Supporting Information for
Highly Enantioselective Hydrogenation of Enamides Catalyzed by Chiral Phosphoric Acids

Guilong Li and Jon C. Antilla*
Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE205A, Tampa, Florida 33620
jantilla@cas.usf.edu

General Considerations S2
Experimental section S3
Compound Characterization data S3-S7
References S7
Spectra Copies of chiral HPLC S8-37

General Considerations: All reactions were carried out in flame-dried or oven-dried screw-cap test tubes with magnetic stirring. All solvents (toluene, dichloromethane, and THF) were purified by passing through a column of activated alumina under a dry argon atmosphere. Ethyl acetate was purchased from Aldrich and dried with molecular sieves ($4 \AA$). Additional solvents (acetonitrile and chloroform) were purchased anhydrous from commercial sources and transferred under an argon atmosphere. VAPOL phosphoric acid was synthesized according to the literature procedure. ${ }^{1}$ Chiral BINOL was purchased from commercial sources and used without further purification. Substituted BINOL phosphoric acids (A3, and A4) were prepared from chiral BINOL according to the known literature procedures. ${ }^{2}$ Phenylphosphinic acid was purchased from commercial sources and used without further purification. Thin layer chromatography was performed on Merck TLC plates (silica gel 60 F254). Flash column chromatography was performed with Merck silica gel (230-400 mesh). Enantiomeric excess (ee) was determined using a Varian Prostar HPLC with a 210 binary pump and a 335 diode array detector. Column conditions are reported in the experimental section below. Melting points were determined using a MEL-TEMP 3.0 instrument and are uncorrected. Optical rotations were performed on a Rudolph Research Analytical Autopol IV polarimeter (λ 589) using a 700- L cell with a path length of 1-dm. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker Avance DPX-250 (250 MHz) instrument with chemical shifts reported relative to tetramethylsilane (TMS). Compounds described in the literature were characterized by comparing their ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR chemical shift and melting points to the reported values.

All enamides were prepared according to the reported procedures except that the purification of the enamides was by flash column chromatography (EtOAc / hexane) and followed by recrystallization from EtOAc/hexane. ${ }^{3}$

All racemic amide products were prepared by hydrogenation of the corresponding enamide with $10 \% \mathrm{Pd} / \mathrm{C}$ as the catalyst and by using EtOAc as the solvent.

Typical procedure for the asymmetric hydrogenation of enamide catalyzed by a

 dual-catalytic system of a chiral Brønsted acid and acetic acid (Method B): To a flame-dried reaction tube was added enamide $1(0.2 \mathrm{mmol})$, Hanztsch ester 2 (55.7 $\mathrm{mg}, 0.22 \mathrm{mmol}$) and catalyst $\mathbf{A 4}(1.4 \mathrm{mg}, 0.002 \mathrm{mmol})$. The mixture was purged with argon, then acetic acid $(1.0 \mu \mathrm{~L}, 0.02 \mathrm{mmol})$ and toluene $(1.2 \mathrm{~mL})$ were added. The suspension was heated to $50^{\circ} \mathrm{C}$ with stirring. The crude product was purified by flash column chromatography (EtOAc/hexane) after the reaction was completed (monitored by TLC) to provide pure product amide 3. ee values were measured on HPLC with a suitable chiral column.
(R)-N-(1-phenylethyl)acetamide (3a) ${ }^{4}$

The product was obtained by flash chromatography (hexane: EtOAc $=1: 1$ to EtOAc) as a white solid, $31.4 \mathrm{mg}, 97 \%$ yield, 91% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 9.12 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 11.60 \mathrm{~min}$. Melting point: $89-91{ }^{\circ} \mathrm{C} \cdot[\alpha]^{20}{ }_{\mathrm{D}}=109.3(\mathrm{c}=1.49, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.46(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 5.04-5.15(\mathrm{~m}, 1 \mathrm{H}), 6.09(\mathrm{br}, 1 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz, CDCl_{3}): $\delta 21.8,23.4,48.8,126.2,127.3,128.7,143.3,169.2$.

