Supporting Information

Synthesis and Evaluation of ¹⁸F-Labeled 2-Phenylbenzothiazoles as Positron Emission Tomography Imaging Agents for Amyloid Plaques in Alzheimer's Disease

Kim Serdons^{*}, Christelle Terwinghe, Peter Vermaelen, Koen Van Laere, Hank F. Kung, Luc Mortelmans, Guy Bormans and Alfons Verbruggen

Contents:

- 1. Experimental details for compound 1b, 1c, 1d, 2b, 2c, 2d, 3c, 3d, 3e, 3f and 3h
- 2. Quality control HPLC chromatograms of [18F]5
- 3. Purity of key target compounds together with HPLC chromatograms
- 4. ¹H-NMR spectra of key target compounds
- 5. MS spectra of key target compounds

1. Experimental details for compound 1b, 1c, 1d, 2b, 2c, 2d, 3c, 3d, 3e, 3f and 3h

N-3',5'-dimethoxyphenyl-4-fluorobenzamide (**1b**). **1b** was synthesized following method A starting from 3,5-dimethoxyaniline (12.26 g, 0.080 mol) and 4-fluorobenzoyl chloride (12.68 g, 0.080 mol) in pyridine (60 ml). This yielded 20.83 g of **1b** as a white solid (0.076 mol, 95%). 1 H-NMR (DMSO- d_{6} , 200 MHz): δ 3.74 (s, 6H, 2CH₃O), δ 6.27 (s, 1H, 4'-H), δ 7.08 (d, 2H, ^{4}J = 1.8 Hz, 2'-H 6'-H), δ 7.37 (t, 2H, ^{3}J = 8.6 Hz, 3-H 5-H), δ 8.02 (dd, 2H, ^{3}J = 8.4 Hz, ^{4}J = 3.2 Hz, 2-H 6-H), δ 10.18 (s, 1H, NH-CO). Accurate MS ES⁺ m/z [M+H]⁺ 276.1030 (calculated for C₁₅H₁₄NO₃F 276.1031). Mp: 116.4 – 117.0 °C.

N-4'-methoxyphenyl-4-nitrobenzamide (1c). 1c was synthesized following method A starting from p-anisidine (12.32 g, 0.100 mol) and 4-nitrobenzoyl chloride (18.56 g, 0.100 mol) in pyridine (60 ml) and refluxing for 2 h. This yielded 15.21 g of 1c as a green solid (0.056 mol, 56%). 1 H-NMR (DMSO- d_{6} , 300 MHz): δ 3.76 (s, 3H, CH₃O), δ 6.95 (d, 2H, ^{3}J = 8.9 Hz, 3'-H 5'-H), δ 7.68 (d, 2H, ^{3}J = 8.9 Hz, 2'-H 6'-H), δ 8.18 (d, 2H, ^{3}J = 8.7 Hz, 2-H 6-H), δ 8.36 (d, 2H, ^{3}J = 8.6 Hz, 3-H 5-H), δ 10.43 (s, 1H, NH-CO). Accurate MS ES⁺ m/z [M+H]⁺ 273.0869 (calculated for C₁₄H₁₂N₂O₄ 273.0870). Mp: 193.2 – 194.3 °C.

N-4'-methylphenyl-4-nitrobenzamide (**1d**). **1d** was synthesized following method A starting from p-toluidine (10.72 g, 0.100 mol) and 4-nitrobenzoyl chloride (18.56 g, 0.100 mol) in pyridine (150 ml) and refluxing for 2 h. Crystallization from methanol yielded 22.18 g of **1d** as yellow needles (0.086 mol, 86%). ¹H-NMR (DMSO- d_6 , 200 MHz): δ 2.30 (s, 3H, CH₃), δ 7.18 (d, 2H, ³J = 8.4 Hz, 3'-H 5'-H), δ 7.67 (d, 2H, ³J = 8.4 Hz, 2'-H 6'-H), δ 8.18 (d, 2H, ³J = 8.8 Hz, 2-H 6-H), δ 8.37 (d, 2H, ³J = 8.8 Hz, 3-H 5-H), δ 10.48 (s, 1H, NH-CO).

Accurate MS ES⁺ m/z $[M+H]^+$ 257.0903 (calculated for $C_{14}H_{12}N_2O_3$ 257.0921). Mp: 196.4 – 197.1 °C.

