New chiral thiophene salen chromium complexes for the asymmetric Henry reaction

Anaïs Zulauf, Mohamed Mellah* and Emmanuelle Schulz*

emmaschulz@icmo.u-psud.fr
Contents
General methods S2
Synthesis of new thiophen-salen chromium complex 3 S2
Representative procedure for Henry reactions S4
Characterization of nitroaldol products S5
${ }^{1} H$ NMR spectrum of compound 7 S8
${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 S9
${ }^{1} H$ NMR spectrum of compound 8 S10
${ }^{13} \mathrm{C}$ NMR spectrum of compound 8 S11
Determination of enantiomeric excesses of nitroaldol product 10 S12
Determination of enantiomeric excesses of nitroaldol product 12a S13
Determination of enantiomeric excesses of nitroaldol product 12b S14
Determination of enantiomeric excesses of nitroaldol product 12c S15
Determination of enantiomeric excesses of nitroaldol product 12d S16
Determination of enantiomeric excesses of nitroaldol product 12e S17
Determination of enantiomeric excesses of nitroaldol product 12 f S18

General methods

All reactions were carried out under an argon atmosphere in oven-dried glassware with magnetic stirring. Solvents were distilled before use : THF and diethylether from sodium metal/benzophenone, MTBE, DME and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from calcium hydride. The "Laboratoire de Catalyse et Synthèse Organique" (Villeurbanne, UMR 5246) is gratefully acknowledged for providing 3-octylthiophene. 3-Tert-butyl-5-bromo-2-hydroxy-benzaldehyde was synthesized according to ref ${ }^{[1]}$, and complexes $\mathbf{1 , 2}$ and $\mathbf{4}$ according to ref ${ }^{[2,3]}$. The aldehydes were distilled before use. Poly-1 was prepared as described in ref ${ }^{[3]} .{ }^{1} \mathrm{H}$ NMR spectra were recorded using 300 or 250 MHz spectrometers with samples dissolved in CDCl_{3} and data are reported in ppm with the solvent signal as reference (7.27 ppm). ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a 250 MHz instrument with samples dissolved in CDCl_{3} and data are reported in ppm with the solvent signal as reference $(77.0 \mathrm{ppm})$. Optical rotations were measured in solution in 10 cm cells at the sodium D line using a polarimeter. IR spectra were recorded as KBr disks. Mass spectra were recorded using ESI, EI or CI techniques. HPLC analyses were carried out on a chromatograph equipped with a UV detector using different chiral colums, as indicated for the description of each product (see below).

Synthesis of thiophen-salen chromium complex 3

Synthesis of 4,4,5,5-tetramethyl-2-(4-octyl-thiophen-2-yl)-[1,3]dioxolane 6 (according to ref ${ }^{[4]}$)
In a schlenk tube a solution of diisopropylamine ($420 \mu \mathrm{~L}, 3 \mathrm{mmol}$) in THF ($500 \mu \mathrm{~L}$) was cooled to $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere and treated with a 1.6 M solution of n-butyllithium (1.88 mL). The temperature was slowly raised up to room temperature for 15 minutes. The reaction mixture was cooled again to $-78{ }^{\circ} \mathrm{C}$ and a solution of 3-octylthiophene ($540 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) in THF (2.5 mL) was added. The mixture was stirred 2 h at $-78^{\circ} \mathrm{C}$ before adding a solution of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($1.01 \mathrm{~mL}, 5 \mathrm{mmol}$) in THF $(1.5 \mathrm{~mL})$. Then the mixture was stirred 1 h at $-78{ }^{\circ} \mathrm{C}$. After warming at room temperature the mixture was poured over crushed ice $/ \mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layers were dried over MgSO_{4} and the solvents were removed under reduced pressure. The crude

[^0]product 6, as a yellow oil, was engaged in the next step without any further purification. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}),, 2.67-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.67-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 10 \mathrm{H}),, 0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.7,138.5,127.6,84.0,31.9,30.7,30.0,29.5,29.4,29.3,24.8,22.7,14.1 . \mathrm{MS}(\mathrm{EI}):$ 322 (20), 225 (14), 224 (100), 223 (45), 123 (11).

