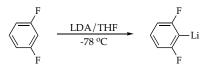
Lithium Diisopropylamide-Mediated Ortholithiations: Lithium Chloride Catalysis

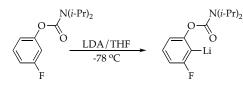
Lekha Gupta, Alexander C. Hoepker, Kanwal Jit Singh and David B. Collum* Contribution from the Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301

Supporting Information

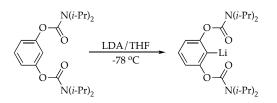
Page

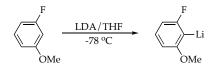

Experimental

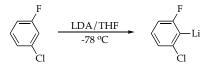
I Measurement of chloride concentration using potentiometry and ion-S6 chromatography


IR Rate Studies

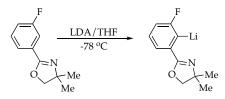
IRepresentative in situ IR spectroscopic analysis of an ortholithiationS7IIPlot of IR absorbances versus time for the ortholithiation ofS810909090

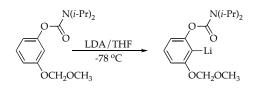

1,3-difluorobenzene

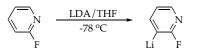

IIIPlot of IR absorbances versus time for the ortholithiation of
3-fluorophenyl-N,N-diisopropylcarbamateS9

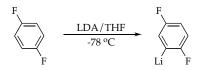

IVPlot of IR absorbances versus time for the ortholithiation of
1,3-bis(N,N-diisopropylcarbamoyl)benzeneS10

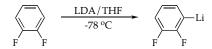
V Plot of IR absorbances versus time for the ortholithiation of S11 3-fluoroanisole


VI Plot of IR absorbances versus time for the ortholithiation of S12 1-chloro-3-fluorobenzene


VIIPlot of IR absorbances versus time for the ortholithiation of
2,6-difluoropyridineS12

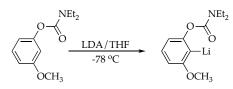

VIIIPlot of IR absorbances versus time for the ortholithiation of
2-(3-fluorophenyl)-4,4-dimethyl-4,5-dihydro-1,3-oxazole\$13

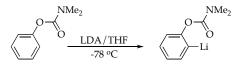

IXPlot of IR absorbances versus time for the ortholithiation of
3-methoxymethoxyphenyl-N,N-diisopropylcarbamateS14

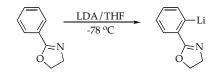

XPlot of IR absorbances versus time for the ortholithiation of
2-fluoropyridineS15

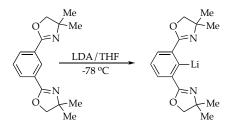
XIPlot of IR absorbances versus time for the ortholithiation of
1,4-difluorobenzeneS16

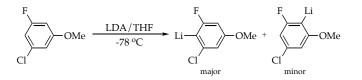
XIIPlot of IR absorbances versus time for the ortholithiation of
1,2-difluorobenzeneS17

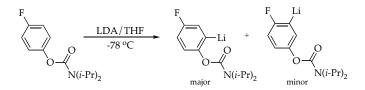

XIIIPlot of IR absorbances versus time for the ortholithiation ofS181,3-dichlorobenzene


XIVPlot of IR absorbances versus time for the ortholithiation of
3-chlorobenzotrifluorideS19


XVPlot of IR absorbances versus time for the ortholithiation of
3-methoxyphenyl-N,N-diethylcarbamateS20


XVIPlot of IR absorbances versus time for the ortholithiation of
phenyl-N,N-dimethylcarbamateS20


XVIIPlot of IR absorbances versus time for the ortholithiation of
2-phenyl-2-oxazolineS21


XVIIIPlot of IR absorbances versus time for the ortholithiation of
1,3-bis(4',4'-dimethyl-2'-oxazolinyl)benzeneS22

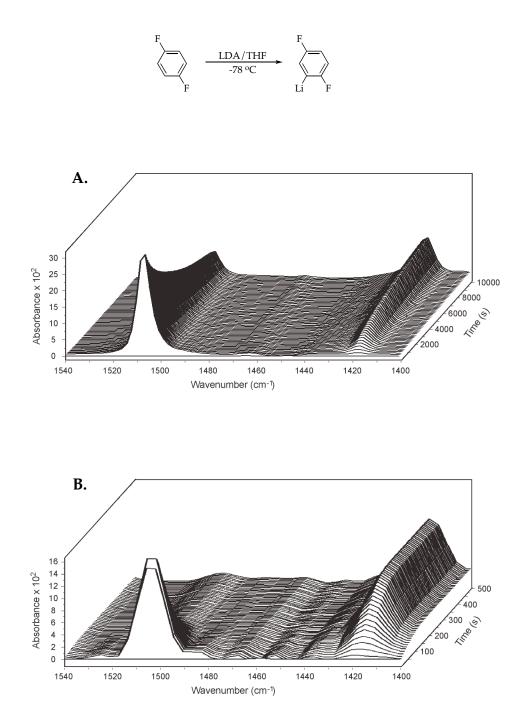
XIXPlot of IR absorbances versus time for the ortholithiation of
3-chloro-5-fluoroanisoleS23