N-3',5'-dimethoxyphenyl-4-fluorothiobenzamide (2b). 2b was synthesized following method B starting from 1b (2.04 g, 0.0074 mol) and Lawesson's reagent (1.69 g, 0.0042 mol) in chlorobenzene (10 ml). After refluxing for 3 h, chlorobenzene was evaporated and the residue was purified with silica column chromatography using dichloromethane as eluent to yield 0.764 g of 2b as a yellow solid (0.0026 mol, 37%). ¹H-NMR (DMSO- d_6 , 200 MHz): δ 3.75 (s, 6H, 2CH₃O), δ 6.44 (s, 1H, 4'-H), δ 7.17 (d, 2H, ⁴J = 1.8 Hz, 2'-H 6'-H), δ 7.29 (t, 2H, ³J = 8.9 Hz, 3-H 5-H), δ 7.87 (dd, 2H, ³J = 8.6 Hz, ⁴J = 3.0 Hz, 2-H 6-H), δ 11.69 (s, 1H, NH-CS). Accurate MS ES⁺ m/z [M+H]⁺ 292.0790 (calculated for C₁₅H₁₄NO₂FS 292.0802). Mp: 105.2 – 105.4 °C.

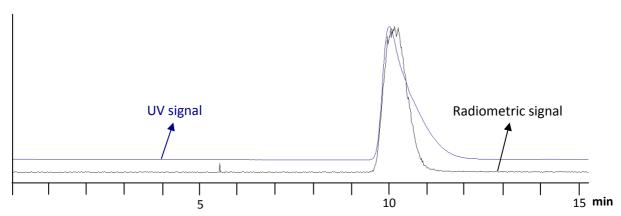
N-4'-methoxyphenyl-4-nitrothiobenzamide (2c). 2c was synthesized following method B starting from 1c (14.43 g, 0.053 mol) and Lawesson's reagent (12.94 g, 0.032 mol) in 1,4-dioxane (120 ml). Crystallization from methanol yielded 13.78 g of 2c as brown crystals (0.048 mol, 91%). 1 H-NMR (DMSO- d_{6} , 300 MHz): δ 3.78 (s, 3H, CH₃O), δ 7.02 (d, 2H, ^{3}J = 8.9 Hz, 3'-H 5'-H), δ 7.77 (d, 2H, ^{3}J = 8.9 Hz, 2'-H 6'-H), δ 7.99 (d, 2H, ^{3}J = 8.7 Hz, 2-H 6-H), δ 8.30 (d, 2H, ^{3}J = 8.7 Hz, 3-H 5-H), δ 11.98 (s, 1H, NH-CS). Accurate MS ES⁺ m/z [M+H]⁺ 289.0652 (calculated for C₁₄H₁₂N₂O₃S 289.0641). Mp: 174.5 – 175.1 °C.

N-4'-methylphenyl-4-nitrothiobenzamide (2d). 2d was synthesized following method B starting from 1d (19.22 g, 0.075 mol) and Lawesson's reagent (18.20 g, 0.045 mol) in 1,4-

dioxane (120 ml). Crystallisation from methanol yielded 19.46 g of **2d** as yellow crystals (0.071 mol, 95%). H-NMR (DMSO- d_6 , 200 MHz): δ 2.33 (s, 3H, CH₃), δ 7.26 (d, 2H, 3J = 8.4 Hz, 3'-H 5'-H), δ 7.76 (d, 2H, 3J = 8.4 Hz, 2'-H 6'-H), δ 8.00 (d, 2H, 3J = 8.8 Hz, 2-H 6-H), δ 8.30 (d, 2H, 3J = 8.8 Hz, 3-H 5-H), δ 12.06 (s, 1H, NH-CS). Accurate MS ES⁺ m/z [M+H]⁺ 273.0683 (calculated for C₁₄H₁₂N₂O₂S 273.0692). Mp: 195.3 – 196.7 °C.

5,7-Dimethoxy-2-(4'-fluorophenyl)-1,3-benzothiazole (**3c**). **3c** was synthesized following method C starting from **2b** (0.583 g, 0.0020 mol) and potassium ferricyanide (5.27 g, 0.016 mol). The residue was purified with silica column chromatography using a mixture of dichloromethane and hexane (90:10 V/V) as eluent to yield 0.268 g of **3c** as a white solid (0.0009 mol, 45%). 1 H-NMR (CDCl₃, 200 MHz): δ 3.90 (s, 3H, 5-CH₃O), δ 3.96 (s, 3H, 7-CH₃O), δ 6.50 (d, 1H, ^{4}J = 1.8 Hz, 6-H), δ 7.17 (t, 2H, ^{3}J = 8.7 Hz, 3'-H 5'-H), δ 7.18 (d, 1H, ^{4}J = 2.0 Hz, 4-H), δ 8.06 (dd, 2H, ^{3}J = 8.4 Hz, ^{4}J = 3.6 Hz, 2'-H 6'-H). Accurate MS ES⁺ m/z [M+H]⁺ 290.0625 (calculated for C₁₅H₁₂NO₂FS 290.0645). Mp: 189.7 – 190.5 °C.

