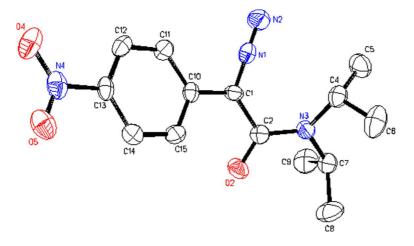
| CI42-C442     | 1.756(5)   | P11-N21-Si21   | 150.3(2)   |
|---------------|------------|----------------|------------|
| CI52-C542     | 1.739(4)   | P11-N21-Cu11   | 89.64(15)  |
|               |            |                |            |
| C12-C312      | 1.437(5)   | Si21-N21-Cu11  | 119.79(18) |
| C12-C22       | 1.485(6)   | N21-P11-N11    | 103.02(17) |
| C22-O22       | 1.203(4)   | N21-P11-C151   | 109.9(2)   |
|               |            |                |            |
| C22-O32       | 1.350(5)   | N11-P11-C151   | 111.1(2)   |
| O32-C32       | 1.467(4)   | N21-P11-C111   | 109.7(2)   |
| C32-C512      | 1.505(5)   | N11-P11-C111   | 109.0(2)   |
| C32-C412      | 1.512(6)   | C151-P11-C111  | 113.6(2)   |
|               |            |                |            |
| C112-C122     | 1.521(6)   | N21-P11-Cu11   | 51.49(12)  |
| C112-C132     | 1.532(7)   | N11-P11-Cu11   | 51.56(12)  |
| C112-C142     | 1.559(7)   | C151-P11-Cu11  | 122.80(16) |
|               |            |                |            |
| C152-C172     | 1.523(6)   | C111-P11-Cu11  | 123.60(17) |
| C152-C162     | 1.532(7)   | N11-Si11-C221  | 108.2(2)   |
| C152-C182     | 1.534(7)   | N11-Si11-C231  | 116.2(2)   |
| C312-C362     | 1.410(5)   | C221-Si11-C231 | 106.6(3)   |
|               |            |                |            |
| C312-C322     | 1.424(5)   | N11-Si11-C211  | 111.4(2)   |
| C322-C332     | 1.363(6)   | C221-Si11-C211 | 108.3(2)   |
| C332-C342     | 1.402(6)   | C231-Si11-C211 | 105.9(3)   |
| C342-O12      | 1.358(5)   | N21-Si21-C251  | 109.9(2)   |
|               |            |                |            |
| C342-C352     | 1.384(6)   | N21-Si21-C261  | 108.3(2)   |
| C352-C362     | 1.377(5)   | C251-Si21-C261 | 109.1(3)   |
| O12-C372      | 1.441(5)   | N21-Si21-C271  | 115.4(2)   |
| C412-C422     |            | C251-Si21-C271 | 108.6(2)   |
|               | 1.358(6)   |                |            |
| C412-C462     | 1.389(6)   | C261-Si21-C271 | 105.4(2)   |
| C422-C432     | 1.392(7)   | C311-C11-C21   | 114.5(3)   |
| C432-C442     | 1.355(8)   | C311-C11-Cu11  | 128.0(3)   |
| C442-C452     | 1.368(7)   | C21-C11-Cu11   | 117 5(0)   |
|               |            |                | 117.5(3)   |
| C452-C462     | 1.370(6)   | O21-C21-O31    | 123.2(4)   |
| C512-C562     | 1.383(6)   | O21-C21-C11    | 125.1(4)   |
| C512-C522     | 1.393(6)   | O31-C21-C11    | 111.7(3)   |
|               |            |                |            |
| C522-C532     | 1.379(6)   | C21-O31-C31    | 116.7(3)   |
| C532-C542     | 1.380(6)   | O31-C31-C411   | 109.9(3)   |
| C542-C552     | 1.371(6)   | O31-C31-C511   | 107.1(3)   |
| C552-C562     | 1.394(6)   | C411-C31-C511  | 111.7(3)   |
|               |            |                | 100 5(6)   |
| C68-C65#1     | 1.84(5)    | C131-C111-C141 | 109.5(6)   |
| C68-C64#1     | 1.91(5)    | C131-C111-C121 | 108.8(5)   |
| C68-C74       | 1.92(5)    | C141-C111-C121 | 107.3(5)   |
| C60-C81       | 1.47(4)    | C131-C111-P11  | 106.2(4)   |
|               | 1.47(4)    |                |            |
| C60-O60       | 1.65(4)    | C141-C111-P11  | 112.5(4)   |
| O60-C71       | 1.76(4)    | C121-C111-P11  | 112.4(3)   |
| C67-C65       | 1.62(3)    | C161-C151-C171 | 109.5(4)   |
| C61-C71       | 1.89(5)    | C161-C151-C181 | 108.2(5)   |
| C64-C84       |            | C171-C151-C181 |            |
|               | 1.51(6)    |                | 106.8(4)   |
| C64-C83#2     | 1.76(4)    | C161-C151-P11  | 113.7(4)   |
| C64-C68#3     | 1.91(5)    | C171-C151-P11  | 112.6(3)   |
| C65-C68#3     | 1.84(5)    | C181-C151-P11  | 105.6(3)   |
| C71-C76       | 1.87(3)    | C321-C311-C361 | 115.8(4)   |
|               |            |                |            |
| C72-C76       | 1.37(3)    | C321-C311-C11  | 120.4(4)   |
| C72-C73       | 1.96(2)    | C361-C311-C11  | 123.8(4)   |
| C73-C75       | 1.77(2)    | C331-C321-C311 | 123.0(4)   |
| C75-C76       |            |                |            |
|               | 1.92(3)    | C321-C331-C341 | 118.6(4)   |
| C83-C64#2     | 1.76(4)    | O11-C341-C331  | 124.3(4)   |
| C83-C84       | 1.81(5)    | O11-C341-C351  | 115.7(4)   |
| C11-Cu11-N21  | 142.43(15) | C331-C341-C351 | 119.9(́4)́ |
| C11-Cu11-N11  |            | C361-C351-C341 | 120.2(4)   |
|               | 139.77(15) |                |            |
| N21-Cu11-N11  | 77.76(13)  | C351-C361-C311 | 122.3(4)   |
| C11-Cu11-P11  | 177.26(13) | C341-O11-C371  | 118.8(4)   |
| N21-Cu11-P11  | 38.87(9)   | C421-C411-C461 | 118.3(4)   |
|               | 38.91(10)  |                |            |
| N11-Cu11-P11  |            | C421-C411-C31  | 122.6(4)   |
| P11-N11-Si11  | 149.5(2)   | C461-C411-C31  | 119.0(4)   |
| P11-N11-Cu11  | 89.53(15)  | C411-C421-C431 | 121.1(5)   |
| Si11-N11-Cu11 | 119.48(18) | C441-C431-C421 | 118.9(5)   |
|               |            |                | •••••(•)   |


