"The helical structure of disodium guanosine 5'-monophosphate self-assembly in neutral solution"

Gang Wu* and Irene C. M. Kwan

Supporting Information

Materials and Methods

Hydrated disodium salt of guanosine 5'-monophosphate (purity > 99%) was obtained from Sigma-Aldrich (Ontario, Canada). All NMR spectra were acquired on Bruker Avance-500 (11.7 T) and Avance-600 (14.0 T) spectrometers. Standard solution NMR methods such as ¹H DOSY, DOSY-NOESY, ROESY, TOCSY, DQF-COSY, ¹H–¹³C HSQC, ¹H–¹³C HMBC, refocused ¹H–¹³C HMBC, and ¹H–³¹P COSY experiments were used for spectral assignment and structure determination. Experimental details are given in the Supplementary Information. Quantum chemical calculations of NMR parameters such as chemical shielding and indirect spin-spin coupling constants were performed on a Sun Fire cluster using the Gaussian 03 suite of programs²⁸. The Sun Fire cluster is comprised of seven Sun Fire 25000 servers. Each of the Sun Fire 25000 servers is equipped with 72 × (2 MB on-chip L2 cache and 32 MB L3 cache) dualcore (CPU) UltraSPARC-IV+ processors and 576 GB of RAM.

δ(¹ H)	C2'-endo	C3'-endo	$\delta(^{13}C)/(^{1}J_{CH})$	C2'-endo	C3'-endo	
	(S)	(N)		(S)	(N)	
exchangeable			ribose			
protons			carbons			
N_1H	10.83	10.78	C1′	83.80 (162.5)	90.70 (172.6)	
N_2H^A	9.83	9.30	C2′	74.10 (144.2)	72.80 (153.8)	
$N_2 H^B$	5.12	4.29	C3′	73.49 (154.2)	67.92 (144.2)	
2′-ОН	5.09	7.44	C4′	85.30 (151.3)	82.10 (150.4)	
3′-ОН	9.30	9.20	C5′	64.48 (155.4/150.4)	65.04 (150.6/144.6)	
Non-			base carbons			
exchangeable						
protons						
H8	8.26	6.96	C2	152.70	153.20	
H1′	5.59	5.67	C4	152.48	148.85	
H2′	4.93	4.50	C5	113.96	115.01	
H3′	4.21	4.12	C6	159.70	159.70	
H4′	4.52	4.29	C8	137.56 (209.1)	133.89 (214.1)	
H5′/H5″	3.63/3.98	3.99/4.15				
$^{3}J_{\rm HH}$			$^{3}J_{\mathrm{PH}}$			
H1'/ H2'	9 ± 1	< 2	³¹ P/H5′	< 2	< 3	
H2'/ H3'	6 ± 1	7 ± 1	³¹ P/H5″	7 ± 2	9 ± 2	
H3'/ H4'	< 2	8 ± 1	³¹ P/H4′	2 ± 2		
H4'/ H5'	2 ± 1	2 ± 1				
H4'/ H5"	3 ± 1	8 ± 1	$\delta(^{31}P)^a$	2.3	4.6	

Table S1. Experimental chemical shifts of proton, carbon, and phosphorus resonances (in ppm) and indirect spin-spin coupling constants (in Hz) for 1.0 M Na₂(5'-GMP). Chemical shifts for exchangeable protons were measured at 278 K; other data were determined at 298 K.

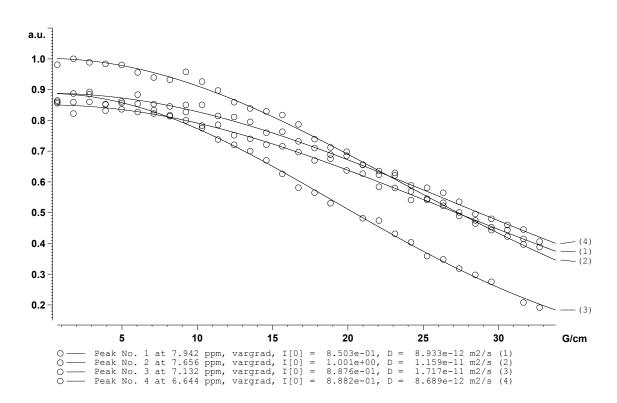
^aPhosphorus-31 chemical shifts are referenced to 85% H₃PO₄ (aq).