(R)- N-(1- p-tolylethyl)acetamide ($\mathbf{3 b})^{5}$
This reaction was performed in 0.1 mmol scale. The product was obtained by flash
chromatography (hexane: $\mathrm{EtOAc}=1: 1$ to EtOAc) as a white solid, $16.5 \mathrm{mg}, 93 \%$ yield, 90% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), t ${ }_{r-m a j o r} 9.99 \mathrm{~min}, t_{r-\text { minor }} 13.03 \mathrm{~min}$. Melting point: $80-82^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+135.7(\mathrm{c}=0.715$, EtOH). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.46$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.96 (s, 3H), 2.32(s, 3H), 5.03-5.14 (m, 1H), 5.78 (br, 1H), 7.17(dd, $J=7.8,9.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5MHz, CDCl_{3}): $\delta 21.1,21.7,23.5,48.6,126.2,129.3,137.1,140.2,169.0$.

(R)- N-(1-(4-chlorophenyl)ethyl)acetamide (3c) ${ }^{6}$
The product was obtained by flash chromatography (hexane: EtOAc $=1: 1$ to EtOAc) as a white solid, 34.6 mg , 88% yield, 91% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 10.71 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 14.21 \mathrm{~min}$. Melting point: 97-99 ${ }^{\circ} \mathrm{C} \cdot[\alpha]^{20}{ }_{\mathrm{D}}=+122.3$ (c = 1.38, EtOH). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.43$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.95$ (s, 3H), 4.99-5.11 (m, 1H), 6.02 (br, 1H), 7.25 (dd, $J=$ 8.8, $6.8 \mathrm{~Hz}, 4 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 21.7, 23.3, 48.2, 127.6, 128.7, 133.0, 141.9, 169.2.

N-(1-(4-fluorophenyl)ethyl)acetamide (3d) ${ }^{7}$
The product was obtained by flash chromatography (hexane: EtOAc $=1: 1$ to EtOAc) as a white solid, 34.9 mg , 96% yield, 89% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 9.88 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 12.65 \mathrm{~min}$. Melting point: $118-120{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+105.2(\mathrm{c}=1.60, \mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 5.01-5.13(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{br}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.6,2 \mathrm{H})$, 7.24-7.29 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.8,23.3,48.2,115.3$ (d, $J=$ $21.3 \mathrm{~Hz}), 127.8(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 139.2(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 161.9(\mathrm{~d}, J=243.8 \mathrm{~Hz}), 169.2$.

(R)-N-(1-(4-(trifluoromethyl)phenyl)ethyl)acetamide (3e) ${ }^{5}$

The product was obtained by flash chromatography (hexane: EtOAc $=1: 1$ to EtOAc) as a white solid, $44.3 \mathrm{mg}, 96 \%$ yield, 87% ee. Melting point: $101-102{ }^{\circ} \mathrm{C}$. HPLC analysis: Chiralcel AD-H (hexane/iPrOH $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 8.71 \mathrm{~min}, t$ r-minor 11.63 min. $[\alpha]^{20}{ }_{\mathrm{D}}=+85.8$ (c = 1.62, EtOH). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.44(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 5.05-5.16(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{br}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=$ 8.0, 2H), $7.56(\mathrm{~d}, J=8.0,2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.8,23.2,48.6$, $124.1(\mathrm{~d}, J=270.3 \mathrm{~Hz}), 125.6(\mathrm{q}, J=4.0 \mathrm{~Hz}), 126.4,129.5(\mathrm{~d}, J=32.1 \mathrm{~Hz}), 147.5$, 169.4.