- **XX** Plot of ¹⁹F NMR peak integrations versus time for the ortholithiation S23 of 3-chloro-5-fluoroanisole
- XXIPlot of IR absorbances versus time for the ortholithiation ofS244-fluorophenyl-N,N-diisopropylcarbamateS24

- **XXII** Plot of ¹⁹F NMR peak integrations versus time for the ortholithiation of S24 *N*,*N*-diisopropyl-4-fluorocarbamate
- XXIIIPlot of IR absorbances versus time for the ortholithiation of
1,4-difluorobenzene in the presence of different lithium saltsS25
- XXIVPlot of IR absorbances versus time for the ortholithiation of
1,4-difluorobenzene using different sources of LDAS26

<u>Note:</u>

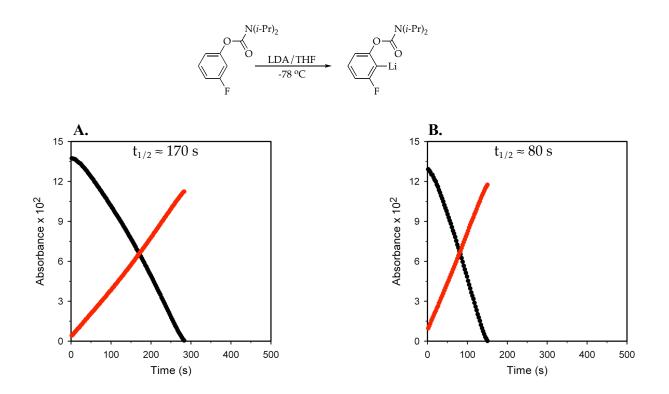
- All reported LiCl mol percentages are with respect to [LDA].
 Rates corresponding to the plots from XV to XVIII were determined at temperatures other than -78 °C.
- 3) Be aware of frequent changes in the scale on x-axis.


Experimental

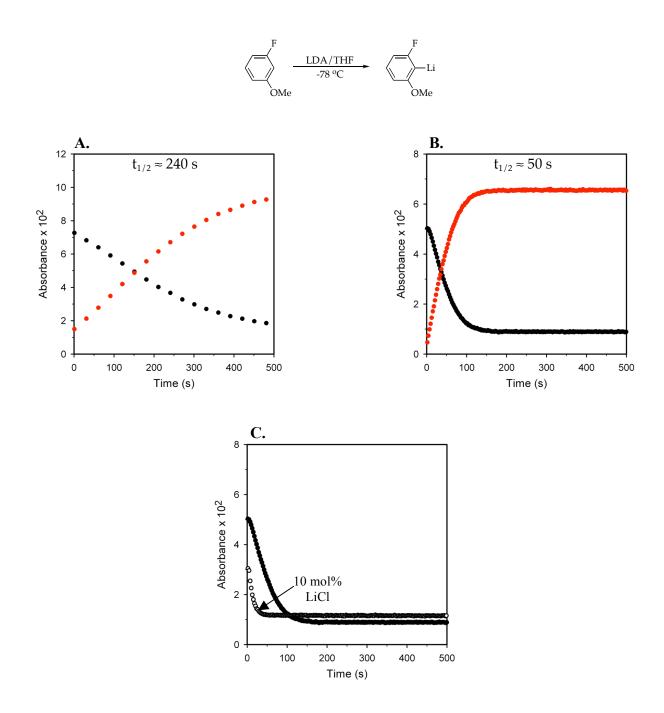
I. Measurement of chloride concentration:

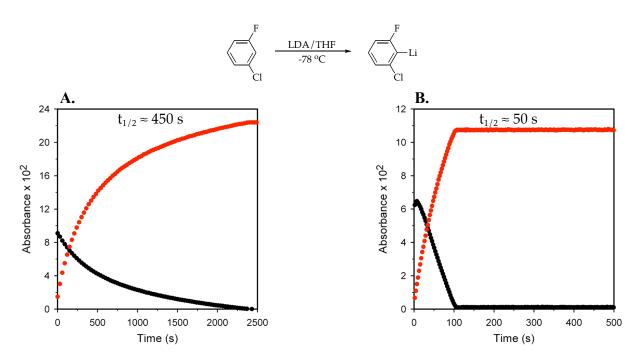
Potentiometry: The chloride concentration was determined potentiometrically by measuring the potential against a saturated potassium chloride solution. After calibrating with known concentrations of chloride, the concentration was calculated with the Nernst equation $(E=E^{\circ}-(RT/zF)log_{10}Q)$, where Q=[Cl⁻]; RT/zF is determined via calibration and is ideally 59.1 mV). The potential was measured with a potentiostat of low impedence. Both reference and indicating electrodes are made of silver plated with silver chloride (Ag/AgCl). Samples were prepared by quenching 25 mg of LDA or 100 µl of 1.6 M *n*-BuLi with high-purity water (from Abruña group), evacuating to dryness and redissolving in water. Because the electrodes require a near neutral pH, the quenched base solutions needed to be neutralized with HNO₃. The LiCl standards were accordingly enriched with NaNO₃ to ensure comparable activity. Both HNO₃ and NaNO₃ contained <0.5 ppm and <0.0003% Cl⁻, respectively. The lower detection limit for Cl⁻ is approximately 0.5 ppm.

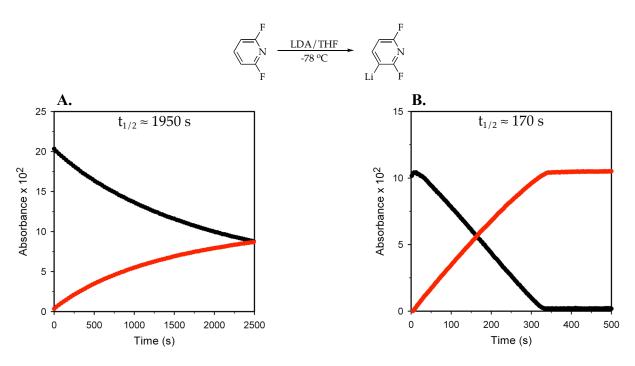
Ion Chromatography: Ion chromatography was performed on a Dionex ICS-2000 system (Sunnyvale, CA) with a Dionex Ionpac AG18 guard column and a Dionex Ionpac AS18 separation column. Samples and standards were run in the isocratic mode (1.0 ml/min) using 38 mM KOH as eluent. Elution time of chloride varied from 3.94 to 4.23 min. The suppression was achieved by a Dionex ASRS ULTRA II 4 mm self-regenerating suppressor. The column temperature was 30 °C and the working electric current was 100 mA. The eluent flow rate is 1.0 ml/min. The injection volume is 25 μ l. Samples were prepared by quenching 25 mg of LDA or 100 μ l of 1.6 M *n*-BuLi with high-purity water (from Abruña group), evacuating to dryness and redissolving in water. Aqueous samples of pH 12-13 were injected in duplicate into the chromatograph. The lower detection limit is approximately 10 ppb.