| C132-C112-C142<br>C122-C112-P12<br>C132-C112-P12<br>C172-C152-C182<br>C172-C152-C182<br>C172-C152-P12<br>C162-C152-P12<br>C162-C152-P12<br>C362-C312-C322<br>C362-C312-C322<br>C362-C312-C12<br>C322-C332-C342<br>C322-C332-C342<br>C322-C332-C342<br>C352-C342-C332<br>C352-C342-C332<br>C352-C362-C312<br>C342-O12-C372<br>C422-C412-C462<br>C422-C412-C32<br>C462-C412-C32<br>C462-C412-C32<br>C462-C412-C32<br>C462-C412-C32<br>C462-C412-C32<br>C462-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C432<br>C422-C422-C422<br>C432-C442-C452<br>C422-C522-C512<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532-C542<br>C522-C532<br>C522-C532-C542<br>C522-C532<br>C522-C532<br>C522-C542-C522<br>C522-C532<br>C522-C542-C522<br>C522-C532<br>C522-C542-C522<br>C522-C542-C522<br>C522-C532<br>C522-C542-C522<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522-C532<br>C522 | $\begin{array}{c} 108.3(4)\\ 112.0(3)\\ 106.1(3)\\ 112.7(4)\\ 108.1(4)\\ 100.7(4)\\ 113.5(3)\\ 105.8(3)\\ 112.4(3)\\ 115.4(3)\\ 120.5(3)\\ 121.8(4)\\ 120.5(3)\\ 121.8(4)\\ 120.3(4)\\ 124.9(4)\\ 115.4(3)\\ 119.7(4)\\ 119.8(4)\\ 122.4(4)\\ 117.9(3)\\ 118.6(4)\\ 123.5(4)\\ 117.9(4)\\ 123.5(4)\\ 117.9(4)\\ 120.5(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 119.8(5)\\ 121.4(4)\\ 119.3(4)\\ 122.0(4)\\ 122.0(4)\\ 122.0(4)\\ 121.4(4)\\ 119.3(4)\\ 122.0(4)\\ 121.4(4)\\ 119.4(3)\\ 119.7(4)\\ 122.0(4)\\ 121.4(4)\\ 119.4(3)\\ 119.7(4)\\ 122.0(4)\\ 121.4(4)\\ 119.4(3)\\ 119.7(4)\\ 122.0(4)\\ 121.4(4)\\ 119.4(3)\\ 119.7(4)\\ 122.0(4)\\ 121.4(4)\\ 119.4(3)\\ 119.7(4)\\ 122.0(4)\\ 121.4(4)\\ 119.4(3)\\ 119.7(4)\\ 122.0(4)\\ 122.0(4)\\ 121.4(4)\\ 119.3(4)\\ 122.0(4)\\ 122.0(4)\\ 121.4(4)\\ 119.3(4)\\ 122.0(4)\\ 121.4(4)\\ 119.4(3)\\ 119.7(4)\\ 120.3(4)\\ 82(3)\\ 103(3)\\ 124(3)\\ 107(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 77(2)\\ 104(5)\\ 133(6)\\ 117(4)\\ 105(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 104(3)\\ 102(2)\\ 10$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C76-C71-C61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 167(3)<br>92.0(19)<br>85.8(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