(R)-N-(1-(4-methoxyphenyl)ethyl)acetamide (3f) ${ }^{5}$

No cocatalyst acetic acid was used in this case. The product was obtained by flash chromatography (hexane: $\mathrm{EtOAc}=1: 1$ to EtOAc) as a white solid, $37.1 \mathrm{mg}, 96 \%$ yield, 95% ee. Melting point: $84-85{ }^{\circ} \mathrm{C}$. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-minor }} 16.48 \mathrm{~min}, t_{\mathrm{r} \text {-major }} 18.64 \mathrm{~min} .[\alpha]^{20}{ }_{\mathrm{D}}=+$ 140.9 (c = 1.475, EtOH). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.45(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.94$ (s, 3H), 3.78(s, 3H), 4.99-5.11(m, 1H), 5.93 (br, 1H), 6.85(d, J = 8.8, Hz, 2H), 7.23(d, $J=8.8, \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.7,23.4,48.2,114.0,127.4$, 135.4, 158.8, 169.1 .

(R)-N-(1-(naphthalen-2-yl)ethyl)acetamide (3g) ${ }^{8}$

The product was obtained by flash chromatography (hexane: EtOAc = 1:1 to EtOAc) as a white solid, $43.0 \mathrm{mg}, 99 \%$ yield, 92% ee. Melting point: $108-109{ }^{\circ} \mathrm{C}$. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 13.12 \mathrm{~min}, t$ r-minor 19.56 min. $[\alpha]^{20}{ }_{D}=+102.0(c=1.97, E t O H) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 5.21-5.32(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$,
7.40-7.48 (m, 3H), 7.73-7.81 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (62.5 MHz, CDCl_{3}): $\delta 21.7,23.4$, 48.9, 124.6, 124.8, 125.9, 126.3, 127.6, 127.9, 128.5, 132.7, 133.4, 140.7, 169.3.

(S)-N-(1-(naphthalen-1-yl)ethyl)acetamide (3h) ${ }^{5,9}$

The product was obtained by flash chromatography (hexane: EtOAc $=1: 1$ to EtOAc) as a white solid, $18.2 \mathrm{mg}, 43 \%$ yield, 78% ee. Melting point: $147-149{ }^{\circ} \mathrm{C}$. HPLC analysis: Chiralcel AS-H (hexane/iPrOH $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major } 29.43 \mathrm{~min}, t}$ r-minor 36.89 min. $[\alpha]^{20}{ }_{D}=-47.9\left(c=0.82\right.$, EtOH). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.66$ (d, J = 6.5 Hz, 3H), 1.94 (s, 3H), 5.83-5.94 (m, 2H), 7.44-7.55 (m, 4H), 7.78-8.12 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.7,23.4,44.7,122.6,123.5$, 125.2, 125.9, 126.6, 128.4, 128.8, 131.2, 134.0, 138.3, 168.9.

(R)-N-(1-(3-methoxyphenyl)ethyl)acetamide (3i) ${ }^{10}$

The product was obtained by flash chromatography (hexane: EtOAc $=1: 1$ to EtOAc) as an oil, $38.0 \mathrm{mg}, 98 \%$ yield, 71% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 13.40 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 16.69 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=+$ 93.8 (c = 1.58, EtOH). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.44$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.94 (s, 3H), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), 5.00-5.11 (m, 1H), 6.09 (br, 1H), 6.76-6.89 (m, 3H), $7.23(\mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.8,23.4,55.2,112.3,112.4,118.4$, 129.7, 145.0, 159.8, 169.2.

(S)-N-(1-(2-methoxyphenyl)ethyl)acetamide ($\mathbf{3 j})^{10 \mathrm{~b}}$

The product was obtained by flash chromatography (hexane: EtOAc $=1: 1$ to EtOAc) as a white solid, 36.9 mg , 96% yield, 41% ee. HPLC analysis: Chiralcel AD-H
(hexane $/ \mathrm{iPrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-minor }} 11.97 \mathrm{~min}, t_{\mathrm{r} \text {-major }} 16.69 \mathrm{~min}$. Melting point: $142-144{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=-38.3\left(\mathrm{c}=1.69\right.$, EtOH). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.41(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.95$ (s, 3H), 3.86 (s, 3H), 5.20-5.32 (m, 1H), 6.50 (d, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 21.5,23.6,55.4,111.1,120.9,128.0,128.4,131.0,157.0,168.8$.