5,7-Dihydroxy-2-(4'-fluorophenyl)-1,3-benzothiazole (**3d**). **3d** was synthesized following method D starting from **3c** (0.50 g, 0.0017 mol), using 9.9 ml BBr₃ and stirring for 12 h. The residue was purified with silica column chromatography using gradient mixtures of hexane and ethylacetate (up to 30%) as eluent to yield 0.384 g of **3d** as a white solid (0.0015 mol, 88%). 1 H-NMR (DMSO- d_{6} , 200 MHz): δ 6.45 (d, 1H, ^{4}J = 1.8 Hz, 6-H), δ 6.89 (d, 1H, ^{4}J = 1.8 Hz, 4-H), δ 7.38 (t, 2H, ^{3}J = 8.8 Hz, 3'-H 5'-H), δ 8.09 (dd, 2H, ^{3}J = 8.7 Hz, ^{4}J = 5.2 Hz, 2'-H 6'-H), δ 9.58 (s, 1H, 5-OH), δ 10.48 (s, 1H, 7-OH). Accurate MS ES⁺ m/z [M+H]⁺ 262.0330 (calculated for C₁₃H₈NO₂FS 262.0333). Mp: 275.0 – 276.5 °C.


6-Methoxy-2-(4'-nitrophenyl)-1,3-benzothiazole (3e). 3e was synthesized following method C starting from **2c** (12.97 g, 0.045 mol) and potassium ferricyanide (59.27 g, 0.180 mol). The residue was purified with silica column chromatography using dichloromethane as eluent to yield 3.92 g of **3e** as a yellow solid (0.014 mol, 31%). ¹H-NMR (CDCl₃, 200 MHz): δ 3.92 (s, 3H, CH₃O), δ 7.15 (dd, 1H, ${}^3J = 9.2$ Hz, ${}^4J = 2.6$ Hz, 5-H), δ 7.38 (d, 1H, ${}^4J = 2.6$ Hz, 7-H), δ 8.00 (d, 1H, ${}^3J = 8.6$ Hz, 4-H), δ 8.20 (dd, 2H, ${}^3J = 6.8$ Hz, ${}^4J = 2.0$ Hz, 2'-H 6'-H), δ 8.33 (dd, 2H, ${}^3J = 7.0$ Hz, ${}^4J = 2.2$ Hz, 3'-H 5'-H). Accurate MS ES⁺ m/z [M+H]⁺ 287.0488 (calculated for C₁₄H₁₀N₂O₃S 287.0485). Mp: 203.6 – 204.7 °C.

6-Hydroxy-2-(4'-nitrophenyl)-1,3-benzothiazole (**3f). 3f** was synthesized following method D starting from **3e** (3.15 g, 0.011 mol) and using 0.025 mol BBr₃. The reaction was stirred overnight and the residue was purified with silica column chromatography using dichloromethane as eluent to yield 1.83 g of **3f** as a yellow solid (0.0067 mol, 61%). ¹H-NMR (DMSO- d_6 , 200 MHz): δ 7.05 (dd, 1H, 3J = 8.8 Hz, 4J = 1.8 Hz, 5-H), δ 7.47 (d, 1H, 4J = 2.6 Hz, 7-H), δ 7.93 (d, 1H, 3J = 9.0 Hz, 4-H), δ 8.24 (d, 2H, 3J = 8.8 Hz, 2'-H 6'-H), δ 8.36 (d, 2H, 3J = 8.8 Hz, 3'-H 5'-H), δ 10.10 (s, 1H, 6-OH). Accurate MS ES⁺ m/z [M+H]⁺ 273.0350 (calculated for C₁₃H₈N₂O₃S 273.0328). Mp: 253.4 – 254.2 °C.

6-Methyl-2-(4'-nitrophenyl)-1,3-benzothiazole (**3h). 3h** was synthesized following method C starting from **2d** (16.34 g, 0.060 mol) and potassium ferricyanide (65.85 g, 0.200 mol). Crystallisation from ethyl acetate yielded 9.47 g of **3h** as yellow crystals (0.035 mol, 58%). 1 H-NMR (CDCl₃, 300 MHz): δ 2.53 (s, 3H, CH₃), δ 7.36 (d, 2H, ^{3}J = 5.6 Hz, 3'-H 5'-H), δ 7.74 (s, 1H, 5-H), δ 8.00 (d, 1H, ^{3}J = 5.6 Hz, 7-H), δ 8.24 (d, 2H, ^{3}J = 9.0 Hz, 4-H), δ 8.34 (d,

2H, $^3J = 8.9$ Hz, 2'-H 6'-H). Accurate MS ES⁺ m/z [M+H]⁺ 271.0537 (calculated for $C_{14}H_{10}N_2O_2S$ 271.0536). Mp: 212.9 – 214.6 °C.

