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Analytical Formalism for Plasmon Creation in Thin Films and Buried Planar Cavities

We provide here details on an analytical formalism to calculate plasmon excitation yields for an electron crossing
two parallel interfaces under normal incidence. This formalism is an extension of part of Ref. 1, which is supplemented
to isolate the contribution of surface plasmons to the electromagnetic field produced by the electron.

We first consider the electric field set up by an electron (charge −e) crossing the interfaces with constant velocity
v along the normal direction z,

E(r, t) =
∫

d2k‖dω

(2π)3
eik‖·R−iωt E(k‖, z, ω),

where the field is expressed in terms of parallel wavevector and frequency components, k‖ and ω, respectively, and
R = (x, y). The field can be in turn separated into contributions arising from each medium j, described as an external
electron field in an infinite bulk material (with j = 1, 2, and 3 representing the materials below, inside, and above
the intermediate layer, respectively, as shown in Figure 1) plus the field reflected at the film boundaries (i.e., the
contribution of induced boundary charges and currents),

E = Eext
j + Eref

j .

The former admits the expression (in Gaussian units)

Eext
j (k‖, z, ω) =

4πi e (q− vkεj/c)
vεj(q2 − k2εj)

eiωz/v,

where q = (k‖, ω/v), k = ω/c, and εj is the dielectric function of medium j. Similarly, the magnetic field in bulk
medium j reduces to

Hext
j (k‖, z, ω) =

4πi e k‖t̂
c(q2 − k2εj)

eiωz/v,

where t̂ is a vector parallel to the interfaces and perpendicular to k‖, so that the set {k̂‖, t̂, ẑ} forms a positively
oriented 3D reference frame. The bulk fields are evanescent away from the trajectory, unless εj is a positive real
number and v > c/

√
εj , in which case Cherenkov radiation can be produced.

The reflected component of the fields finds its sources in the interfaces, so it can be expressed in terms of boundary
currents and charges. The charges can be in turn expressed in terms of the currents by using the continuity equation.
We find

Eref(k‖, z, ω) =
2πik
Γj

×





eΓ1z
[
h1 − 1

k2ε1
(k‖,−iΓ1) (k‖ · h1)

]
, j = 1

e−Γ2z
[
h2 − 1

k2ε2
(k‖, iΓ2) (k‖ · h2)

]
+

eΓ2(z−a)
[
h3 − 1

k2ε2
(k‖,−iΓ2) (k‖ · h3)

]
, j = 2

e−Γ3(z−a)
[
h4 − 1

k2ε3
(k‖, iΓ3) (k‖ · h4)

]
, j = 3
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FIG. 1: Schematic representation of an electron moving along the positive z direction with velocity v and crossing two parallel
interfaces situated in the planes z = 0 and z = a, respectively. The homogeneous materials that these interfaces separate are
labeled j = 1, 2, and 3, as shown by text insets.

and

Href
j (k‖, z, ω) =

2πi
Γj

×





eΓ1z(k‖,−iΓ1)× h1, j = 1

e−Γ2z(k‖, iΓ2)× h2 + eΓ2(z−a)(k‖,−iΓ2)× h3, j = 2

e−Γ3(z−a)(k‖, iΓ3)× h4, j = 3

where Γj =
√

k2
‖ − k2εj , the square root is chosen to yield positive real parts, hi ⊥ ẑ, and a is the thickness of the

intermediate layer (see Figure 1). Here, h1 and h3 are boundary currents defined on the bottom side of the lower
and upper interfaces of Figure 1, respectively, whereas h2 and h4 are defined on the top side of these interfaces. The
continuity of the parallel components of the electric and magnetic fields allows us to determine the boundary currents,
which turn out to only have components along k‖, such that hi = hi k̂‖, with the coefficients hi satisfying




−Γ1ε2 Γ2ε1 Γ2ε1e−Γ2a 0
1 1 −e−Γ2a 0
0 Γ2ε3e−Γ2a Γ2ε3 −Γ3ε2
0 e−Γ2a −1 −1







h1

h2

h3

h4


 =

−2ek‖
v

×




k( ε2
q2−k2ε1

− ε1
q2−k2ε2

)
iv
c ( 1

q2−k2ε1
− 1

q2−k2ε2
)

keiωa/v( ε2
q2−k2ε3

− ε3
q2−k2ε2

)
iv
c eiωa/v( 1

q2−k2ε3
− 1

q2−k2ε2
)


 .

This implies that the electric field is entirely made of TM waves.
Finally, we isolate the contribution of surface plasmons from the above solution by separating the plasmon poles in

the k‖ integral. This is the so-called plasmon-pole approximation [2, 3]. More precisely, the determinant of the above
linear system of equations can have two plasmonic solutions k‖ = k‖,n (with n = 1, 2) for either a thin film (if j = 2
is a metal and j = 1, 3 are dielectrics) or a metal waveguide (if j = 2 is a dielectric and j = 1, 3 are metals). This
allows us to approximate the coefficients hi as

hi ≈
∑

n=1,2

Ain

k‖ − k‖,n
, (1)

where Ain is independent of k‖ and the roots k‖,n are obtained upon numerical solution of the above equations.
The dispersion relations of the surface plasmons in these systems (e.g., those shown in Figures 1-3 of the main
paper) are obtained by representing k‖,n as a function of free-space wavelength λ = 2π/k. Plasmon excitation yields
are separately obtained for each of the modes by (1) inserting the plasmon-pole expression back into the boundary
components of the fields; (2) performing the azimuthal integral of k‖ to yield Bessel functions with k‖R argument; (3)
approximating the integral over k‖ by using the k‖ = k‖,n pole of Eq. (1), so that the Bessel functions become Hankel
functions; (4) retaining the large |k‖,nR| limit, which yields an overall exp(ik‖,nR)/

√
R factor in the fields; and (5)

using the remaining coefficients that multiply that factor to calculate the flux of electromagnetic energy propagating
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along the surface, away from the electron trajectory. We find:

ΓSP
n (ω) =

1
~k2

(
|A1n|2

2Re{Γ1}Re
{

k‖,n|k‖,n|
ε1

}
(2)

+
|A4n|2

2Re{Γ3}Re
{

k‖,n|k‖,n|
ε3

}

+

[(
1− e−2Re{Γ2}a

) (|A3n|2 + |A2n|2
)

2Re{Γ2} +
Im

{(
1− e2iIm{Γ2}a)

e−Γ2aA3nA∗2n

}

Im{Γ2}

]
Re

{
k‖,n|k‖,n|

ε2

} )
.

It should be mentioned that the approximation of Eq. (1) is fully justified in the large R limit regime that we have
examined to derive the plasmon energy flux far away from the electron trajectory [3].
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