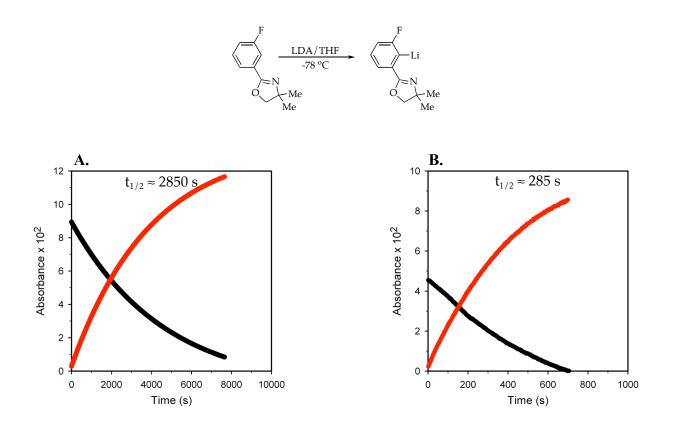

IR Rate Studies

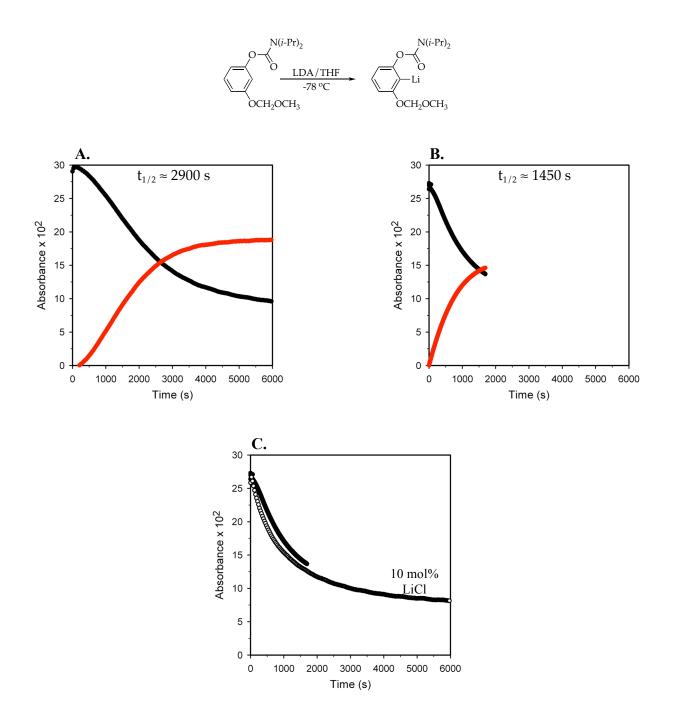
I. Representative in situ IR spectroscopic analysis of the ortholithiation of 1,4difluorobenzene (0.1 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol % LiCl. The IR absorbance at 1507 cm⁻¹ corresponds to 1,4difluorobenzene, whereas the absorbance at 1418 cm⁻¹ corresponds to its lithiated form.

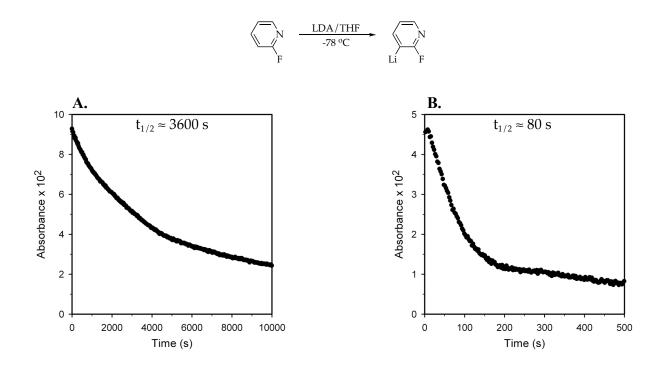

II. Plot of IR absorbances (black – 1606 cm⁻¹, red – 1406 cm⁻¹) versus time for the ortholithiation of 1,3-difluorobenzene (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl; (C) 0.5 and 10 mol% LiCl.

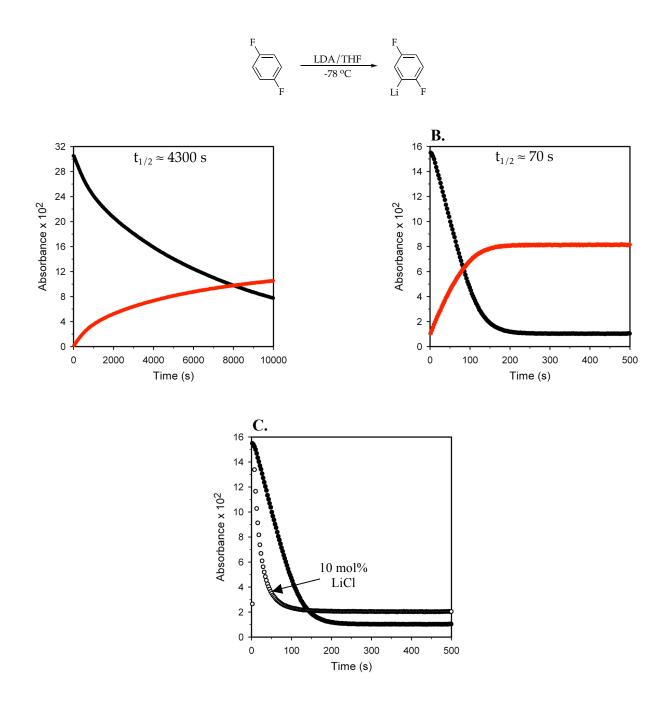

III. Plot of IR absorbances (black – 1715 cm⁻¹, red – 1657 cm⁻¹) versus time for the ortholithiation of 3-fluorophenyl-*N*,*N*-diisopropylcarbamate (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.