2. Quality control HPLC chromatograms of [18F]5

Quality control HPLC chromatograms of [18 F]5 coinjected with authentic non-radioactive 5. Stationary phase: XTerra RP C18 (3.5 μ m, 3.0 mm x 100 mm); Mobile phase: 0.05 M ammonium acetate and ethanol/THF (75:25) (45:55 V/V); Flow rate: 0.3 ml/min; Detection: UV 234 nm.

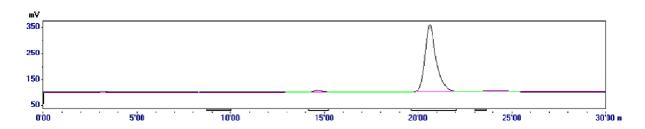
3. Purity of key target compounds together with HPLC chromatograms

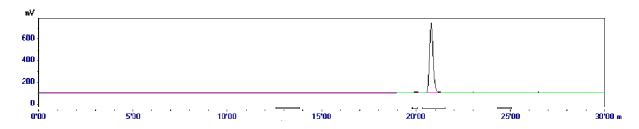
HPLC method:

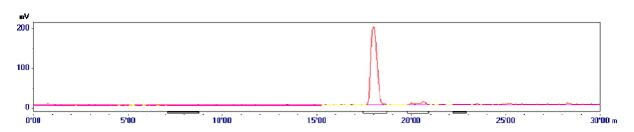
Stationary phase: XTerraTM RP C₁₈ column (5 µm, 4.6 mm x 250 mm; Waters)

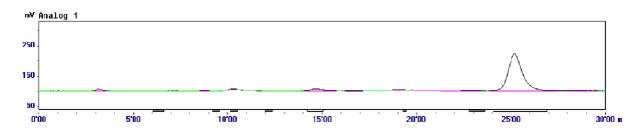
Mobile phase:

METHOD 1:

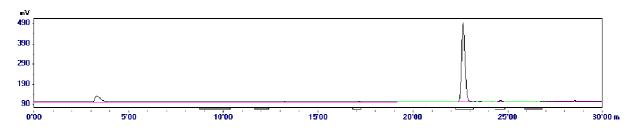

	NH ₄ OAc 0.05 M	Acetonitrile
0 min	95	5
20 min	5	95
25 min	5	95
30 min	95	5

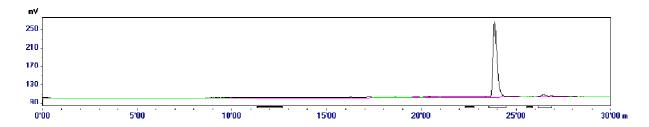

METHOD 2: 50% NH₄OAc 0.05M and 50% EtOH/THF (75/25)

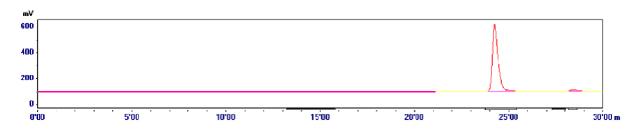

Flow rate: 1 mL/min

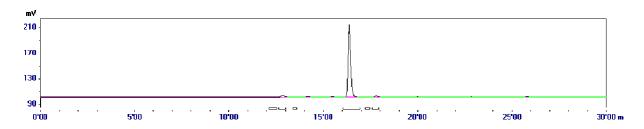

UV-wavelength: 254 nm

Compound	Method	Retention time (RT,	Purity (%)
		min)	
3a	2	20.63	98.66
3b	1	20.82	99.36
3d	1	18.00	96.83
3e	2	25.20	97.56
3g	1	22.67	98.51
3h	1	23.88	96.69
5	1	24.25	98.03
8	1	16.37	96.38

