
I. LOCAL STABILITY CONDITION: STABILITY INDEX

We shall now set up the local stability condition by looking at the relative population of

a chain with tetrahedra length m respect to its neighbors. Basically, the idea is that the

chains with length m would be more stable when the transition rates to m are larger than

the ones from m.

Looking at the pathways in Fig 2, we write the local stability condition as

T [m−1Si0 →m Si0] × T [m+1Si0 →m Si0]×

T [m+1Si− →m Si0] × T [m−1Si0 →m Si−]×

T [m−1Si− →m Si−] × T [m+1Si− →m Si−]×

T [m−1Si0 →m Al−] × T [m+1Al− →m Si0]×

T [m−1Al− →m Al−] × T [m+1Al− →m Al−] >

T [mSi0 →m−1 Si0] × T [mSi0 →m+1 Si0]×

T [mSi0 →m+1 Si−] × T [mSi− →m−1 Si0]×

T [mSi− →m−1 Si−] × T [mSi− →m+1 Si−]×

T [mAl− →m−1 Si0] × T [mSi0 →m+1 Al−]×

T [mAl− →m−1 Al−] × T [mAl− →m+1 Al−]

(1)

where T is the transition rate per chain and per unit time. On the left side of Eqn 1 we give

the transitions for all pathways that drive to the chains with length m, neutral or negative;

while on the right side, for the pathways from m. Let us now write the expression as a

product of fractions

T [m−1Si0 →m Si0]

T [mSi0 →m−1 Si0]
×

T [m+1Si0 →m Si0]

T [mSi0 →m+1 Si0]
×

T [m+1Si− →m Si0]

T [mSi0 →m+1 Si−]
×

T [m−1Si0 →m Si−]

T [mSi− →m−1 Si0]
×

T [m−1Si− →m Si−]

T [mSi− →m−1 Si−]
×

T [m+1Si− →m Si−]

T [mSi− →m+1 Si−]
×

T [m−1Si0 →m Al−]

T [mAl− →m−1 Si0]
×

T [m+1Al− →m Si0]

T [mSi0 →m+1 Al−]
×

T [m−1Al− →m Al−]

T [mAl− →m−1 Al−]
×

T [m+1Al− →m Al−]

T [mAl− →m+1 Al−]
> 1

(2)

where the pathways to and from m are given in the numerator and denominator respectively.
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We define n(mXq) as the average population of chains mXq with tetrahedra length m,

where X=Si or Al and q=+,0, or -. At thermal equilibrium, we have: n(mXq)T [mXq
→m−1

Y p] = n(m−1Y
p)T [m−1Y

p
→m Xq]. Given the Boltzmann distribution function, we can write

n(mXq) = (N/Z)e−(E(mXq)/kBT ) , where N is the total number of chains, Z is the partition

function, E(mXq) is the energy of chain size m, kB is the Boltzmann constant and T the

temperature. Then, combining these two equations we have

T [m−1Y
p
→m Xq]

T [mXq
→m−1 Y p]

= e−((E(mXq)−E(m−1Y p))/kBT ) (3)

Inserting these fractions of transition ratios in Eq. 1 and after little algebra, we find that

the local stability condition for length m is

2E(m−1Si0) + E(m−1Si−) + E(m+1Si0) + 2E(m+1Si−)

−3E(mSi−) − 3E(mSi0)

E(m−1Si0) + E(m−1Al−) + 2E(m+1Al−)

−E(mSi0) − 3E(mAl−) > 0.

(4)

One sees that the right hand term in the previous expression may be defined as the local

stability index Σ(m). It gives an idea of the chain stability with length m respect to its

neighbors, when removing or adding monomers following the pathways of Fig. 2. In fact, it

is a sort of chemical potential for the involved pathways. Maxima in Σ(m) determine that

the chains with length m are specially stable.

We wish to discuss the role of the Al pathways, given with full lines in Fig. 2. Thus, we

divide the stability index in two contributions

Σ(m) = ΣSi(m) + ΣAl(m) (5)

where ΣSi(m) comes from the pure Si-based pathways,

ΣSi(m) = 2E(m−1Si0) + E(m−1Si−) + E(m+1Si0) + 2E(m+1Si−)

−3E(mSi−) − 3E(mSi0)
(6)

and ΣAl(m) denotes the contributions due to the new pathways of aluminosilicate chains,

ΣAl(m) = E(m−1Si0) + E(m−1Al−) + 2E(m+1Al−)

−E(mSi0) − 3E(mAl−).
(7)
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TABLE I: Condensation energy of a neutral silicate chain of length m-1 (mSi0) with an aluminum

monomer (1Al−), with a neutral silicon monomer (1Si0) and with a charged silicon monomer

(1Si0). Following the same order the end chains are mAl−, mSi0 and mSi−. Remember that the

chains are denoted as mXq, where m is the tetrahedra length, q is the charge, and X is Si or Al.

X=Si indicate that silicon atoms site in the tetrahedra center; and X=Al, an Al atom is at the

end tetrahedra of the chain. Water molecules compensate the missing OHs and the protons in

the reactions (see Eqns. 1 and 2 in text for some examples), but to simplify they are not written.

Chain growth occurs because these energy differences are exothermic.

m mAl− mSi0 mSi−

2 1.46 0.82 1.19

3 0.52 0.17 0.18

4 0.73 0.44 0.39

5 1.08 0.33 1.39

6 0.86 0.6 0.62

7 0.8 0.45 0.36

8 1.77 0.32 1.46

9 0.73 0.5 0.34

3