Synthesis of 3-tert-butyl-2-hydroxy-5-(4-octyl-thiophen-2-yl)-benzaldehyde 7

A schlenk tube was charged with 3-tert-butyl-5-bromo-2-hydroxybenzaldehyde ($321 \mathrm{mg}, 1.25$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(216 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(199 \mathrm{mg}, 1.9 \mathrm{mmol})$ and was maintained under argon atmosphere by successive vacuo-argon cycles (3 h). A solution of 4,4,5,5-tetramethyl-2-(4-octyl-thiophen-2-yl)-[1,3]dioxolane 6 (2.5 mmol) in degassed DME (2.4 mL) was introduced with a canula in the schlenk and degassed water (0.75 mL) was added. The mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 24 h . Water (20 mL) was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4} and the solvents were removed under reduced pressure. The residue was purified by flash chromatography on silica gel (pentane/diethylether 98/2) to afford 3-tert-butyl-2-hydroxy-5-(4-octylthiophen-2yl)benzaldehyde $7(419 \mathrm{mg}, 90 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.81(\mathrm{~s}, 1 \mathrm{H}), 9.94(\mathrm{~s}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.63$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.69-1.67 (m, 2H), 1.65 (s, 9H), 1.48-1.30 (m, 10H), 0.93 (t, J $=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.0,160.6,144.4,142.9,138.9,131.9,128.6$, $126.4,124.0,120.6,119.0,35.0,31.9,30.7,30.5,29.5,29.4,29.3,29.2,22.7,14.1$. HRMS (EI) : calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{~S}: 371.2045$, found : 371.2033.

Synthesis of ligand $\mathbf{8}$

To a solution of 3-tert-butyl-2-hydroxy-5-(4-octyl-thiophen-2-yl)-benzaldehyde 7 ($419 \mathrm{mg}, 1.13$ mmol) in ethanol ($15.5 \mathrm{~mL}, 0.07 \mathrm{M}$) was added (S, S)-cyclohexane-1,2-diamine ($71.5 \mathrm{mg}, 0.68$ $\mathrm{mmol}, 0.52$ eq.) with continuous stirring, and the mixture was heated at $60^{\circ} \mathrm{C}$ for 5 h . The reaction was cooled to room temperature. The solvents were removed under reduced pressure and the residue was purified by flash chromatography on silica gel (heptane/diethylether 95/5) to afford $8(352 \mathrm{mg}, 76 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1(\mathrm{~s}, 2 \mathrm{H}), 8.33(\mathrm{~s}, 2 \mathrm{H})$, $7.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.34-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.18-1.15(\mathrm{~m}, 28 \mathrm{H}), 1.58(\mathrm{~s}, 18 \mathrm{H})$, $1.01(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,159.9,144.1,144.0,137.6,127.3,127.0$,
124.7, 123.2, 118.5, 118.1, 72.1, 34.9, 32.8, 31.9, 30.7, 30.5, 29.6, 29.5, 29.4, 29.3, 24.3, 22.7, 14.2. HRMS (ESI) : calcd for $\mathrm{C}_{52} \mathrm{H}_{75} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 823.5264$, found 823.5272. IR (CaF_{2} cell, $\left.\mathrm{CHCl}_{3}, v\left(\mathrm{~cm}^{-1}\right)\right): 2928,2857,1632,1470,1424,1215 .[\alpha]^{20}{ }_{\mathrm{D}}:+5.4\left(c 1.01, \mathrm{CHCl}_{3}\right)$.