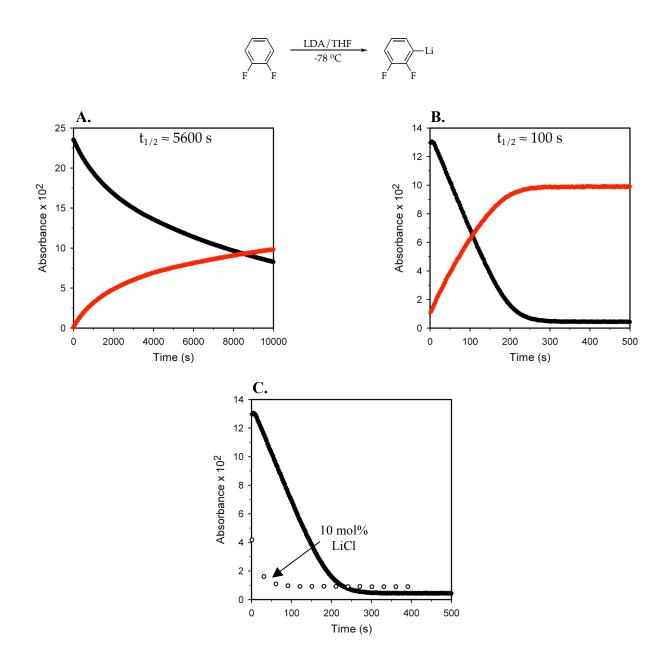

IV. Plot of IR absorbances (black – 1721 cm⁻¹, red – 1661 cm⁻¹) versus time for the ortholithiation of 1,3-bis(N,N-diisopropylcarbamoyl)benzene (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl; (C) 0.5 and 10 mol% LiCl.

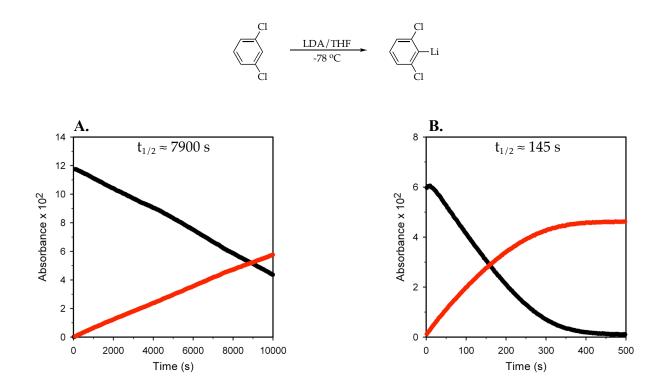

V. Plot of IR absorbances (black – 1617 cm⁻¹, red – 1412 cm⁻¹) versus time for the ortholithiation of 3-fluoroanisole (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl (C) 0.5 and 10 mol% LiCl.

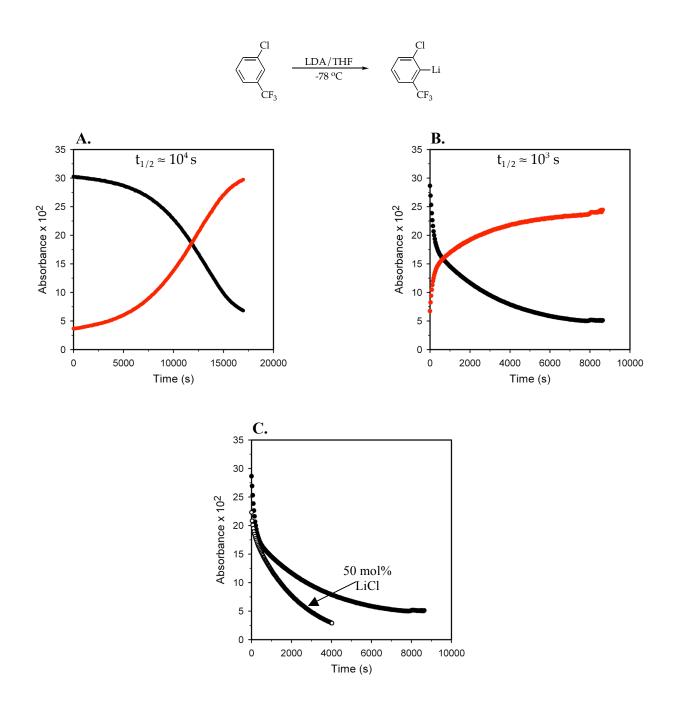

VI. Plot of IR absorbances (black – 1595 cm⁻¹, red – 1397 cm⁻¹) versus time for the ortholithiation of 1-chloro-3-fluorobenzene (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.

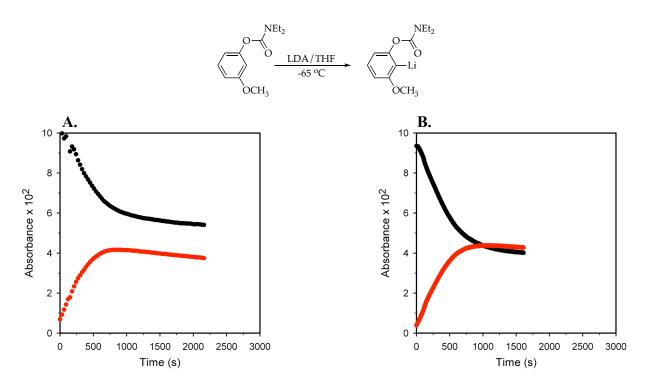

VII. Plot of IR absorbances (black – 1610 cm⁻¹, red – 1514 cm⁻¹) versus time for the ortholithiation of 2,6-difluoropyridine (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.