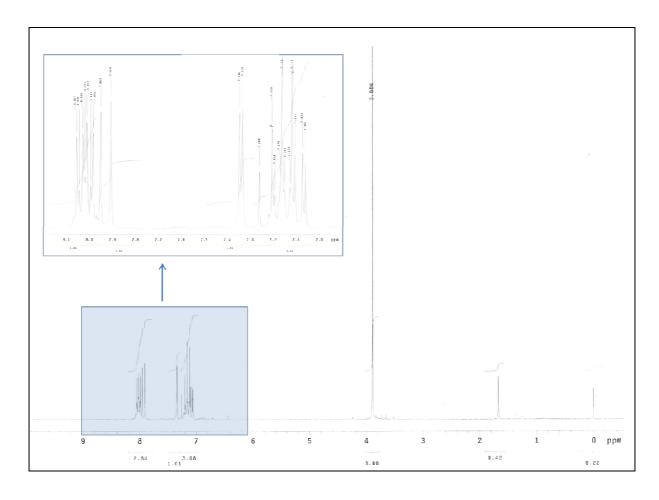


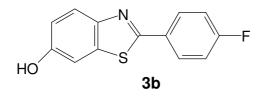


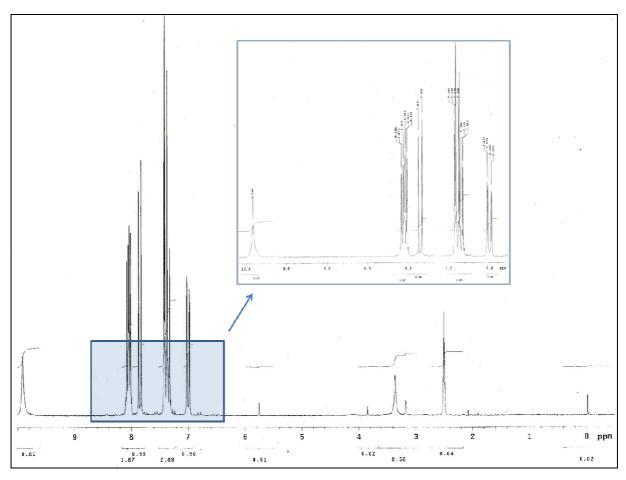


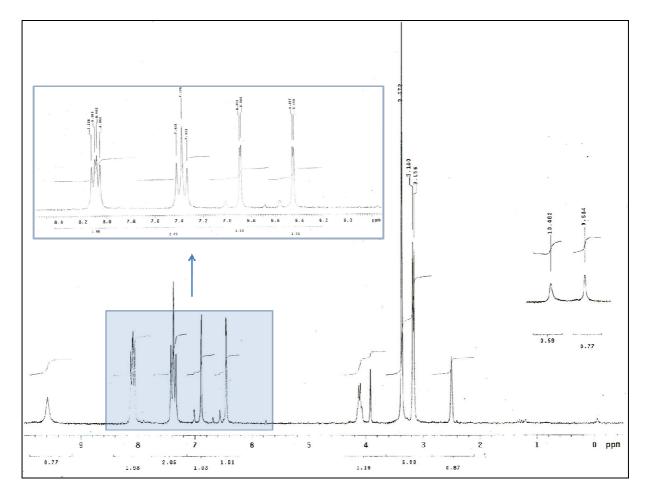


$$\mathsf{CH_3OCH_2O} \\ \mathbf{3g} \\ \\ \mathbf{3g}$$

