Supporting Information

Size and Growth Rate Dependent Structural Diversification of Fe₃O₄/CdS

Anisotropic Nanocrystal Heterostructures

Hunter McDaniel and Moonsub Shim*

Department of Materials Science & Engineering, University of Illinois at Urbana-Champaign,

Urbana, IL 61801

Figure S1. Difference spectra of Fe₃O₄/CdS nanocrystal heterostrctures after each of the first three CdS growth injection steps. Arrow indicates the progression of the spectrum with each growth step. $\Delta\alpha$ corresponds to absorption spectrum of Fe₃O₄/CdS nanocrystal heterostrctures with initial Fe₃O₄ nanocrystal spectrum subtracted. Inset shows the actual spectra including the initial Fe₃O₄ nanocrystal spectrum (α = absorbance). Initial Fe₃O₄ nanocrystals were ~ 7 nm diameter. Each growth injection consisted of 0.5 mmol of Cd/S reagents.

Figure S2. Schematic of the coincidence sites on the $(1\ 1\ 1)_{Fe3O4}/(1\ 0\ \overline{1}\ 1)_{CdS(Wurtzite)}$ junction planes. Smaller red circles represent Fe atoms and the larger blue filled circles represent S atoms. Open circles represent S atoms that are slightly out of the plane with respect to the blue filled circles.