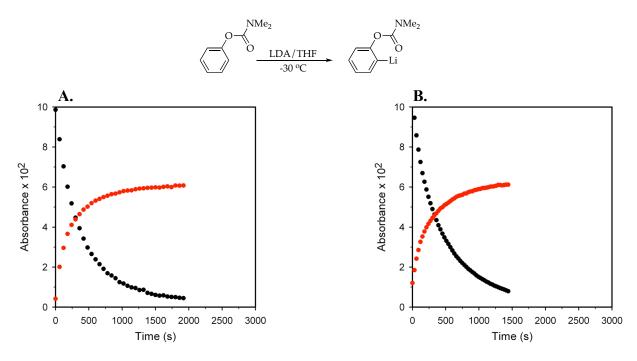

VIII. Plot of IR absorbances (black – 1653 cm⁻¹, red – 1622 cm⁻¹) versus time for the ortholithiation of 2-(3-fluorophenyl)-4,4-dimethyl-4,5-dihydro-1,3-oxazole (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.

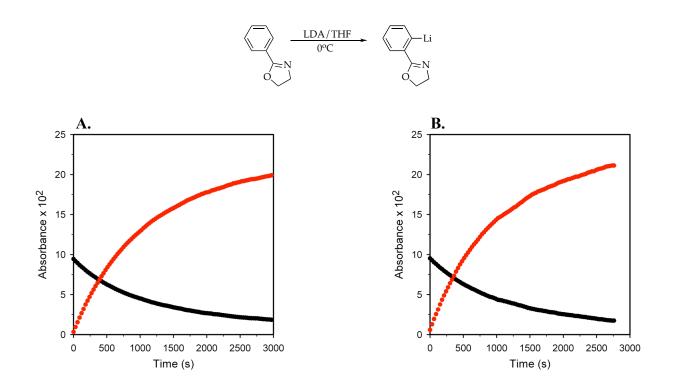

IX. Plot of IR absorbances (black – 1719 cm⁻¹, red – 1659 cm⁻¹) versus time for the ortholithiation of 3-methoxymethoxyphenyl-N,N-diisopropylcarbamate (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl; (C) 0.5 and 10 mol% LiCl.

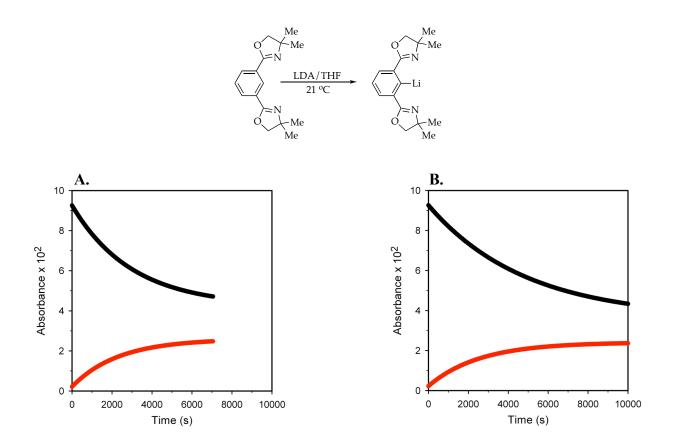

X. Plot of IR absorbances (black – 1597 cm⁻¹) versus time for the ortholithiation of 2-fluoropyridine (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.

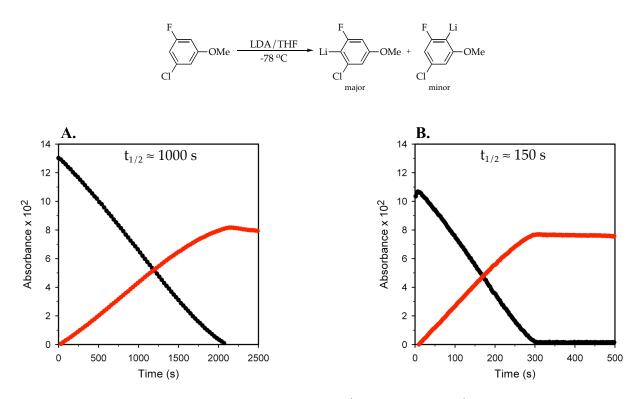

XI. Plot of IR absorbances (black – 1507 cm⁻¹, red – 1418 cm⁻¹) versus time for the ortholithiation of 1,4-difluorobenzene (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl; (C) 0.5 and 10 mol% LiCl.