References:

1. (a) Bao J.; Wulff, W. D.; Dominy, J. B.; Fumo, M. J.; Grant, E. B.; Rob, A. C.; Whitcomb, M. C.; Yeung, S.-M.; Ostrander, R. L.; Rheingold, A. L. J. Am. Chem. Soc. 1996, 118, 3392. (b)Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2005, 127, 15696.
2. For procedures, see: (a)Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84. For characterization data, see: (b) Inanaga, J. EP 1134209 A1, 2001, 16 pp. (c) toh, J.; Fuchibe, K.; Akiyama, T. Angew Chem., Int Ed. 2006, 45, 4796.
3. Burk, M. J.; Casy, G.; Johnson, N. B. J. Org. Chem. 1998, 63, 6084.
4. Zhao, D.; Wang, Z.; Ding, K. Tetrahedron Lett. 2007, 48, 5095.
5. Kim, M.-J.; Kim, W.-H.; Han, K.; Choi, Y. K.; Park, Org. Lett. 2007, 9, 1157.
6. Zhang, Q.; Takacs, J. M. Org. Lett. 2008, 10, 545.
7. Hu, X.-P.; Zheng, Z. Org. Lett. 2004, 6, 3585.
8. (a) Paetzold, J.; Baeckvall, J. E. J. Am. Chem. Soc. 2005, 127, 17620. (b) Hansen, A.L.; Skrydstrup, T. J. Org. Chem. 2005, 70, 5997.
9. Hamersak, Z.; Roje, M.; Hollosi, M.; Majer, Z.; Sunjic, V. Spectroscopy Letters, 2002, 35, 73.
10. (a) Sanz, R.; Martinez, A.; Guilarte, V.; Alvarez-Gutierrez, J. M.; Rodriguez, F. Eur. J. Org.Chem. 2007, 28, 4642. (b) Horiba, M.; Yamamoto, S.; Oi, N.; Agricultural and Biological Chemistry, 1982, 46, 1219.

System : HPLC Acquired : 11/13/2008 10:33:03 AM
Method : LGL
User: Gerald Rowland

Peak results :

Index	Name	Time [Min]	Quantity r\% Area]	Height [mAU]	Area [mAUMin]	Area \% $\%$ \%
1	UNKNOWN	8.88	50.13	11.7	13.9	50.130
2	UNKNOWN	11.25	49.87	15.3	13.8	49.870
Total			100.00	27.0	27.7	100.000

LGL3-150(AD95051)-21.DATA [Prostar 335 Absorbance Analog Chann

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	9.03	95.44	11.1	16.8	95.442
2	UNKNOWN	11.47	4.56	0.9	0.8	4.558
Total			100.00	12.0	17.6	100.000

System : HPLC Acquired : 7/9/2008 3:33:32 PM
Method : LGL
User: Gerald Rowland
Processed : 7/9/2008 3:59:08 PM
Printed : 11/7/2008 2:52:45 PM

Peak results :

LGL3-102(AD95051)1. DATA [Prostar 335 Absorbance Analog Channel 1 DÇ OOGÑ;W óc+î....à_É $f \sim$]

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	10.89	49.45	11.4	9.6	49.449
2	UNKNOWN	14.69	50.55	11.6	9.8	50.551
Total			100.00	23.0	19.4	100.000

LGL3-147(AD95051)2.DATA [Prostar 335 Absorbance Analog Channel 1 DÇ \square ȮGÑ ${ }_{i} W$ óc+î...,à_Éf~]

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	9.99	95.02	6.3	4.3	95.023
2	UNKNOWN	13.03	4.98	0.4	0.2	4.977
Total			100.00	6.7	4.5	100.000

Peak results :

LGL3-111B(AD95051)1.DATA [Prostar 335 Absorbance Analog Channel 1 DÇ \square OGÑ;W óc+î...à_Éf~]

Index	Name	Time [Min]	Quantity \% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	10.47	50.22	6.4	5.3	50.222
2	UNKNOWN	13.73	49.78	7.4	5.3	49.778
Total			100.00	13.8	10.6	100.000

LGL3-154(AD95051)2.DATA [Prostar 335 Absorbance Analog Channel 1 DÇ \square ÒGÑ;W óc+1....à_Éf~]