Synthesis of complex 3

Ligand 8 ($331 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dry, degassed THF (8 mL) was added to a solution of anhydrous $\mathrm{Cr}(\mathrm{II}) \mathrm{Cl}_{2}$ ($56.5 \mathrm{mg}, 0.46 \mathrm{mmol}, 1.15 \mathrm{eq}$.) in dry, degassed THF (8 mL). The resulting brown solution was stirred for 2 h under argon and then exposed to air. Stirring was continued overnight to give a dark brown solution. It was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{NH}_{4} \mathrm{Cl}$ sat. and brine. The organic layer was dried over MgSO_{4} and solvents were removed under reduced pressure to afford the expected complex 3 ($310 \mathrm{mg}, 88 \%$). IR ($\mathrm{KBr}, v\left(\mathrm{~cm}^{-1}\right)$): 2926, 2854, 2346, 1623, 1538, 1467, 1424, 1385, 1322, 1243, 1163. Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{72} \mathrm{ClCrN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$ C, 67.34; H, 8.27; N, 2.80; S, 6.42 \%. Found : C, 67.21; H, 8.33; N, 2.72; S, 7.02 \%.

Representative procedure for Henry reactions

Homogeneous conditions

A schlenk tube was charged with the catalyst ($2 \mathrm{~mol} \%$) and thoroughly maintained under an argon atmosphere by three successive vacuo-argon cycles. DCM or MTBE (4 mL), the aldehyde (1 mmol) and nitromethane ($2 \mathrm{~mL}, 37.5 \mathrm{mmol}$) were introduced with a syringe. In the case of reactions performed at low temperature, the mixture was first cooled to the desired temperature, then followed by the addition of a solution of diisopropylethylamine (1 or 0.5 eq.) in DCM or MTBE (4 mL). The resulting solution was stirred for the specified amount of time. The solvents were then removed under reduced pressure and the residue was purified by flash chromatography on silica gel for the determination of the yield of the reaction and the enantiomeric excess of the product.

Heterogeneous conditions

A schlenk tube was charged with the catalyst poly-1 ($27.4 \mathrm{mg}, 4 \mathrm{~mol} \%$) and thoroughly maintained under an argon atmosphere by three successive vacuo-argon cycles. DCM or MTBE $(4 \mathrm{~mL})$, the aldehyde $(1 \mathrm{mmol})$ and nitromethane $(2 \mathrm{~mL}, 37.5 \mathrm{mmol})$ were introduced with a syringe. In the case of reactions performed at low temperature, the mixture was first cooled to the desired temperature, and then followed by the addition of a solution of diisopropylethylamine (1 or 0.5 eq.) in DCM or MTBE (4 mL). The resulting suspension was stirred for the specified
amount of time. It was then filtered with a filtering syringe and the precipitate was thoroughly washed twice with DCM or MTBE. The solvents of the combined filtrates were removed under reduced pressure and the residue was purified by flash chromatography on silica gel for the determination of the yield of the reaction and the enantiomeric excess of the product. In the schlenk tube, the powdered catalyst was washed with DCM or MTBE, then water and dried under vacuum and new substrates and solvents were added for its recycling.

