Supporting Information

Direct Asymmetric Benzoyloxylation of Aldehydes Catalyzed by 2-Tritylpyrrolidine

Taichi Kano, Haruka Mii and Keiji Maruoka*
Department of Chemistry, Graduate School of Science, Kyoto University
Sakyo, Kyoto 606-8502, Japan

General Information. Infrared (IR) spectra were recorded on a Shimadzu IR Prestige-21spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL JNM-FX400 (400 MHz) spectrometer. Data were reported as follows: chemical shifts in ppm from tetramethylsilane (in the case of CDCl_{3}) as an internal standard, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, q $=$ quartet, $\mathrm{dd}=$ double-doublet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constants (Hz), and assignment.
${ }^{13}$ C NMR spectra were measured on a JEOL JNM-FX400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. High performance liquid chromatography (HPLC) was performed on Shimadzu 10A instruments using Daicel Chiralpak AD-H, IA and Chiralcel OD-H $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$ columns. High-resolution mass spectra (HRMS) were performed on a BRUKER microTOF. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel $60 \mathrm{GF} 254,0.25 \mathrm{~mm}$) were used. The products were purified by flash column chromatography on silica gel 60 (Merck $1.09386 .9025,230-400$ mesh). In experiments requiring dry solvent, tetrahydrofuran (THF) was purchased from Kanto Chemical Co. Inc. as "Dehydrated". Toluene was dried over sodium metal. 1,4-Dioxane was stored under argon atomosphere. N, N-Dimethylformamide (DMF) and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were stored over $4 \AA$ molecular sieves. The commercially available aldehydes were distilled and stored under argon atmosphere at $-17^{\circ} \mathrm{C}$. Pyrrolidine, benzoyl peroxide (BPO) and hydroquinone were purchased and used without further purification. Cyclohexylacetaldehyde, ${ }^{1}(S)-\mathbf{1},{ }^{2}$ nitrone $\mathbf{3}^{3}$ and tris(3,5-dimethylphenyl)methane ${ }^{4}$ were synthesized according to literature procedures and used after column chromatography on silica gel. (S)-2-(Triarylmethyl)pyrrolidine 2a and $\mathbf{2 b}$ were synthesized according to the following procedure developed in our laboratory. It should be noted that attempted synthesis of (S)-2a according to ref 5 gave racemic 2a.

Synthesis of 2-Tritylpyrrolidine rac-2a

To the solution of triphenylmethane $(3.13 \mathrm{~g}, 12.8 \mathrm{mmol})$ in THF $(45 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, a 1.6 M hexane solution of n-butyl lithium ($8.0 \mathrm{~mL}, 12.8 \mathrm{mmol}$) was added. After stirring for 1 h , to the mixture at $-78{ }^{\circ} \mathrm{C}$ was added a solution of nitrone $\mathbf{3}(545 \mathrm{mg}, 6.4 \mathrm{mmol})$ in THF (2.0 mL). The mixture was warmed to room temperature and stirred for 2 h and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$ keeping $\mathrm{pH}>7$. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography on silica gel (ethyl acetate/hexane $=1: 20 \sim 1: 4$ as eluent) to give 2-tritylpyrrolidin-1-ol rac-4 (1.14 g, 3.36 $\mathrm{mmol}, 54 \%$ yield).

A mixture of rac-4 (1.46 mg, 4.44 mmol$)$ and $10 \% \mathrm{Pd} / \mathrm{C}(400 \mathrm{mg})$ in acetid acid $(40 \mathrm{~mL})$ was stirred under an atmosphere of hydrogen at room temperature for 12 h . The mixture was filtered through Celite and the solvent evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and neutralized with 50% aqueous NaOH . The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography on silica gel (ethyl acetate/hexane $=1: 4$ and then ethyl acetate as eluent) to give $\mathrm{rac}-\mathbf{2}(1.36 \mathrm{~g}, 3.29 \mathrm{mmol}, 98 \%$ yield $)$.