Index	Name	Time $[$ Min] $]$	Quantity [\% Area]	Height [mAU]	Area $[$ mAU.Min] $]$	Area \% $[\%]$
2	UNKNOWN	10.71	95.49	25.7	30.8	95.490
1	UNKNOWN	14.21	4.51	2.1	1.5	4.510
Total			100.00	27.8	32.3	100.000

LOZGIL
レーGGIL

$\checkmark 616 \varepsilon レ$

S86．6乌1 \qquad
S88．と91 \qquad
レヤで69し
 Chemical Formula： $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FNO}$ Exact Mass： 181.0903 Molecular Weight： 181.2068

System : HPLC Acquired : 7/15/2008 5:12:23 PM
Method : LGL
User: Gerald Rowland

Acquired: $7 / 15 / 20085: 12: 23$ PM
Printed : 10/29/2008 4:18:57 PM

Peak results :

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	$\begin{array}{r} \text { Area } \\ {[\mathrm{mAU} . \mathrm{Min}]} \\ \hline \end{array}$	$\begin{array}{r} \text { Area \% } \\ {[\%]} \\ \hline \hline \end{array}$
1	UNKNOWN	9.08	50.04	38.0	31.9	50.037
2	UNKNOWN	11.55	49.96	46.6	31.9	49.963
Total			100.00	84.7	63.8	100.000
LGL3-155(AD95051)1.DATA [Prostar 335 Absorbance Analog Channel 1 bÇ \square OGGNiW óc+li...à à Éf \sim]						
Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	9.88	94.38	97.7	88.5	94.375
2	UNKNOWN	12.65	5.62	8.5	5.3	5.625
Total			100.00	106.2	93.7	100.000

System : HPLC Acquired : 8/26/2008 4:54:24 PM
Method : LGL Processed : 8/26/2008 5:18:19 PM
User : Gerald Rowland
Printed : 8/26/2008 6:02:25 PM

Peak results:

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	$\begin{array}{r} \text { Area } \\ \text { [mAU.Min] } \end{array}$	$\begin{array}{r} \text { Area \% } \\ {[\%]} \\ \hline \end{array}$
1	UNKNOWN	8.71	50.12	3.5	2.4	50.123
2	UNKNOWN	11.27	49.88	2.8	2.4	49.877
Total			100.00	6.3	4.8	100.000

LGL3-193(AD95051)2.DATA [Prostar 335 Absorbance Analog Channe							
Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% $[\%]$	
1	UNKNOWN	8.71	93.64	14.3	10.7	93.639	
2	UNKNOWN	11.63	6.36	0.8	0.7	6.361	
Total			100.00	15.1	11.4	100.000	

System : HPLC
Method : LGL
User: Gerald Rowland

Acquired : 5/30/2008 11:14:04 AM
Processed : 5/30/2008 12:13:47 PM
Printed : 5/30/2008 12:14:52 PM

Peak results :

LGL3-100(AD95051)1.DATA [Prostar 335 Absorbance Analog Channel 1 PÇ \square OGÑ ${ }_{i} W$ óc+1...,à_Éf~]

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	14.61	48.89	5.0	4.1	48.893
2	UNKNOWN	19.04	51.11	4.6	4.3	51.107
Total			100.00	9.6	8.4	100.000

LGL3-97(AD95051)1.DATA [Prostar 335 Absorbance Analog Channel 1 bÇ $\square G$ OÑ ${ }_{i} W$ óc+1....à_Éf~]

Index	Name	Time [Min]	Quantity [\% Area]	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU}$. Min] $]$	Area \% [\%]
1	UNKNOWN	14.53	97.44	18.0	14.7	97.436
2	UNKNOWN	19.00	2.56	0.5	0.4	2.564
Total			100.00	18.4	15.1	100.000

298.8

8レモ691

System : HPLC
Method : LGL
User: Gerald Rowland

Acquired : 7/11/2008 11:47:20 AM
Processed : 7/11/2008 12:16:32 PM
Printed : 10/30/2008 9:51:23 AM