**Figure 23**. ORTEP plot of ethyl 2-(*o*-nitrophenyl)-2-diazoacetate. Hydrogen atoms are omitted. Selected bond lengths (Å) and angles (°): C(1)-C(7) 1.4686(18), C(7)-N(2) 1.3229(16), N(2)-N(3) 1.1224(15), C(7)-C(8) 1.4551(18), C(8)-O(8) 1.2104(16), C(8)-O(9) 1.3409(15).

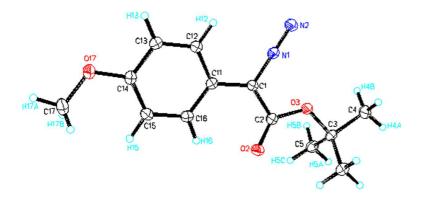
 Table 9. Crystal data and structure refinement for ethyl 2-(o-nitrophenyl)-2-diazoacetate.


| Identification code<br>Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system<br>Space group<br>Z<br>Unit cell dimensions<br>Volume<br>Density (calculated)<br>Absorption coefficient<br>Crystal shape<br>Crystal size<br>Theta range for data collection<br>Index ranges<br>Reflections collected<br>Independent reflections<br>Observed reflections<br>Absorption correction<br>Max. and min. transmission<br>Refinement method | ivsh2<br>$C_{10}H_9N_3O_4$<br>235.20<br>200(2) K<br>0.71073 Å<br>Monoclinic<br>$P2_1/c$<br>4<br>$a = 8.6002(4)$ Å $\alpha = 90$ deg.<br>$b = 8.4637(4)$ Å $\beta = 98.119(1)$ deg.<br>$c = 14.9375(6)$ Å $\gamma = 90$ deg.<br>1076.40(8) Å <sup>3</sup><br>1.45 g/cm <sup>3</sup><br>0.12 mm <sup>-1</sup><br>polyhedron<br>0.44 x 0.22 x 0.05 mm <sup>3</sup><br>2.4 to 27.5 deg.<br>-11<=h<=11, -10<=k<=10, -19<=l<=19<br>10798<br>2466 (R(int) = 0.0334)<br>1837 (l >2 $\sigma$ (l))<br>Semi-empirical from equivalents<br>0.99 and 0.95<br>Full-matrix least-squares on F <sup>2</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Goodness-of-fit on F <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Final R indices (I> $2\sigma$ (I))<br>Largest diff. peak and hole                                                                                                                                                                                                                                                                                                                                                                                             | R1 = 0.036, wR2 = 0.079<br>0.20 and -0.19 eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



**Figure 24**. ORTEP plot of **7b**. Hydrogen atoms are omitted. Selected bond lengths (Å) and angles (°):O(2)-C(2) 1.207(2), O(3)-C(2) 1.343(2), O(4)-N(4) 1.228(2), O(5)-N(4) 1.226(2), N(1)-N(2) 1.121(2), N(1)-C(1) 1.329(3), N(4)-C(13) 1.462(2), C(1)-C(10) 1.460(3), C(1)-C(2) 1.470(3).

