I. LOCAL STABILITY CONDITION: STABILITY INDEX

We shall now set up the local stability condition by looking at the relative population of a chain with tetrahedra length m respect to its neighbors. Basically, the idea is that the chains with length m would be more stable when the transition rates to m are larger than the ones from m.

Looking at the pathways in Fig 2, we write the local stability condition as

$$T[_{m-1}Si^{0} \rightarrow_{m} Si^{0}] \times T[_{m+1}Si^{0} \rightarrow_{m} Si^{0}] \times T[_{m+1}Si^{-} \rightarrow_{m} Si^{0}] \times T[_{m-1}Si^{0} \rightarrow_{m} Si^{-}] \times T[_{m-1}Si^{-} \rightarrow_{m} Si^{-}] \times T[_{m+1}Si^{-} \rightarrow_{m} Si^{-}] \times T[_{m-1}Si^{0} \rightarrow_{m} Al^{-}] \times T[_{m+1}Al^{-} \rightarrow_{m} Si^{0}] \times T[_{m-1}Al^{-} \rightarrow_{m} Al^{-}] \times T[_{m+1}Al^{-} \rightarrow_{m} Al^{-}] > T[_{m}Si^{0} \rightarrow_{m-1} Si^{0}] \times T[_{m}Si^{0} \rightarrow_{m+1} Si^{-}] \times T[_{m}Si^{0} \rightarrow_{m+1} Si^{-}] \times T[_{m}Si^{0} \rightarrow_{m+1} Si^{-}] \times T[_{m}Si^{-} \rightarrow_{m-1} Si^{0}] \times T[_{m}Si^{-} \rightarrow_{m-1} Si^{-}] \times T[_{m}Si^{-} \rightarrow_{m-1} Si^{-}] \times T[_{m}Si^{-} \rightarrow_{m+1} Si^{-}] \times T[_{m}Al^{-} \rightarrow_{m-1} Si^{0}] \times T[_{m}Al^{-} \rightarrow_{m-1} Al^{-}] \times T[_{m}Al^{-} \rightarrow_{m+1} Al^{-}] \times T[_{m}Al^{-} \rightarrow_{m-1} Al^{-}] \times T[_{m}Al^{-} \rightarrow_{m-1} Al^{-}] \times T[_{m}Al^{-} \rightarrow_{m+1} Al^{-}]$$

where T is the transition rate per chain and per unit time. On the left side of Eqn 1 we give the transitions for all pathways that drive to the chains with length m, neutral or negative; while on the right side, for the pathways from m. Let us now write the expression as a product of fractions

$$\frac{T[_{m-1}Si^{0} \to_{m} Si^{0}]}{T[_{m}Si^{0} \to_{m-1} Si^{0}]} \times \frac{T[_{m+1}Si^{0} \to_{m} Si^{0}]}{T[_{m}Si^{0} \to_{m+1} Si^{0}]} \times \frac{T[_{m+1}Si^{-} \to_{m} Si^{0}]}{T[_{m}Si^{0} \to_{m+1} Si^{-}]} \times \frac{T[_{m-1}Si^{0} \to_{m} Si^{-}]}{T[_{m}Si^{-} \to_{m-1} Si^{0}]} \times \frac{T[_{m-1}Si^{-} \to_{m} Si^{-}]}{T[_{m}Si^{-} \to_{m-1} Si^{-}]} \times \frac{T[_{m+1}Si^{-} \to_{m} Si^{-}]}{T[_{m}Si^{-} \to_{m+1} Si^{-}]} \times \frac{T[_{m-1}Si^{0} \to_{m} Al^{-}]}{T[_{m}Al^{-} \to_{m-1} Si^{0}]} \times \frac{T[_{m+1}Al^{-} \to_{m} Si^{0}]}{T[_{m}Al^{-} \to_{m-1} Al^{-}]} \times \frac{T[_{m+1}Al^{-} \to_{m+1} Al^{-}]}{T[_{m}Al^{-} \to_{m-1} Al^{-}]} > 1$$
(2)

where the pathways to and from m are given in the numerator and denominator respectively.