Table S2. Torsion angles, pseudorotation phase angle (P), and puckering amplitude (v_m) determined for the two 5'-GMP molecules. All quantities are in degrees.

Pucker	χ	β	δ	γ	ν_0	ν_1	v_2	v_3	ν_4	Р	ν_{m}
C2'-endo	-60	-150	138	40	-18.8	30.2	-28.4	17.6	0.6	159.9	30.2
C3'-endo	-130	-150	83	-140	3.4	-25.7	37.3	-36.2	20.8	13.7	38.4

Table S3. Computed ¹H and ¹³C chemical shifts (in ppm) and ¹ J_{CH} coupling constants (in Hz) for 5'-GMP molecules in C2'-*endo* and C3'-*endo* sugar pucker conformation. The level of calculations was B3LYP/6-311++G(d,p).^a

$\delta(^{1}H)$	C2'-endo C3'-endo		$\delta(^{13}C)/(^{1}J_{CH})$	C2'-endo	C3'-endo	
	(S)	(N)		(S)	(N)	
Non-			ribose			
exchangeable			carbons			
protons						
H8	8.26	8.06	C1′	87.9 (171.6)	97.4 (173.8)	
H1′	5.44	5.55	C2′	78.5 (155.3)	77.2 (158.6)	
H2′	5.40	3.06	C3′	75.5 (170.3)	72.9 (143.3)	
H3′	4.63	3.94	C4′	93.7 (147.0)	83.3 (153.6)	
H4′	3.33	4.08	C5′	58.9 (139.7/133.3)	60.9 (138.6/131.3)	
H5′/H5″	2.62/3.38	3.27/4.20	base carbons	, , , , , , , , , , , , , , , , , , ,	, ,	
			C2	157.6	157.7	
			C4	159.9	158.0	
			C5	126.0	126.6	
			C6	162.0	161.6	
			C8	141.4 (194.7)	140.0 (195.2)	


^aChemical shifts (δ) are converted from the calculated chemical shielding (σ) using $\delta = \sigma_{ref} - \sigma$ where $\sigma_{ref}(^{13}C) = 185.4$ ppm and $\sigma_{ref}(^{1}H) = 34.9$ ppm.

B-DNA	A-DNA	Z-DNA	Poly G ^a	$Na_2(5'-GMP)^b$	Na ₂ (5'-GMP)
	A-RNA				(this work)
Right	Right	Left	Right	Right	Right
10	11	12	11.5	12	12
3.4	2.6	3.7	3.36	3.4	3.4
36.0	32.7	-60	31.2	30	30
		(per dimer)			
anti	anti	dC: anti	anti	anti	anti (C3'-endo)
		dG: syn			high-anti (C2'-endo)
C2'-endo	C3'-endo	dC: C2'-endo	C3'-endo	C3'-endo	C2'-endo
		dG: C3'-endo			C3'-endo
38	47	dC: 55	68	47	40 (C2'-endo)
		dG: -170			-140 (C3'-endo)
9.0	8.7	d(CpG): 6.9	9.98	9.6	9.3 (C2'-endo)
		d(GpC): 8.0			11.8 (C3'-endo)
	Right 10 3.4 36.0 <i>anti</i> C2'-endo 38	A-RNA Right Right 10 11 3.4 2.6 36.0 32.7 anti anti C2'-endo C3'-endo 38 47	A-RNARightRightLeft1011123.42.63.736.032.7-60antiantidC: antiantiantidC: antiC2'-endoC3'-endodC: C2'-endo3847dC: 55dG: -1709.08.7	A-RNA Right Right Left Right 10 11 12 11.5 3.4 2.6 3.7 3.36 36.0 32.7 -60 31.2 anti dC: anti anti dG: syn dC: anti anti S2'-endo C3'-endo dC: C2'-endo C3'-endo 38 47 dC: 55 68 dG: -170 9.0 8.7 d(CpG): 6.9 9.98	A-RNARightRightLeftRightRight10111211.5123.42.63.73.363.436.032.7-6031.230(per dimer)antiantidC: antiantiantidC: antiantiantidG: synC3'-endoC3'-endoC3'-endo3847dC: 5568479.08.7d(CpG): 6.99.989.6