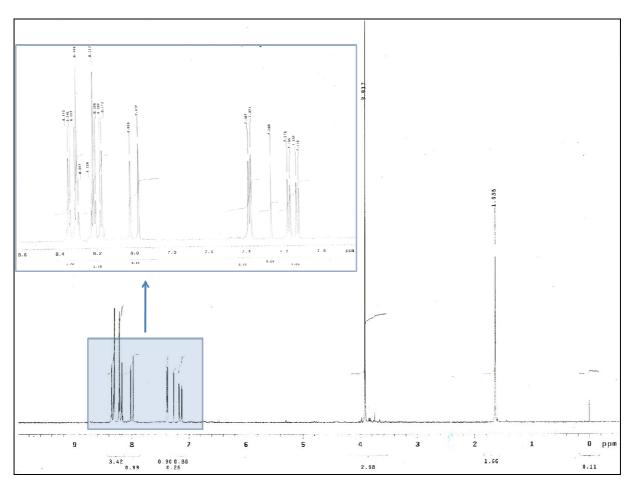


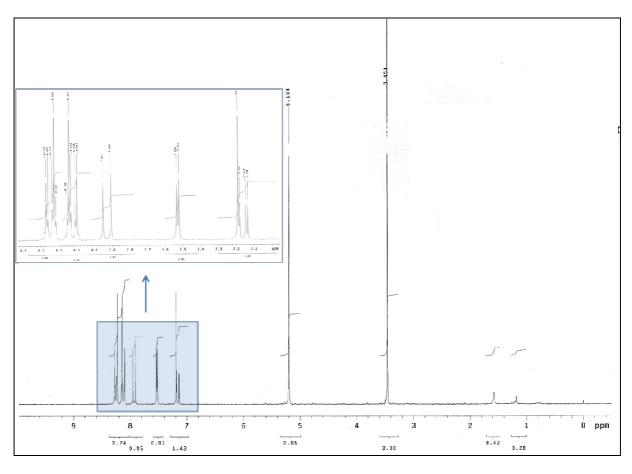


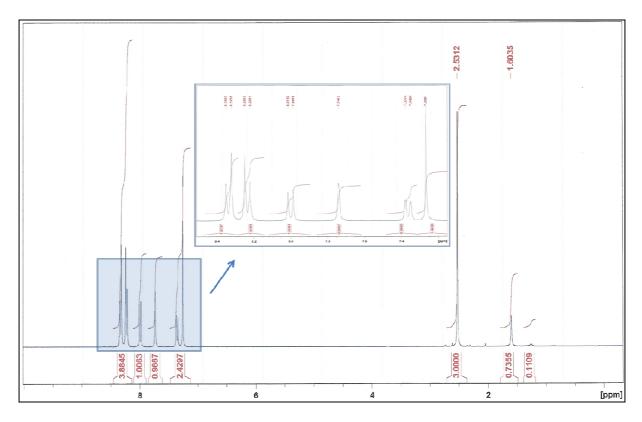


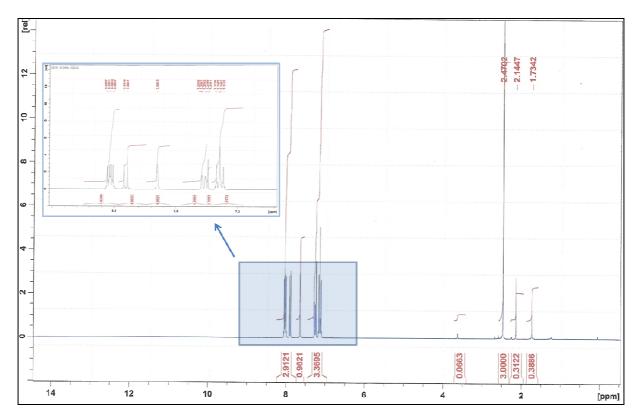


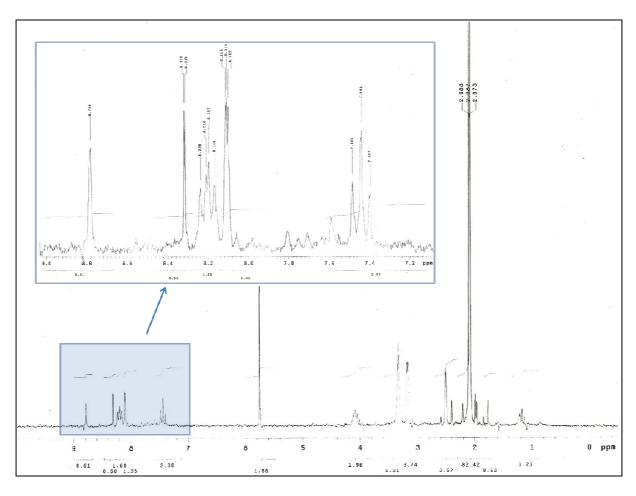
4. ¹H-NMR spectra of key target compounds