#### Table 10. Crystal data and structure refinement for 7b.


| Identification code<br>Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system<br>Space group<br>Z<br>Unit cell dimensions | ivsh10<br>$C_{12}H_{13}N_3O_4$<br>263.25<br>100(2) K<br>0.71073 Å<br>monoclinic<br>P2 <sub>1</sub> /c<br>4<br>$a = 9.067(3)$ Å $\alpha = 90.0$ deg.<br>$b = 12.732(4)$ Å $\beta = 97.935(7)$ deg. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume<br>Density (calculated)<br>Absorption coefficient                                                                                              | b = 12.732(4) Å $\beta$ = 97.935(7) deg.<br>c = 10.946(3) Å $\gamma$ = 90.0 deg.<br>1251.6(7) Å <sup>3</sup><br>1.40 g/cm <sup>3</sup><br>0.11 mm <sup>-1</sup>                                   |
| Crystal shape                                                                                                                                         | irregular                                                                                                                                                                                         |
| Crystal size                                                                                                                                          | 0.27 x 0.14 x 0.05 mm <sup>3</sup>                                                                                                                                                                |
| Theta range for data collection                                                                                                                       | 2.3 to 28.3 deg.                                                                                                                                                                                  |
| Index ranges                                                                                                                                          | -9≤h≤11, -5≤k≤15, -14≤l≤4                                                                                                                                                                         |
| Reflections collected                                                                                                                                 | 3139                                                                                                                                                                                              |
| Independent reflections                                                                                                                               | 2533 (R(int) = 0.0195)                                                                                                                                                                            |
| Observed reflections                                                                                                                                  | 2052 (I >2σ(I))                                                                                                                                                                                   |
| Absorption correction                                                                                                                                 | Semi-empirical from equivalents                                                                                                                                                                   |
| Max. and min. transmission                                                                                                                            | 0.99 and 0.97                                                                                                                                                                                     |
| Refinement method                                                                                                                                     | Full-matrix least-squares on $F^2$                                                                                                                                                                |
| Data/restraints/parameters                                                                                                                            | 2533 / 0 / 224                                                                                                                                                                                    |
| Goodness-of-fit on $F^2$                                                                                                                              | 1.07                                                                                                                                                                                              |
| Final R indices (I>2 $\sigma$ (I))                                                                                                                    | R1 = 0.054, wR2 = 0.123                                                                                                                                                                           |
| Largest diff. peak and hole                                                                                                                           | 0.37 and -0.25 eÅ <sup>-3</sup>                                                                                                                                                                   |



**Figure 25**. ORTEP plot of **7d**. Hydrogen atoms are omitted. Selected bond lengths (Å) and angles (°): C(1)-N(1) 1.323(4), C(1)-C(10) 1.452(4), C(1)-C(2) 1.497(5), N(1)-N(2) 1.138(4), C(2)-O(2) 1.226(4), C(2)-N(3) 1.364(4), N(4)-O(5) 1.232(4), N(4)-O(4) 1.237(4), N(4)-C(13) 1.465(4).

| Table 11 | . Crystal | data | and | structure | refinement | for <b>7d</b> . |
|----------|-----------|------|-----|-----------|------------|-----------------|
|----------|-----------|------|-----|-----------|------------|-----------------|