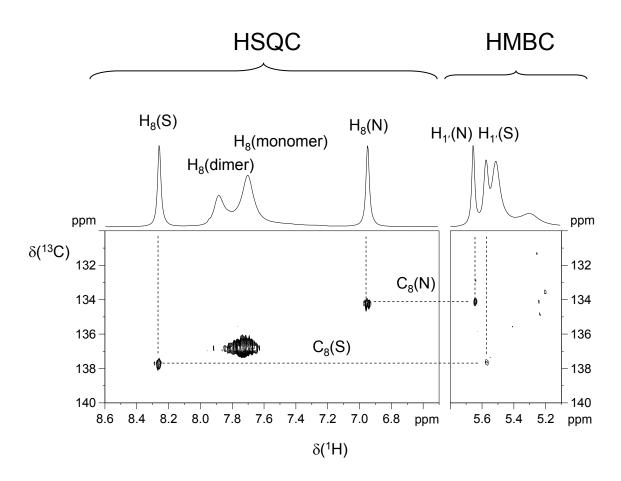
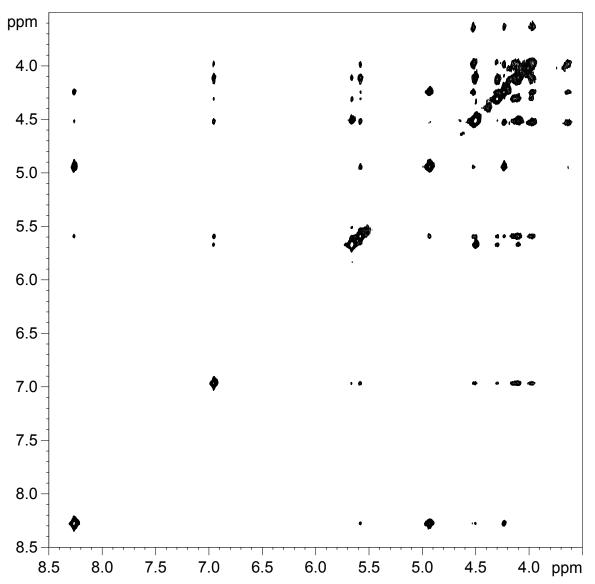
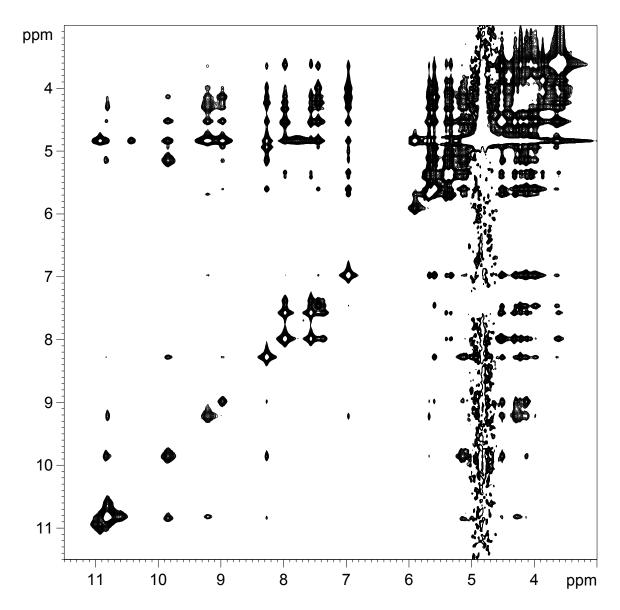
Table S4. Comparison of geometric parameters of common nucleic acid helices

^aFrom: Zimmerman, S. B.; Gerson, H. C.; Davies, D. R., J. Mol. Biol. 1975, 92, 181-192.

^bFrom: Zimmerman, S. B., *J. Mol. Biol.* **1976**, *106*, 663-672.