(S)-2-Tritylpyrrolidine (S)-2a

A mixture of $\mathrm{rac}-\mathbf{2 a}(220 \mathrm{mg}, 0.70 \mathrm{mmol})$ and (S)-malic acid ($118 \mathrm{mg}, 0.88 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.28 \mathrm{~mL})$ and ethanol (1.1 mL) was heated to $90{ }^{\circ} \mathrm{C}$ and stirred until the solid was completely dissolved. The solution was then gradually cooled to room temperature. The recrystallized solid was separated by filtrate. The solid ($129 \mathrm{mg}, 0.29 \mathrm{mmol}$) and (S)-malic acid ($7.7 \mathrm{mg}, 0.058 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was again dissolved in $\mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~mL})$ and ethanol $(0.48 \mathrm{~mL})$ and heated to $90{ }^{\circ} \mathrm{C}$. After cooled to room temperature, the recrystallized solid was filtered, and dissolved in ethyl acetate. The solution was washed with 1 N aqueous NaOH . The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give enantiopure (S)-2a ($67 \mathrm{mg}, 0.21 \mathrm{mmol}, 30 \%$ yield) : $[\alpha]_{\mathrm{D}}^{23} 15.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.33(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.26-7.23(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.20-7.16(3 \mathrm{H}, \mathrm{m}$, Ar-H), $4.72(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz},-\mathrm{NHCH}-), 2.76-2.67\left(2 \mathrm{H}, \mathrm{m},-\mathrm{NHCH}_{2}-\right), 2.09-2.00(1 \mathrm{H}, \mathrm{m}$, -CHHCHNH-), 1.63-1.47 (2H, m, -CHHCHNH-, $\left.-\mathrm{CH}_{2} \mathrm{CHHCH}_{2}-\right), \quad 1.14-1.05(1 \mathrm{H}, \quad \mathrm{m}$, $\left.-\mathrm{CH}_{2} \mathrm{CHHCH}_{2}-\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.3,130.2,127.6,126.0,63.9,61.2,46.7,29.1$, 25.7; IR (neat) 3055, 1597, 1490, $1035 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}: 314.1903$ ([M + $\mathrm{H}]^{+}$), Found: $314.1892\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HPLC analysis : Daicel Chiralcel OD-H, 230 nm , hexane $/ 2$-propanol/diethylamine $=100: 1: 0.1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $6.0 \mathrm{~min}(R)$ and $6.4 \min (S)$.

Crystal Structure Analysis

Single crystals of (S)-2a•(S)-malic acid salt for X-ray diffraction experiments were obtained from the
optical resolution of rac-2a described above. The data were collected at $-150{ }^{\circ} \mathrm{C}$ on a Rigaku R-AXIS RAPID IP diffractometer with graphite-monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.5419 \AA$). The crystal structure was solved by direct methods using SIR 97^{6} and refined in SHELXL-97 ${ }^{7}$ by full matrix least-squares using anisotropic thermal displacement parameters for all non-hydrogen atoms. Two carboxylate oxygen atoms were disordered and were refined in two positions with occupancy factors of 0.57 and 0.43 , respectively. Crystallographic data for (S)-2a• (S)-malic acid salt: $2\left(\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{NO}_{5}\right)$, colorless prisms, $0.8 \times 0.8 \times 0.5 \mathrm{~mm}^{3}$, monoclinic, $P 2_{1}, a=9.1818(2), b=9.9425(2)$, $c=12.9201(2) \AA, V=1149.48(4) \AA^{3}, \rho_{\text {calcd }}=1.293 \mathrm{gcm}^{-3}, Z=2,2 \theta_{\max }=68.23^{\circ}, \mu=0.720 \mathrm{~mm}^{-1} . \mathrm{A}$ total of 12034 reflections were measured. $R=0.0455$, and $R w=0.1205$ for 3939 observed reflections with $I>2.0 \sigma(I)$. CCDC-712617 [(S)-2a $\cdot(S)$-malic acid salt] contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

ORTEP diagram of (S)-2a $\cdot(S)$-malic acid
(Minor disordered carboxylate oxygen atoms have been omitted for clarity.)