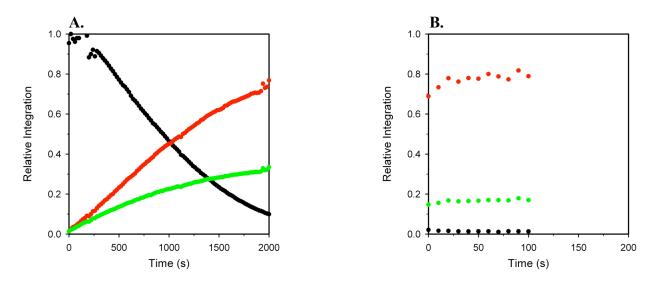

XII. Plot of IR absorbances (black – 1509 cm⁻¹, red – 1391 cm⁻¹) versus time for the ortholithiation of 1,2-difluorobenzene (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl; (C) 0.5 and 10 mol% LiCl.

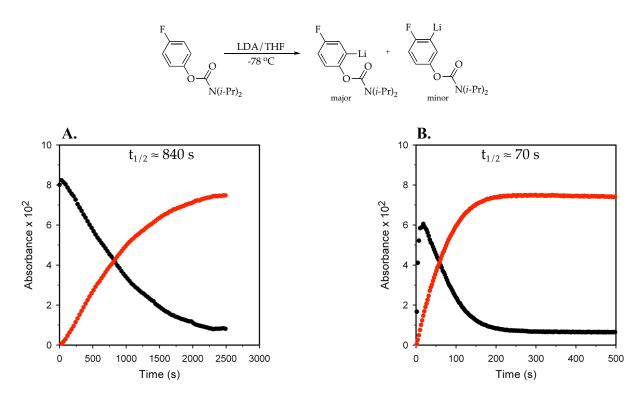

XIII. Plot of IR absorbances (black – 1576 cm⁻¹, red – 1534 cm⁻¹) versus time for the ortholithiation of 1,3-dichlorobenzene (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.

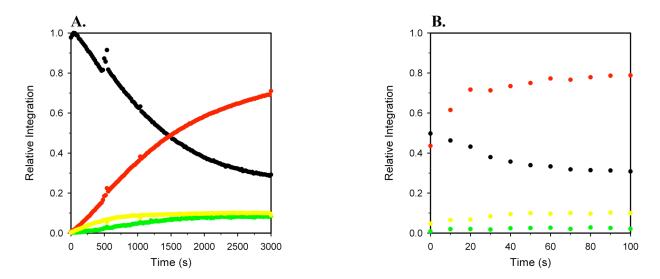

XIV. Plot of IR absorbances (black – 1326 cm⁻¹, red – 1306 cm⁻¹) versus time for the ortholithiation of 3-chlorobenzotrifluoride (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl; (C) 0.5 and 50 mol% LiCl.

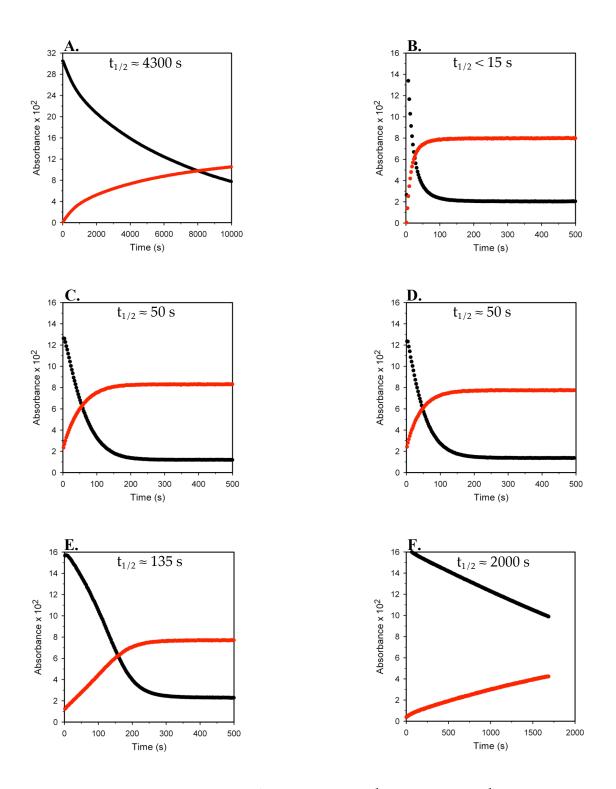

XV. Plot of IR absorbances (black – 1725 cm⁻¹, red – 1675 cm⁻¹) versus time for the ortholithiation of 3-methoxyphenyl-N,N-diethylcarbamate (0.10 M) with LDA (0.12 M) in neat THF at -65 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.

