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Scheme S1. Scheme of the proton conductivity test cell. The relative humidity was varied by 

controlling the vapor pressure in the cell, which was generated by heating a small quantity of 

water on the bottom of the cell up to various temperatures. Water in the cell was stirred to 

keep homogenous temperature while heating. In addition, the temperature of the sample was 

independently controlled and measured adjacently to the pellet using another thermocouple. 
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Figure S1. SEM images (a,b) and nitrogen sorption isotherms (c,d) of the pressed samples 

pelletized with a pressure of 150 kg cm-2 (15 MPa) in the pellet preparation: (a,c) pressed 

sample NP20, and (b,d) pressed sample NP40. The insets in panel (c) and (d) represent the 

BJH pore size distributions of pressed NP20 and NP40. Their corresponding BET specific 

surface areas (SBET) and total pore volumes (V) are listed in panel (c) and (d).  
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Figure S2. (a) Typical a.c. complex impedance spectra for NP40 measured at 130 oC and 

under various RH conditions. It can be seen that the high-frequency part of impedance spectra 

shifts to a lower resistance (the real part of a complex spectrum, Z`) as the humidity is 

increased. (b) Example fitting curve of ac impedance response at 40% RH using an equivalent 
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circuit as shown in the inset. The equivalent circuit consists of a parallel resistor-capacitor 

pair (Rs-C) and a second Rct-CPE (constant phase element) pair with a Warburg finite length 

element (Zw) reflecting the linear response at low frequencies. The resistor Rs represents the 

bulk resistance of the sample, and the second pair corresponds to the electrode/sample 

interfacial impedance, in which CPE is used to better present the depressed arc than the 

conventional RC element. 