Synthesis of (S)-2-(Tris(3,5-dimethylphenyl)methyl)pyrrolidine (S)-2b

rac-2b was synthesized following the same procedure with rac-2a except for using tris(3,5-dimethylphenyl)methane instead of triphenylmethane. After the amine group of rac-2b was protected with Cbz functionality, optical resolution of the Cbz-protected rac-2b was performed using a chiral column (Daicel Chiralpak IA, 254 nm , ethyl acetate $/$ hexane $=1: 50$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, retention time: $22.1 \mathrm{~min}(S)$ and $31.4 \mathrm{~min}(R)$). Deprotection by hydrogenation reaction gave
enantiopure (S)-2b: $[\alpha]_{\mathrm{D}}^{24}-13.6\left(c 0.5, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95(6 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$, $6.81(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz},-\mathrm{NHCH}-), 2.74-2.68(1 \mathrm{H}, \mathrm{m},-\mathrm{NHCHH}-), 2.62-2.55(1 \mathrm{H}$, m, -NHCHH-), $2.23\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.007-1.69(1 \mathrm{H}, \mathrm{m},-\mathrm{CHHCHNH}-), 1.61-1.46(2 \mathrm{H}, \mathrm{m}$, -CHHCHNH-, $-\mathrm{CH}_{2} \mathrm{CHHCH}_{2}$), 1.11-1.04 $\left(1 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2} \mathrm{CHHCH}_{2}-\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $146.3,136.6,128.0,127.5,63.5,60.9,46.7,29.1,25.7,21.6$; IR (neat) 2916, 2359, 1597, 1462, 1262, 1037, $850.6 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}: 398.2842\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: 398.2833 $\left([M+H]^{+}\right)$.

General Procedure for the Organocatalytic Benzoyloxylation Reaction of Aldehydes with

 Benzoyl Peroxide (BPO). A mixture of (S)-2 (3.1 mg, $0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, hydroquinone $(1.1 \mathrm{mg}$, $0.01 \mathrm{mmol})$ and an aldehyde (0.2 mmol) in THF $(1.0 \mathrm{~mL})$ was stirred at room temperature. To the mixture was then added BPO (25% hydrate) $(71.1 \mathrm{mg}, 0.22 \mathrm{mmol})$. After stirring for 2 h at room temperature, the reaction mixture was poured to 1 N HCl and extracted with ethyl acetate. The organic phase was then washed with brine and saturated NaHCO_{3}, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure following purification by column chromatography on silica gel (ethyl acetate/hexane $=1: 20$ as eluent) to furnish the corresponding α-benzoyloxyl aldehyde as an oil.Typical Procedure for Reduction of $\boldsymbol{\alpha}$-Benzoyloxyl Aldehydes. To a solution of (S)-1-oxo-3-phenylpropan-2-yl benzoate ($13 \mathrm{mg}, 0.05 \mathrm{mmol}$) in methanol $\left(0.5 \mathrm{~mL}\right.$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ mL) was added $\mathrm{NaBH}_{4}(1.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 10 min , the mixture was poured into 1 N HCl slowly at $0{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure following purification by column chromatography on silica gel (ethyl acetate/hexane $=1: 10$ as eluent) to furnish (S)-1-hydroxy-3-phenylpropan-2-yl benzoate ($13 \mathrm{mg}, 0.05 \mathrm{mmol}, 99 \%$ yield).

(S)-1-Oxo-3-phenylpropan-2-yl Benzoate 5 (Table 2, entry 4)

The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol. $[\alpha]_{\mathrm{D}}^{28}-93\left(c 1.3, \mathrm{CHCl}_{3} ; 94 \% \mathrm{ee}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(1 \mathrm{H}, \mathrm{s},-\mathrm{CHO}), 8.04(2 \mathrm{H}, \mathrm{d}$, $J=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.46(2 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.34-7.23(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{dd}, J=8.2,5.0 \mathrm{~Hz},-\mathrm{CH}(\mathrm{OBz})-), 3.30(1 \mathrm{H}, \mathrm{dd}, J=14.8,4.8 \mathrm{~Hz},-\mathrm{CHHPh}), 3.20$ $(1 \mathrm{H}, \mathrm{dd}, J=14.8,8.4 \mathrm{~Hz},-\mathrm{CHHPh}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.2,166.0,135.4,133.6$, $129.8,129.4,129.0,128.7,128.5,127.1,79.1,35.4$; IR (neat) $3030,1452,1717,1269,1111 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3}: 255.1016\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $255.1011\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
(S)-1-Hydroxy-3-phenylpropan-2-yl Benzoate 7
$[\alpha]_{\mathrm{D}}^{28}-37$ (c 0.1, $\mathrm{CHCl}_{3} ; 94 \%$ ee); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04-8.01(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.59-7.55$ (1H, m, Ar-H), 7.46-7.42 (2H, m, Ar-H), 7.30-7.20 (5H, m, Ar-H), 5.39-5.33 (1H, m, -CH(OBz)-), 3.89-3.83 (1H, m, -CHHOH), 3.79-3.73 ($1 \mathrm{H}, \mathrm{m},-\mathrm{CHHOH}$), $1.93(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{dd}, J$ $=13.8,6.8 \mathrm{~Hz},-\mathrm{CHHPh}), 3.05(1 \mathrm{H}, \mathrm{dd}, J=14.0,6.8 \mathrm{~Hz},-\mathrm{CHHPh}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.5,136.8,133.1,130.0,129.6,129.4,128.5,128.3,126.7,76.6,63.7,36.9$; IR (neat) 3500,1717 , 1275, 1219, $1026 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}: 279.0992$ ($[\mathrm{M}+\mathrm{Na}]^{+}$), Found: $279.0985\left([\mathrm{M}+\mathrm{Na}]^{+}\right) ;$HPLC analysis: Daicel Chiralpak AD-H, 220 nm , hexane/2-propanol = 15:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $16.5 \mathrm{~min}(R)$ and $18.5 \mathrm{~min}(S)$.