DOSY of 1.0M Na.GMP in D2O (degassed) at 278K d20=75ms, p30=6300us, ns=16, ds=4, td=4k, 32 increments calibration #3 (5.645G/mm)

Figure S1. Diffusion ¹**H NMR results**. Diffusion NMR experiments were carried out on an Avance-600 Bruker spectrometer for 1.0 M Na₂(5'-GMP) in D₂O at 278.0 K. The pulse sequence of longitudinal eddy current delay with bipolar-gradient pulse (LEDBPGP2s) was employed. The pulse field gradient duration (δ) was 7.5 ms, and the variable gradient strength (G) was 5.645 mT/m. The diffusion period (Δ) was 75.0 ms, and a total of 4096 experiments with 16 scans were collected for each of the 32 increment steps with a recycle delay of 5.0 s. The eddy current delay (t_w) employed was 5 ms, and the gradient recovery delay was set at 0.2 ms. Calibration of the field gradient strength was performed by measuring the value of translational diffusion coefficient (D_t) for the residual ¹H signal in D₂O (99.99% ²H atom), where $D = 1.90 \times 10^{-9}$ m²/s [Van Geet, A.L. Anal. Chem. **42**, 679-680 (1970)]. The spectral width was 4194.6 Hz and a line-broadening of 10 Hz was employed in data processing (F2).

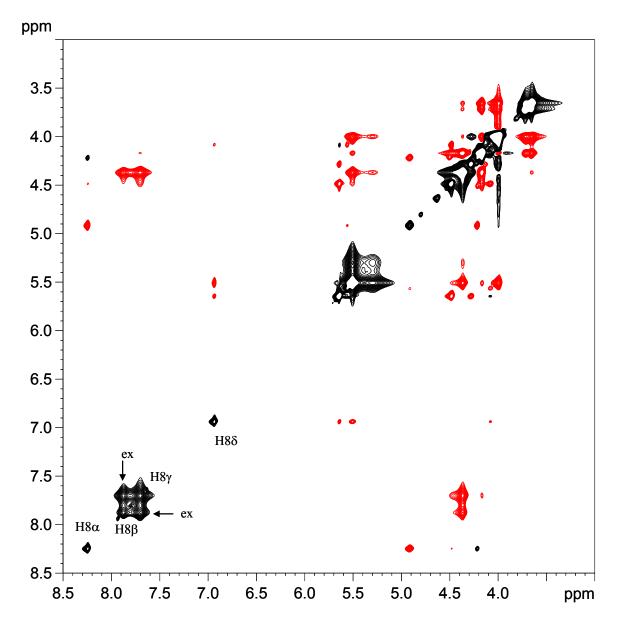
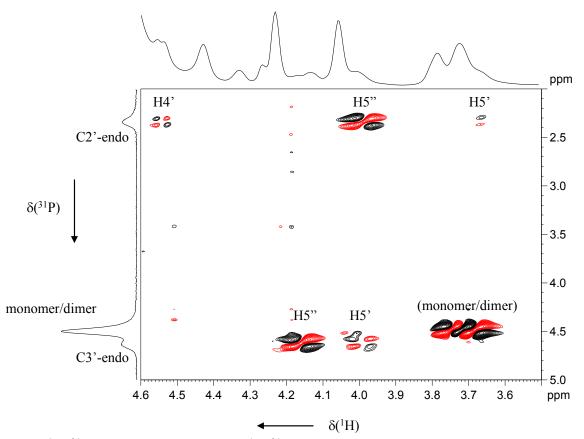

Figure S2. Connectivity between H8 and H1' signals. (Right) 2D gradient-enhanced HMBC (¹H-¹³C correlation through heteronuclear zero and double quantum coherence transfer) experiment was performed using the Bruker pulse program HMBCGPLPNDOF at 298.0 K on 1.0 M Na₂(5'-GMP) in H₂O/D₂O (1:1). A low-pass J-filter was employed to suppress one-bond correlations, and no ¹³C decoupling was applied during acquisition. The long-range coupling delay was 62.5 ms (corresponding to a long-range J_{CH} coupling of 8 Hz) and the one-bond coupling delay was 3.45 ms (145 Hz). A total of 450 scans were collected with a relaxation delay of 1.0 s. The 2D spectral widths were 6009.6 Hz (F2) and 21,130.1 Hz (F1), and the final data matrix was 4096 (F2) x 256 (F1). (Left) 2D HSQC (¹H-¹³C heteronuclear one-bond correlation via double INEPT transfer) without decoupling was performed on 1.0 M Na₂(5'-GMP) in D₂O at 298.0 K using the Bruker pulse program HSQCETGPSISPNP. A trim pulse (1 ms, F1 dimension) was employed in the INEPT transfer while shape pulses were employed on the F2 dimension. The 180° shape pulses for inversion and refocusing at -1.3 dB on the F2 dimension were 500 µs and 2000 µs, respectively. A correlation delay of 1.25 ms, which corresponds to a ${}^{1}J_{\text{HC}}$ of 200 Hz, was used to observe the ${}^{1}\text{H}$ - ${}^{13}\text{C}$ correlation. The 2D spectral widths were 6613.7 Hz (F1) and 21,129.4 Hz (F2). A total of 30 scans were collected with a relaxation delay of 1.0 s, and the final data matrix was 2048 (F2) x 1024 (F1).