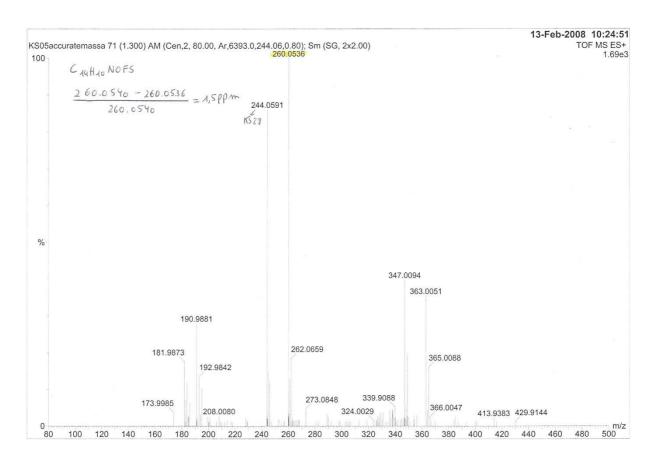


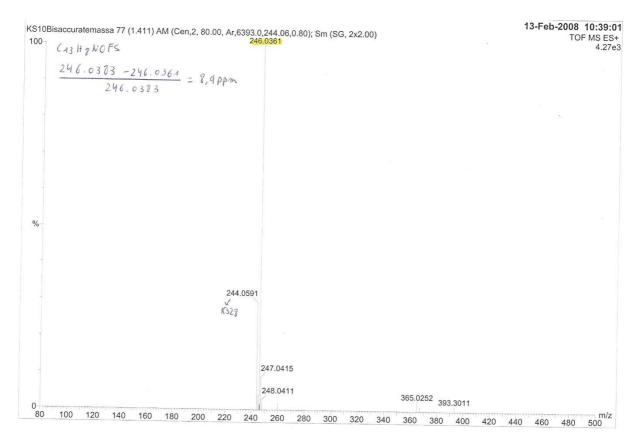



$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

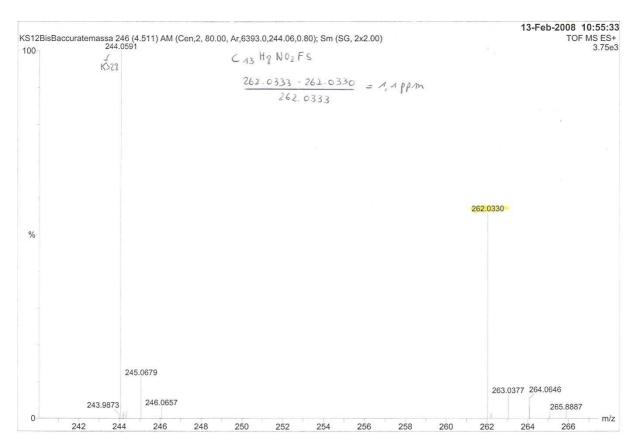


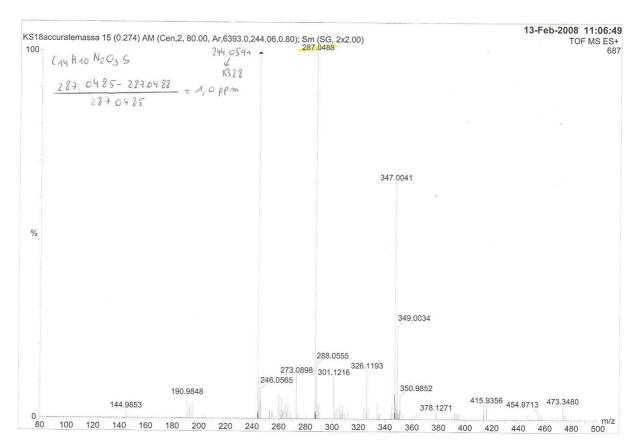
$$\mathsf{CH_3OCH_2O} \\ \mathbf{3g} \\$$