(S)-1-Oxxopropan-2-yl Benzoate (Table 2, entry 1)

The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol.
$[\alpha]_{\mathrm{D}}^{24}-4.8\left(c 0.75, \mathrm{CHCl}_{3} ; 94 \%\right.$ ee $) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.67(1 \mathrm{H}, \mathrm{s},-\mathrm{CHO}), 8.11(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.63-7.59(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.48(2 \mathrm{H}, \mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.31(1 \mathrm{H}, \mathrm{q}, J=7.2$ $\mathrm{Hz},-\mathrm{CH}(\mathrm{OBz})-), 1.54\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.6, 166.0, 133.5, 129.8, 129.2, 128.5, 75.1, 14.3; IR (neat) 2993, 1719, 1365, 1267, 1217, $1111 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3}: 179.0703\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $179.0705\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(S)-1-Hydroxypropan-2-yl Benzoate

$[\alpha]_{\mathrm{D}}^{23} 21\left(c 0.8, \mathrm{CHCl}_{3} ; 92 \% \mathrm{ee}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.57$ $(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.44(2 \mathrm{H}, \mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.28-5.21(1 \mathrm{H}, \mathrm{m},-\mathrm{CH}(\mathrm{OBz})-)$, 3.80-3.73 ($2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2} \mathrm{OH}$), $2.06(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz},-\mathrm{OH}), 1.38\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,133.1,130.3,129.7,128.4,72.8,66.2,16.3$; IR (neat) $3433,2938,1715$, 1275, 1115, $1049 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NaO}_{3}: 203.0679$ ($[\mathrm{M}+\mathrm{Na}]^{+}$), Found: $203.0686\left([\mathrm{M}+\mathrm{Na}]^{+}\right) ;$HPLC analysis: Daicel Chiralpak AD-H, 220 nm , hexane/2-propanol = 15:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $10.6 \mathrm{~min}(S)$ and $11.5 \mathrm{~min}(R)$.

(S)-1-Oxobutan-2-yl Benzoate (Table 2, entry 2)

The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol.
$[\alpha]_{\mathrm{D}}^{28}-42\left(c 1.0, \mathrm{CHCl}_{3} ; 94 \% \mathrm{ee}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65(1 \mathrm{H}, \mathrm{s},-\mathrm{CHO}), 8.11(2 \mathrm{H}, \mathrm{d}, J$ $=7.2 \mathrm{~Hz}$, Ar-H), $7.61(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48(2 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{dd}, J$ $=7.6,5.2 \mathrm{~Hz},-\mathrm{CH}(\mathrm{OBz})-), 2.08-1.89\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2} \mathrm{Me}\right), 1.10\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.5,166.2,133.5,129.8,129.2,128.5,79.7,22.4,9.4$; IR (neat) 2974,2359 , 1719, 1452, 1271, $1111 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{3}: 215.0679\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: $215.0680\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. The absolute configuration was determined to be S by comparing the sign of optical rotation of the title compound to (R)-1-oxobutan-2-yl benzoate $\left([\alpha]_{\mathrm{D}}^{20}+41.0(c 1.00\right.$,
$\left.\mathrm{CHCl}_{3}\right)$). ${ }^{8}$