Characterization of the nitroaldol products

(R)-1-(2-Methoxy-phenyl)-2-nitro-ethanol 10. Solvent for flash chromatography : pentane / diethyl ether 4/1. Yellowish oil, $[\alpha]^{20}{ }_{\mathrm{D}}-36.2\left(c 1.01, \mathrm{CHCl}_{3}\right)$ for $74 \% \mathrm{ee}, \mathrm{lit}^{[5]}[\alpha]_{\mathrm{D}}+42.3(c 1.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for 73% ee material. The ee was determined by HPLC analysis using an IB column (flow rate $=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; 90 \%$ hexane, 10% isopropanol, $\lambda=254 \mathrm{~nm}$), which resolved both enantiomers $\left(t_{R}=9.3 \mathrm{~min}\right.$ (major), $t_{S}=10.2 \mathrm{~min}$). The absolute stereochemistry was assigned as (R)-based on comparison of the measured rotation with the literature value. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}) $\delta 7.44(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{ddd}, J=1.5,7.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=0.9,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=0.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=3.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=3.2,13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55(\mathrm{dd}, J=9.2,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $155.8,129.6,127.0,126.0,120.9,110.4,79.7,67.5,55.2 . \mathrm{MS}(\mathrm{CI}): 215\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right](100), 197$ (14), 137 (14).
(R)-2-Nitro-1-phenyl-ethanol 12a. Solvent for flash chromatography : pentane / diethyl ether 7/3. Yellowish oil, $[\alpha]^{20}{ }_{\mathrm{D}}-30.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for 62% ee, $1 \mathrm{lit}^{[5]}[\alpha]_{\mathrm{D}}+40.7\left(c 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 60% ee material. The ee was determined by HPLC analysis using an IB column (flow rate $1.0 \mathrm{~mL} . \mathrm{min}^{-}$ ${ }^{1}$; 90% hexane, 10% isopropanol, $\lambda=205 \mathrm{~nm}$), which resolved both enantiomers ($t_{R}=9.5 \mathrm{~min}$ (major), $t_{S}=10.2 \mathrm{~min}$). The absolute stereochemistry was assigned as (R)-based on comparison of the measured rotation with the literature value. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.38(\mathrm{~m}$, $5 \mathrm{H}), 5.45(\mathrm{dd}, J=3.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=9.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=3.5,13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 138.2, 129.1, 126.0, 81.2, 71.0. MS (EI) : 106 (100), 105 (89), 77 (54), 51 (10).
(R)-1-(4-Chloro-phenyl)-2-nitro-ethanol 12b. Solvent for flash chromatography : pentane / diethyl ether $7 / 3$. Yellowish oil, $[\alpha]^{20}{ }_{\mathrm{D}}-24.2\left(c 1.05, \mathrm{CHCl}_{3}\right)$ for 64% ee, $\mathrm{lit}^{[5]}[\alpha]_{\mathrm{D}}+24.8(c$