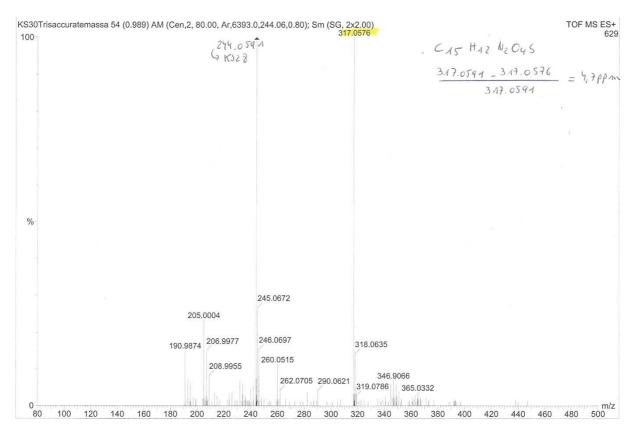


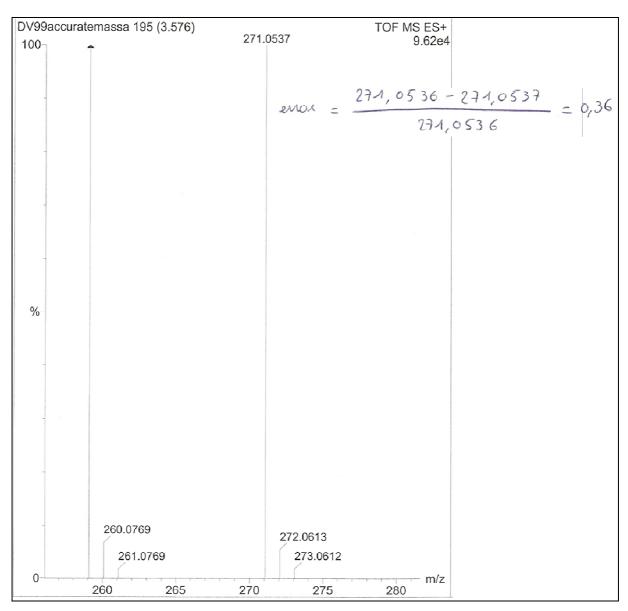


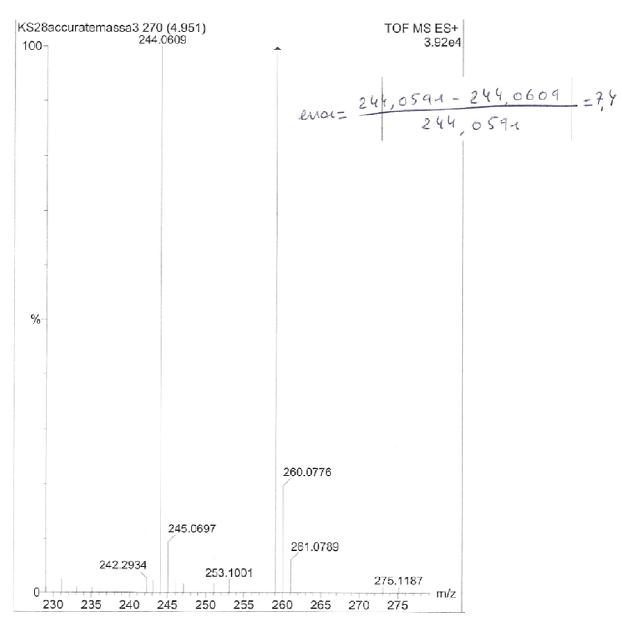
5. MS spectra of key target compounds

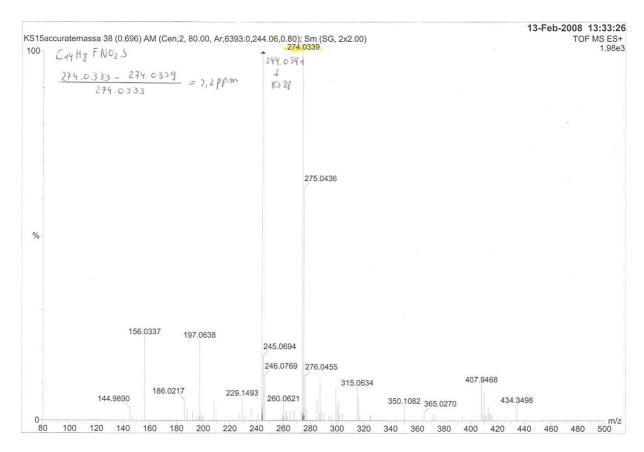

Exact mass measurement was performed on a time-of-flight mass spectrometer (LCT, Micromass, Manchester, UK) equipped with an orthogonal electrospray ionization interface, operated in positive mode (ES⁺). Accurate mass determination was done by coinfusion with a compound with known mass as an internal calibration standard (lock mass).


Accurate MS ES $^+$ m/z [M+H] $^+$ 260.0536 (calculated for $C_{14}H_{10}NOFS$ 260.0540). Lock mass: $C_{14}H_{10}FNS$ 244.0591.


Accurate MS ES $^+$ m/z [M+H] $^+$ 246.0361 (calculated for $C_{13}H_8NOFS$ 246.0383). Lock mass: $C_{14}H_{10}FNS$ 244.0591.


Accurate MS ES $^+$ m/z [M+H] $^+$ 262.0330 (calculated for $C_{13}H_8NO_2FS$ 262.0333). Lock mass: $C_{14}H_{10}FNS$ 244.0591.


Accurate MS ES $^+$ m/z [M+H] $^+$ 287.0488 (calculated for $C_{14}H_{10}N_2O_3S$ 287.0485). Lock mass: $C_{14}H_{10}FNS$ 244.0591.


Accurate MS ES $^+$ m/z [M+H] $^+$ 317.0576 (calculated for $C_{15}H_{12}N_2O_4S$ 317.0591). Lock mass: $C_{14}H_{10}FNS$ 244.0591.

Accurate MS ES $^+$ m/z [M+H] $^+$ 271.0537 (calculated for $C_{14}H_{10}N_2O_2S$ 271.0536). Lock mass: $C_{14}H_{11}FN_2S$ 259.3271.

Accurate MS ES $^+$ m/z [M+H] $^+$ 244.0498 (calculated for $C_{14}H_{10}FNS$ 244.0591). Lock mass: $C_{14}H_{11}FN_2S$ 259.3271.

Accurate MS ES $^+$ m/z [M+H] $^+$ 274.0339 (calculated for $C_{14}H_8FNO_2S$ 274.0333). Lock mass: $C_{14}H_{10}FNS$ 244.0591.