We define $n(_mX^q)$ as the average population of chains $_mX^q$ with tetrahedra length m, where X=Si or Al and q=+,0, or -. At thermal equilibrium, we have: $n(_mX^q)T[_mX^q \rightarrow_{m-1} Y^p] = n(_{m-1}Y^p)T[_{m-1}Y^p \rightarrow_m X^q]$. Given the Boltzmann distribution function, we can write $n(_mX^q) = (N/Z)e^{-(E(_mX^q)/k_BT)}$, where N is the total number of chains, Z is the partition function, $E(_mX^q)$ is the energy of chain size m, k_B is the Boltzmann constant and T the temperature. Then, combining these two equations we have

$$\frac{T[_{m-1}Y^p \to_m X^q]}{T[_m X^q \to_{m-1} Y^p]} = e^{-((E(_m X^q) - E(_{m-1}Y^p))/k_B T)}$$
(3)

Inserting these fractions of transition ratios in Eq. 1 and after little algebra, we find that the local stability condition for length m is

$$2E(_{m-1}Si^{0}) + E(_{m-1}Si^{-}) + E(_{m+1}Si^{0}) + 2E(_{m+1}Si^{-}) -3E(_{m}Si^{-}) - 3E(_{m}Si^{0}) E(_{m-1}Si^{0}) + E(_{m-1}Al^{-}) + 2E(_{m+1}Al^{-}) -E(_{m}Si^{0}) - 3E(_{m}Al^{-}) > 0.$$

$$(4)$$

One sees that the right hand term in the previous expression may be defined as the local stability index $\Sigma(m)$. It gives an idea of the chain stability with length m respect to its neighbors, when removing or adding monomers following the pathways of Fig. 2. In fact, it is a sort of chemical potential for the involved pathways. Maxima in $\Sigma(m)$ determine that the chains with length m are specially stable.

We wish to discuss the role of the Al pathways, given with full lines in Fig. 2. Thus, we divide the stability index in two contributions

$$\Sigma(m) = \Sigma_{Si}(m) + \Sigma_{Al}(m) \tag{5}$$

where $\Sigma_{Si}(m)$ comes from the pure Si-based pathways,

$$\Sigma_{Si}(m) = 2E(_{m-1}Si^{0}) + E(_{m-1}Si^{-}) + E(_{m+1}Si^{0}) + 2E(_{m+1}Si^{-}) - 3E(_{m}Si^{-}) - 3E(_{m}Si^{0})$$
(6)

and $\Sigma_{Al}(m)$ denotes the contributions due to the new pathways of aluminosilicate chains,

$$\Sigma_{Al}(m) = E(_{m-1}Si^{0}) + E(_{m-1}Al^{-}) + 2E(_{m+1}Al^{-}) - E(_{m}Si^{0}) - 3E(_{m}Al^{-}).$$
(7)

TABLE I: Condensation energy of a neutral silicate chain of length m-1 $({}_{m}Si^{0})$ with an aluminum monomer $({}_{1}Al^{-})$, with a neutral silicon monomer $({}_{1}Si^{0})$ and with a charged silicon monomer $({}_{1}Si^{0})$. Following the same order the end chains are ${}_{m}Al^{-}$, ${}_{m}Si^{0}$ and ${}_{m}Si^{-}$. Remember that the chains are denoted as ${}_{m}X^{q}$, where m is the tetrahedra length, q is the charge, and X is Si or Al. X=Si indicate that silicon atoms site in the tetrahedra center; and X=Al, an Al atom is at the end tetrahedra of the chain. Water molecules compensate the missing OHs and the protons in the reactions (see Eqns. 1 and 2 in text for some examples), but to simplify they are not written. Chain growth occurs because these energy differences are exothermic.

m	$_{m}Al^{-}$	$_mSi^0$	$_mSi^-$
2	1.46	0.82	1.19
3	0.52	0.17	0.18
4	0.73	0.44	0.39
5	1.08	0.33	1.39
6	0.86	0.6	0.62
7	0.8	0.45	0.36
8	1.77	0.32	1.46
9	0.73	0.5	0.34