Supplementary Information for:

Functional Hyperbranched Polymers using Ring Opening Metathesis Polymerization of Dicyclopentadiene with Monoterpenes

Robert T. Mathers,* † Krishnan Damodaran, § Matthew G. Rendos, † Michael S. Lavrich †

Department of Chemistry, Pennsylvania State University, New Kensington, PA 15068.

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260.

Table of Contents

Figure S1	Mark-Houwink-Sakarada plots for the polymerizations of norbornene and dicyclopentadiene with d -limonene
Figure S2	Mark-Houwink-Sakarada plots for the polymerizations of dicyclopentadiene with $\beta\mbox{-pinene}$
Figure S3	Gel permeation chromatography (GPC) data for the polymerization of norbornene in toluene, d -limonene, and β -pinene
Figure S4	Gel permeation chromatography (GPC) data for the polymerization of dicyclopentadiene with stoichiometric amounts of β -pinene
Figure S5	Gel permeation chromatography (GPC) data for the polymerization of dicyclopentadiene with stoichiometric amounts of limonene oxide
Figure S6	¹ H NMR spectra for polymerization of norbornene with limonene oxide
Figure S7	$^{1}\text{H NMR}$ spectra for polymerization of dicyclopentadiene with neat β -pinene
Figure S8	¹ H NMR spectra for polymerization of norbornene with neat β-pinene
Figure S9	¹³ C NMR spectrum for polymerization of norbornene with limonene oxide
Figure S10	¹³ C NMR spectrum for polymerization of dicyclopentadiene with limonene oxide
Figure S11	¹³ C NMR spectrum for limonene oxide
Figure S12	^{13}C NMR spectrum for polymerization of dicyclopentadiene with β -pinene
Figure S12	¹³ C NMR spectrum for polymerization of dicyclopentadiene with β-pinene

Figure S1. Mark-Houwink-Sakarada plots for the gel permeation chromatography (GPC) data (light scattering and viscometer detectors) obtained for the ring-opening metathesis polymerization (ROMP) of a) norbornene (1.3 M in d-limonene; MHS a value = 0.70) and b) dicyclopentadiene (0.3 M in d-limonene; MHS a value = 0.53). The polymerizations were run with a second generation ruthenium catalyst ([monomer]/[catalyst] = 800) for 1 h.

Figure S2. Mark-Houwink-Sakarada plots for the gel permeation chromatography (GPC) data (light scattering and viscometer detectors) obtained for the ring-opening metathesis polymerizations (ROMP) of dicyclopentadiene (0.3 M). The polymerizations were run with a second generation ruthenium catalyst for 1 h at 50° C using a) neat β -pinene and [monomer]/[catalyst] = 200, b) neat β -pinene and [monomer]/[catalyst] = 1000, and c) stoichiometric amounts of β -pinene ([monomer]/[β -pinene] = 5) in toluene and [monomer]/[catalyst] = 1000.

Figure S3. Gel permeation chromatography (GPC) data (light scattering detector) for the polymerization of norbornene with the 2^{nd} generation Grubbs catalyst ([NB]/[catalyst] = 1000) in a) toluene, b) *d*-limonene and c) β -pinene. The polymerizations were run for 1 h at 50° C under nitrogen.

Figure S4. Gel permeation chromatography (GPC) data (light scattering detector) for the polymerization of dicyclopentadiene (DCPD) in toluene with stoichiometric amounts of β -pinene: a) [DCPD]/[β -pinene] = 40, b) [DCPD]/[β -pinene] = 20 and c) [DCPD]/[β -pinene] = 5. The polymerizations were run for 1 h at 50° C under nitrogen with the 2nd generation Grubbs catalyst ([DCPD]/[catalyst] = 1000).

Figure S5. Gel permeation chromatography (GPC) data (light scattering detector) for the polymerization of dicyclopentadiene (DCPD) in toluene with stoichiometric amounts of limonene oxide: a) [DCPD]/[limonene oxide] = 40, b) [DCPD]/[limonene oxide] = 20 and c) [DCPD]/[limonene oxide] = 5. The polymerizations were run for 1 h at 50° C under nitrogen with the 2^{nd} generation Grubbs catalyst ([DCPD]/[catalyst] = 1000).

Figure S6. 1 H NMR (300 MHz, CDCl₃) spectra for a) limonene oxide, b) polymerization of norbornene at 50° C for 1 h with [NB]/[limonene oxide] = 3 ($M_{\rm w}$ = 7800 g/mol; $M_{\rm w}/M_{\rm n}$ = 1.3) and c) polymerization of norbornene at 50° C for 1 h with [NB]/[limonene oxide] = 40 ($M_{\rm w}$ = 24300 g/mol; $M_{\rm w}/M_{\rm n}$ = 1.3).

Figure S7. 1 H NMR (300 MHz, CDCl₃) spectrum for polymerization of dicyclopentadiene (0.3 M) in toluene with β -pinene ([DCPD]/[β -pinene] = 40) for 1 h at 50° C using [DCPD]/[catalyst] = 1000.

Figure S8. 1 H NMR (700 MHz, CDCl₃) spectrum and expanded view of alkene region for polymerization of norbornene (0.3 M) at 50° C for 1 h with neat β -pinene.

Figure S9. 13 C NMR (75 MHz, CDCl₃) spectra for the polymerization of norbornene at 50° C for 1 h with a) [NB]/[limonene oxide] = 3 ($M_w = 7800$ g/mol; $M_w/M_n = 1.3$) and b) [NB]/[limonene oxide] = 40 ($M_w = 24300$ g/mol; $M_w/M_n = 1.3$).

Figure S10. ¹³C NMR (176 MHz, CDCl₃) spectrum for limonene oxide.

Figure S11. 13 C NMR (75 MHz, CDCl₃) spectrum for the polymerization of dicyclopentadiene (0.3 M) in toluene with limonene oxide ([dicyclopentadiene]/[limonene oxide] = 5) after 1 h at 50° C using a second generation ruthenium catalyst ([dicyclopentadiene]/[catalyst] = 1000).

Figure S12. 13 C NMR (75 MHz, CDCl₃) spectrum for the polymerization of dicyclopentadiene (0.3 M) in toluene with β -pinene ([dicyclopentadiene]/[β -pinene] = 5) after 1 h at 50° C using a second generation ruthenium catalyst ([dicyclopentadiene]/[catalyst] = 1000).