Peak results :

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
2	UNKNOWN	12.80	49.69	60.8	42.6	49.694
1	UNKNOWN	19.09	50.31	50.5	43.2	50.306
Total			100.00	111.3	85.8	100.000

LGL3-151(AD95051)1.DATA [Prostar 335 Absorbance Analog Channel 1 DÇ $\square O ் G N ̃ ; W$ óc $+\hat{1} . .$. ,à_Éf~]

Index	Name	Time [Min] $]$	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% $[\%]$
1	UNKNOWN	13.12	95.96	410.1	306.2	95.959
2	UNKNOWN	19.56	4.04	15.5	12.9	4.041
Total			100.00	425.6	319.0	100.000

System : HPLC
Method : LGL
User: Gerald Rowland

Acquired : 7/16/2008 10:03:47 AM
Processed : 7/16/2008 12:11:46 PM
Printed: 10/30/2008 11:11:26 AM

Peak results :
LGL3-121B(AS90101)-22.DATA [Prostar 335 Absorbance Analog Channel 1 DÇ \square OGÑ; \mathbf{W} óc+î..., à_É $f \sim$]

Index	Name	Time [Min] $]$	Quantity [\% Area]	Height [mAU]	Area [mAUMin] $]$	Area \% [\%]
2	UNKNOWN	30.73	50.42	8.2	34.5	50.424
1	UNKNOWN	36.57	49.58	18.7	34.0	49.576
Total			100.00	26.9	68.5	100.000

LGL3-153(AS90101)1.DATA [Prostar 335 Absorbance Analog Channel 1 DÇ OGGÑ; Óc+î...à_É Éf~]

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAUMin] $]$	Area \% [\%]
1	UNKNOWN	29.43	88.79	12.9	45.2	88.790
2	UNKNOWN	36.89	11.21	3.6	5.7	11.210
Total			100.00	16.4	50.9	100.000

ってがし
てSガレ

 \qquad

System: HPLC
Method : LGL
User : Gerald Rowland

Acquired : 7/30/2008 2:37:24 PM
Processed: 8/1/2008 11:03:37 AM
Printed : 8/1/2008 11:09:51 AM

Peak results :

LGL3-167(AD95051)-31.DATA [Prostar 335 Absorbance Analog Channel 1 DÇ OGNíW óc +1 Î...à $_$É $f \sim$]

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	13.40	49.74	23.8	17.6	49.739
2	UNKNOWN	16.80	50.26	28.4	17.8	50.261
Total			100.00	52.2	35.4	100.000

LGL3-169(AD95051)-32.DATA [Prostar 335 Absorbance Analog Channel 1 ロÇ \square ÓGÑ;W óc+î...,à_Éf~]

Index	Name	Time $[\mathrm{Min}]$	Quantity $[\%$ Area] $]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU}$ Min] $]$	Area \% $[\%]$
1	UNKNOWN	13.33	85.35	21.0	28.1	85.346
2	UNKNOWN	16.69	14.65	4.9	4.8	14.654
Total			100.00	25.9	32.9	100.000

レレーし 6とがし $\angle \triangleright 6^{\circ} 1$ \qquad

ع6L゙L \downarrow
$6 \subseteq \varepsilon \subseteq \subseteq$
809.92

LIL'LL
七Z9 LL

$1+0 \cdot \angle S \downarrow$

LZ8.89। \qquad

System : HPLC
Method : LGL
User : Gerald Rowland

Acquired : 7/16/2008 2:39:21 PM
Processed : 7/16/2008 3:01:45 PM
Printed: 10/30/2008 4:20:21 PM

Peak results :

LGL3-156(AD95051)1.DATA [Prostar 335 Absorbance Analog Channel 1 DÇ \square OGN ${ }_{i} W$ óc+1....à_É $f \sim$]

Index	Name	Time [Min] $]$	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	12.17	50.11	48.5	24.5	50.109
2	UNKNOWN	16.92	49.89	32.3	24.4	49.891
Total			100.00	80.8	48.9	100.000