| Identification code<br>Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system<br>Space group<br>Z<br>Unit cell dimensions                                                                                                                                                                                                                                                                               | ivsh8<br>$C_{14}H_{18}N_4O_3$<br>290.32<br>200(2) K<br>0.71073 Å<br>Monoclinic<br>P2 <sub>1</sub> /c<br>8<br>a = 18.164(3) Å $\alpha$ = 90 deg.<br>b = 12.3328(19) Å $\beta$ = 102.993(5) deg.<br>c = 13.978(3) Å $\gamma$ = 90 deg.                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume<br>Density (calculated)<br>Absorption coefficient<br>Crystal shape<br>Crystal size<br>Theta range for data collection<br>Index ranges<br>Reflections collected<br>Independent reflections<br>Observed reflections<br>Absorption correction<br>Max. and min. transmission<br>Refinement method<br>Data/restraints/parameters<br>Goodness-of-fit on $F^2$<br>Final R indices (I>2 $\sigma$ (I))<br>Largest diff. peak and hole | $\begin{array}{l} 3051.2(9) \ \text{Å}^3 \\ 1.26 \ \text{g/cm}^3 \\ 0.09 \ \text{mm}^{-1} \\ \text{polyhedron} \\ 0.22 \ \text{x} \ 0.22 \ \text{x} \ 0.08 \ \text{mm}^3 \\ 2.0 \ \text{to} \ 21.5 \ \text{deg.} \\ -15 \leq h \leq 18, \ -12 \leq k \leq 12, \ -12 \leq l \leq 14 \\ 9603 \\ 3493 \ (\text{R(int)} = 0.0685) \\ 1925 \ (\text{I} > 2\sigma(\text{I})) \\ \text{Semi-empirical from equivalents} \\ 0.99 \ \text{and} \ 0.98 \\ \text{Full-matrix least-squares on F}^2 \\ 3493 \ / \ 0 \ / \ 387 \\ 0.94 \\ \text{R1} = 0.044, \ \text{wR2} = 0.078 \\ 0.16 \ \text{and} \ -0.23 \ \text{e}^{\text{A}^3} \end{array}$ |



**Figure 26**. ORTEP plot of **7f**. Selected bond lengths (Å) and angles (°):C(1)-N(1) 1.3188(17), C(1)-C(2) 1.4679(18), C(2)-O(2) 1.2069(16), C(2)-O(3) 1.3487(15), N(1)-N(2) 1.1268(17), C(1)-C(11) 1.4667(18), C(14)-O(17) 1.3726(16).

Table 12. Crystal data and structure refinement for 7f.

| Identification code<br>Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system<br>Space group<br>Z<br>Unit cell dimensions                                                                                                                                                                                                                                                | ivsh19<br>$C_{13}H_{16}N_2O_3$<br>248.28<br>100(2) K<br>0.71073 Å<br>orthorhombic<br>Pnma<br>4<br>$a = 8.5078(8)$ Å $\alpha = 90$ deg. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Volume<br>Density (calculated)<br>Absorption coefficient<br>Crystal shape<br>Crystal size<br>Theta range for data collection<br>Index ranges<br>Reflections collected<br>Independent reflections<br>Observed reflections<br>Absorption correction<br>Max. and min. transmission<br>Refinement method<br>Data/restraints/parameters<br>Goodness-of-fit on $F^2$<br>Final R indices (I>2 $\sigma$ (I)) | $\begin{array}{l} a = 0.3070(6) \ A & \beta = 90 \ deg. \\ b = \ 6.7786(6) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                      |
| Largest diff. peak and hole                                                                                                                                                                                                                                                                                                                                                                          | $0.32 \text{ and } -0.26 \text{ e}^{-3}$                                                                                               |

### References

- (1) M. Regitz, *Chem. Ber.* **1965**, 1210.
- (2) T.G. Curphey, Org. Prep. Proced. Int. 1981, 13(2), 112.
- (3) R. E. Harmon, G. Wellman and S.K. Gupta, J. Org. Chem. 1973, 38, 11.
- (4) B.F. Straub, F. Eisenträger and P. Hofmann, *Chem. Commun.* **1999**, 2507.
- (5) K. A. Connors, *Chemical Kinetics*, VCH Publishes, 1990.
- (6) Prepared by modificated method of L. Lombardo and L.N. Mander, *Synthesis*, **1980**, 368.
- (7) Prepared by modificated method: B. Neises and W. Steglich, *Org. Synth. Coll.* **1992**, *70*, 93.
- (8) (a) Eichkorn, K.; Treutler, O.; Oehm, H.; Haeser, M.; Ahlrichs, R. *Chem. Phys. Lett.* 1995, *240*, 283; (b) Eichkorn, K.; Treutler, O.; Oehm, H.; Haeser, M.; Ahlrichs, R. *Chem. Phys. Lett.* 1995, *242*, 652; (c) Ahlrichs, R.; Baer, M.; Haeser, M.; Horn, H.; Koelmel, C. *Chem. Phys. Lett.* 1989, *162*, 165.
- (9) Becke, A. D. *Phys. Rev.* **1988**, *A38*, 3098.
- (10) (a) Perdew, J. P.; Zunger, A. *Phys. Rev.* **1981**, *B23*, 5048. (b) Perdew, J. P. *Phys. Rev.* **1986**, *B33*, 8822.

-----End of the document-----