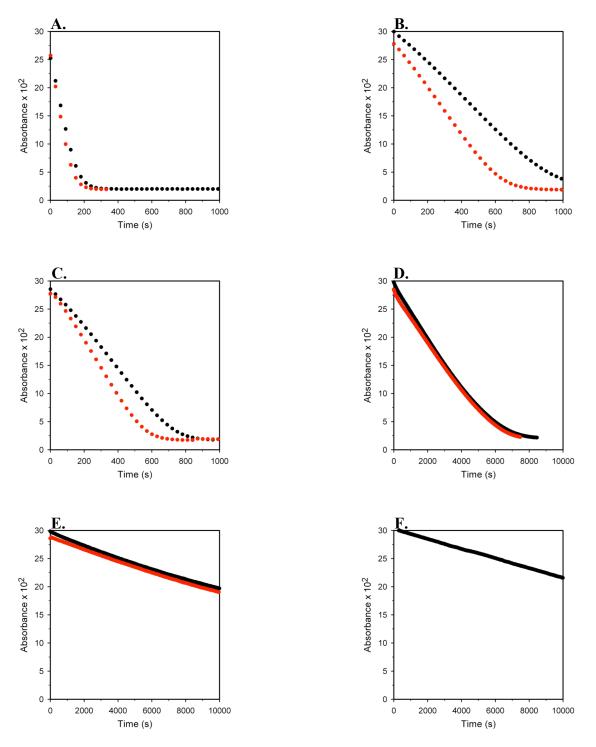

XVI. Plot of IR absorbances (black – 1725 cm⁻¹, red – 1675 cm⁻¹) versus time for the ortholithiation of phenyl-N,N-dimethylcarbamate (0.10 M) with LDA (0.12 M) in neat THF at -30 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.


XVII. Plot of IR absorbances (black – 1652 cm⁻¹, red – 1526 cm⁻¹) versus time for the ortholithiation of 2-phenyl-2-oxazoline (0.10 M) with LDA (0.12 M) in neat THF at 0 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.


XVIII. Plot of IR absorbances (black – 1654 cm⁻¹, red – 1520 cm⁻¹) versus time for the ortholithiation of 1,3-bis(4',4'-dimethyl-2'-oxazolinyl)benzene (0.10 M) with LDA (0.12 M) in neat THF at 21 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.


XIX. Plot of IR absorbances (black – 1611 cm⁻¹, red – 1553 cm⁻¹) versus time for the ortholithiation of 3-chloro-5-fluoroanisole (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.


XX. Plot of ¹⁹F NMR peak integrations (black: δ -110.1, red: δ -77.8, green: δ -76.6) versus time for the ortholithiation of 3-chloro-5-fluoroanisole (0.05 M) with LDA (0.20 M) in neat THF at -78 °C: (A) no added LiCl; (B) 10 mol% LiCl.


XXI. Plot of IR absorbances (black – 1717 cm⁻¹, red – 1657 cm⁻¹) versus time for the ortholithiation of 4-fluorophenyl-N,N-diisopropylcarbamate (0.025 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no added LiCl; (B) 0.5 mol% LiCl.

XXII. Plot of ¹⁹F NMR peak integrations (black: δ -118.8, red: δ -123.7, green: δ 85.5, yellow: δ -124.1) versus time for the ortholithiation of 4-fluorophenyl-*N*,*N*-diisopropylcarbamate (0.05 M) with LDA (0.20 M) in neat THF at -78 °C: (A) no added LiCl; (B) 10 mol% LiCl.

XXIII. Plot of IR absorbances (black – 1507 cm⁻¹, red – 1418 cm⁻¹) versus time for the ortholithiation of 1,4-difluorobenzene (0.10 M) with LDA (0.12 M) in neat THF at -78 °C: (A) no additive; (B) 10 mol% LiCl; (C) 10 mol% LiBr; (D) 10 mol% PhCCLi; (E) 10 mol% PhCOOLi; (F) 10 mol% PhOLi.

XXIV. Plot of IR absorbances (black/red – duplicated rates) versus time for the ortholithiation of 1,4-difluorobenzene (0.10 M) with LDA (0.12 M) in 10.0 M THF/hexane at -78 °C using: (A) Acros *n*-BuLi – batch1; (B) Acros *n*-BuLi – batch2; (C) Aldrich *n*-BuLi – batch1; (D) Aldrich *n*-BuLi – batch2; (E) Acros LDA; (F) Aldrich LDA