Figure S3. DOSY-NOESY A 2D DOSY-NOESY experiment was created by modifying the 3D DOSY-NOESY experiment (LEDBPGPNO3s3d) and was carried out on 1.0 M Na₂(5'-GMP) in D₂O at 278 K. The pulse field gradient duration (δ) was set to 1.0 ms, and the diffusion period (Δ) was 300.0 ms. A total of 8 scans were collected with a recycle delay of 3.0 s. The mixing time (τ_{mix}) for NOESY was varied between 50 and 100 ms, and the final data matrix was 2048 (F2) × 512 (F1).


Figure S4. NOESY. The 2D NOESY (homonuclear correlation via dipolar coupling) experiment was performed 1.0 M Na₂(5'-GMP) in D₂O/H₂O (1:1) at 278.0 K using the Bruker pulse program NOESYGPPH with different mixing times (τ_{mix}): 50, 100, 200, 400 ms. The recycle delay was 4.0 s, and a spectral width of 7183.9 Hz in each dimension was employed. A total of 16 scans were collected for each experiment, and the final data matrix was 2048 (F2) × 512 (F1).

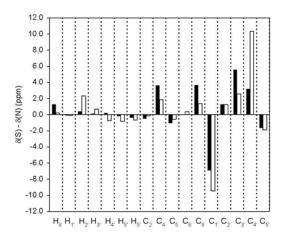

Figure S5. ROESY. 2D ROSEY (homonuclear NOE experiment measured under spin-locked condition) experiment was performed on 1.0 M Na₂(5'-GMP) in H₂O/D₂O (1:1) at 298.0 K using the Bruker pulse program ROESYETGP. A continuous wave (CW) spin-lock was used for mixing with an echo/antiecho-TPPI gradient selection. A series of experiments were performed with different spin-lock mixing times (5 – 40 ms). The spectral width was 4194.6 Hz on either dimension, and a total of 16 scans were collected with a relaxation delay of 3.0 s. The final data matrix was 2048 (F2) × 512 (F1). The cross peaks due to chemical exchange are labeled by "ex".

Figure S6. ¹**H DQF-COSY.** 2D gradient-enhanced DQF-COSY (homonuclear shift correlation spectrum with double quantum filter) experiment was performed for 1.0 M Na₂(5'-GMP) in D₂O at 298.0 K using the Bruker pulse program COSYDFETGP. A total of 16 scans and a relaxation delay of 6.0 s were collected for a spectrum with 2403.8 Hz on either dimension. The final data matrix was 2048 (F2) \times 512 (F1).

Figure S7. ¹H-³¹P COSY. Phase-sensitive ¹H-³¹P COSY (proton-detected 2D heteronuclear shift correlation) was performed on 1.0 M Na₂(5'-GMP) in D₂O at 298.0 K. The ¹H 90° and 180° pulse widths of ³¹P at a pulse power of 0.0 dB were 22.0 μ s and 44.0 μ s, respectively. ³¹P chemical shift was externally referenced to 85% H₃PO₄(aq) at 298.0 K. The spectral widths were 2403.8 Hz (F2) and 971.8 Hz (F1). A total of 20 scans were collected with a relaxation delay of 10.0 s, and the final data matrix was 1024 (F2) × 256 (F1).

Figure S8: Comparison between experimental and computed chemical shift differences between the two 5'-GMP sugar pucker conformations. The closed and open bars represent experimental and computed data, respectively. Computations were performed at the B3LYP/6-311++G(d,p) level.