[^1]$0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) for 60% ee material. The ee was determined by HPLC analysis using an IB column (flow rate $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; 90 \%$ hexane, 10% isopropanol, $\lambda=205 \mathrm{~nm}$), which resolved both enantiomers $\left(t_{R}=9.9 \mathrm{~min}\right.$ (major), $t_{S}=11.2 \mathrm{~min}$). The absolute stereochemistry was assigned as (R)-based on comparison of the measured rotation with the literature value. ${ }^{1} \mathrm{H}$ NMR $(360 \mathrm{MHz}$, CDCl_{3}) $\delta 7.40-7.31(\mathrm{~m}, 4 \mathrm{H}), 5.42(\mathrm{dd}, J=3.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=9.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ $(\mathrm{dd}, J=3.0,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.7,134.8,129.2$, 127.3, 81.0, 70.3. MS (EI) : 142 (23), 141 (41), 140 (82), 139 (100), 111 (59), 77 (11). (R)-2-Nitro-1-(4-nitro-phenyl)-ethanol 12c. Solvent for flash chromatography : pentane / diethyl ether 1/1. Yellowish oil, $[\alpha]^{20}{ }_{\mathrm{D}}-3.7\left(c 1.01, \mathrm{CHCl}_{3}\right)$ for $15 \% \mathrm{ee}, \mathrm{lit}^{[5]}[\alpha]_{\mathrm{D}}+11.7\left(c 0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 94% ee material. The ee was determined by HPLC analysis using an IB column (flow rate $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; 80 \%$ hexane, 20% isopropanol, $\lambda=205 \mathrm{~nm}$), which resolved both enantiomers $\left(t_{R}\right.$ $=10.0 \mathrm{~min}$ (major), $t_{S}=11.2 \mathrm{~min}$). The absolute stereochemistry was assigned as (R)-based on comparison of the measured rotation with the literature value. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.62-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.99$ (bs, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.9,145.8,127.1,124.1,80.8,70.0$. MS (EI) : 151 (100), 150 (88), 105 (15), 77 (38), 51 (17).
(R)-1-(4-Methoxy-phenyl)-2-nitro-ethanol 12d. Solvent for flash chromatography : pentane / diethyl ether 4/1. Yellowish oil, $[\alpha]^{20}{ }_{\mathrm{D}}-18.5\left(c 1, \mathrm{CHCl}_{3}\right)$ for $66 \% \mathrm{ee}, \mathrm{lit}^{[6]}[\alpha]_{\mathrm{D}}+44.4$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for 98% ee material. The ee was determined by HPLC analysis using an IB column (flow rate $=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1} ; 90 \%$ hexane, 10% isopropanol, $\lambda=205 \mathrm{~nm}$), which resolved both enantiomers $\left(t_{R}=14.2 \mathrm{~min}\right.$ (major), $t_{S}=16.2 \mathrm{~min}$). The absolute stereochemistry was assigned as (R)-based on comparison of the measured rotation with the literature value. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{dd}, J=2.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=2.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{dd}, J=3.3,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62(\mathrm{dd}, J=9.3,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=3.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{bs}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,130.3,127.2,114.4,81.2,70.6,55.3$. MS (CI) : 214 $\left[\mathrm{M}+\mathrm{NH}_{3}\right]$ (14), 197 (100), 154 (4), 69 (18).
(R)-1-Cyclohexyl-2-nitro-ethanol 12e. Solvent for flash chromatography : pentane / diethyl ether $4 / 1$. Yellowish oil, $[\alpha]^{20}{ }_{\mathrm{D}}-15.8\left(c 0.99, \mathrm{CHCl}_{3}\right)$ for $79 \% \mathrm{ee}, \mathrm{lit}^{[5]}[\alpha]_{\mathrm{D}}+18.7\left(c 0.4, \mathrm{CHCl}_{3}\right)$ for 76 \% ee material. The ee was determined by HPLC analysis using an IB column (flow rate 0.8 $\mathrm{mL} . \mathrm{min}^{-1} ; 98 \%$ hexane, 2% ethanol, $\lambda=205 \mathrm{~nm}, 20^{\circ} \mathrm{C}$), which resolved both enantiomers ($t_{R}=$ 19.0 min (major), $t_{S}=20.0 \mathrm{~min}$). The absolute stereochemistry was assigned as (R)-based on
comparison of the measured rotation with the literature value. ${ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.46$ (dd, $J=3.2,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=8.9,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{bs}, 1 \mathrm{H})$, 1.83-1.75 (m, 3H), 1.71-1.62 (m, 2H), 1.47-1.40 (m,1H), 1.28-1.01 (m, 5H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 79.3,72.8,41.3,28.7,27.8,26.0,25.8,25.7 . \mathrm{MS}(\mathrm{CI}): 208\left[\mathrm{M}+\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(13), 191$ $\left[\mathrm{MNH}_{4}{ }^{+}\right](100), 173$ (3), 69 (5).
(R)-1-Nitro-octan-2-ol 12f. Solvent for flash chromatography : pentane / diethyl ether 4/1. Yellowish oil, $[\alpha]^{20}{ }_{\mathrm{D}}-6.8\left(c 1.02, \mathrm{CHCl}_{3}\right)$ for 59% ee, $\mathrm{lit}^{[6]}[\alpha]_{\mathrm{D}}+12.0\left(c 1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 96% ee material. The ee was determined by HPLC analysis using an IB column (flow rate $0.8 \mathrm{~mL} . \mathrm{min}^{-}$ ${ }^{1}$; 98% hexane, 2% ethanol, $\lambda=205 \mathrm{~nm}, 20^{\circ} \mathrm{C}$), which resolved both enantiomers ($t_{R}=16.1 \mathrm{~min}$ (major), $t_{S}=16.9 \mathrm{~min}$). The absolute stereochemistry was assigned as (R)-based on comparison of the measured rotation with the literature value. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.44(\mathrm{dd}, J=3.2$, $12.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.39(\mathrm{dd}, J=7.9,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.20(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{bs}, 1 \mathrm{H}), 1.71-1.15(\mathrm{~m}$, $10 \mathrm{H}), 0.94-0.82(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 80.6,68.7,33.7,31.5,28.9,25.0,22.4$, 13.9. $\mathrm{MS}(\mathrm{CI}): 210\left[\mathrm{M}+\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(20), 193\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right](100), 69(40)$.

[^2]

10

	$\operatorname{Tr}(\min)$	Aire	\% Aire
1	11,38	34,15	50,07
2	13,62	34,05	49,93
Total		68,20	100,00

	Tr (min)	Aire	\% Aire
1	10,67	208,57	86,86
2	12,78	31,54	13,14
Total		240,11	100,00

12a

	Tr (min)	Aire	\% Aire
1	9,52	95,78	50,12
2	10,23	95,33	49,88
Total		191,11	100,00

	Tr (min)	Aire	\% Aire
1	9,27	697,90	81,14
2	10,00	162,24	18,86
Total		860,14	100,00

12b

	Tr (min)	Aire	\% Aire
1	9,90	127,83	49,94
2	11,23	128,15	50,06
Total		255,99	100,00

	Tr (\min)	Aire	\% Aire
1	9,75	692,79	81,91
2	11,00	153,00	18,09
Total		845,79	100,00

	Tr (min)	Aire	\% Aire
1	9,95	546,47	49,96
2	11,15	547,38	50,04
Total		1093,85	100,00

	$\operatorname{Tr}(\mathrm{min})$	Aire	\% Aire
1	9,83	213,13	57,31
2	10,95	158,77	42,69
Total		371,90	100,00

12d

	Tr (min)	Aire	$\%$ Aire
1	14,92	98,18	49,75
2	17,42	99,17	50,25
Total		197,35	100,00

	Tr (min)	Aire	\% Aire
1	14,22	266,89	83,08
2	16,23	54,37	16,92
Total		321,26	100,00

12e

	Tr (min)	Aire	\% Aire
1	19,02	193,01	49,98
2	19,97	193,18	50,02
Total		386,19	100,00

	$\operatorname{Tr}(\mathrm{min})$	Aire	$\%$ Aire
1	17,78	443,08	89,49
2	18,72	52,02	10,51
Total		495,10	100,00

$12 f$

	Tr (min)	Aire	\% Aire
1	16,10	165,59	49,57
2	16,90	168,45	50,43
Total		334,04	100,00

	Tr (min)	Aire	\% Aire
1	16,00	371,95	79,39
2	16,83	96,54	20,61
Total		468,49	100,00

[^0]: ${ }^{1}$ Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. J. Org. Chem. 1994, 59, 1939-1942.
 ${ }^{2}$ Voituriez, A.; Mellah, M. Schulz, E. Synth. Met. 2006, 156, 166-175.
 ${ }^{3}$ Zulauf, A.; Mellah, M.; Guillot, R.; Schulz, E. Eur. J. Org. Chem. 2008, 2118-2129.
 ${ }^{4}$ Jayakannan, M.; Van Hal, P. A.; Janssen, R. A. J. J. Polym. Sc. Part A : Polym. Chem. 2001, 40, 251-261.

[^1]: ${ }^{5}$ Kowalczyk, R.; Sidorowicz, L.; Skarżewski J. Tetrahedron : Asymmetry 2007, 18, 2581-2586.

[^2]: ${ }^{6}$ Gruber-Khadjawi, M.; Purkarthofer, T.; Skranc,W.; Griengl, H. Adv. Synth. Catal. 2007, 349, 1445-1450.