(S)-1-Hydroxybutan-2-yl Benzoate

$[\alpha]_{\mathrm{D}}^{28}-5.5\left(c 0.4, \mathrm{CHCl}_{3} ; 93 \%\right.$ ee); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.57(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.45(2 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.13-5.08(1 \mathrm{H}, \mathrm{m},-\mathrm{CH}(\mathrm{OBz})-)$, $3.85(1 \mathrm{H}, \mathrm{dd}, J=12.2,3.2 \mathrm{~Hz},-\mathrm{CHHOH}), 3.78(1 \mathrm{H}, \mathrm{dd}, J=12.0,6.4 \mathrm{~Hz},-\mathrm{CHHOH}), 2.33(1 \mathrm{H}, \mathrm{br}$, -OH), 1.78 ($2 \mathrm{H}, \mathrm{dq}, J=7.6,7.6 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Me}$), $1.01\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.0,133.1,130.2,129.7,128.4,77.6,64.6,23.8,9.7$; IR (neat) $3470,2968,1717,1273$, $1115 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NaO}_{3}: 217.0835\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: 217.0845 ([M $+\mathrm{Na}^{+}{ }^{+}$; HPLC analysis: Daicel Chiralpak IA, 254 nm , hexane/ethyl acetate $=5: 1$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$, retention time: $9.7 \mathrm{~min}(S)$ and $12.0 \mathrm{~min}(R)$.

(S)-1-Oxohexan-2-yl Benzoate (Table 2, entry 3)

The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol.
$[\alpha]_{\mathrm{D}}^{28}-42\left(c 0.8, \mathrm{CHCl}_{3} ; 94 \% \mathrm{ee}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.64(1 \mathrm{H}, \mathrm{s},-\mathrm{CHO}), 8.11(2 \mathrm{H}, \mathrm{d}, J$ $=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48(2 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{dd}, J$ $=8.4,4.8 \mathrm{~Hz},-\mathrm{CH}(\mathrm{OBz})-)$, 2.01-1.85 ($2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2} \mathrm{Pr}$), 1.54-1.34 ($4 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2} \mathrm{Et}$ and $-\mathrm{CH}_{2} \mathrm{Me}$), $0.94\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5,166.1,133.5,129.8,129.2$, 128.5, 78.8, 28.6, 27.1, 22.4, 13.8; IR (neat) 2968, 2351, 1738, 1366, 1269, $1111 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{3}: 243.0992\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: $243.0991\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

(S)-1-Hydroxyhexan-2-yl Benzoate

$[\alpha]_{\mathrm{D}}^{23}-24\left(c 0.4, \mathrm{CHCl}_{3} ; 94 \% \mathrm{ee}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.58(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.45(2 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.20-5.14(1 \mathrm{H}, \mathrm{m},-\mathrm{CH}(\mathrm{OBz})-\mathrm{)}$, $3.84(1 \mathrm{H}, \mathrm{ddd}, J=12.2,6.6,3.6 \mathrm{~Hz},-\mathrm{CHHOH}), 3.78(1 \mathrm{H}, \mathrm{m},-\mathrm{CHHOH}), 2.00(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}$, $-\mathrm{OH}), 1.79-1.67\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2} \mathrm{Pr}\right), 1.45-1.31\left(4 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2} \mathrm{Et}\right.$ and $\left.-\mathrm{CH}_{2} \mathrm{Me}\right), 0.91(3 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}$, $-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,133.1,130.2,129.7,128.4,76.5,65.1,30.4,27.5,22.6$, 13.9; IR (neat) $3466,2957,1719,1365,1275,1114 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NaO}_{3}$: $245.1149\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: $245.1142\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; HPLC analysis: Daicel Chiralpak AD-H, 220 nm , hexane $/ 2$-propanol $=30: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $16.4 \mathrm{~min}(S)$ and $18.0 \mathrm{~min}(R)$.

(S)-1-Oxopent-4-en-2-yl Benzoate (Table 2, entry 6)

The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol.
$[\alpha]_{\mathrm{D}}^{31}-36\left(c 0.9, \mathrm{CHCl}_{3} ; 92 \% \mathrm{ee}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.66(1 \mathrm{H}, \mathrm{s},-\mathrm{CHO}), 8.10(2 \mathrm{H}, \mathrm{d}, J$ $=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48(2 \mathrm{H}, \mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.92-5.82(1 \mathrm{H}$, $\left.\mathrm{m},-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.30(1 \mathrm{H}, \mathrm{dd}, J=7.6,5.2 \mathrm{~Hz},-\mathrm{CH}(\mathrm{OBz})-), 5.26-5.17\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}=\mathrm{CH}_{2}\right), 2.79-2.63$
$\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 198.1, 166.0, 133.6, 131.5, 129.9, 129.1, $128.5,119.3,77.8,33.5$; IR (neat) 3493, 2916, 2359, 1721, 1273, $1113 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{3}: 227.0679\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: $227.0688\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

(S)-1-Hydroxypent-4-en-2-yl Benzoate

$[\alpha]_{\mathrm{D}}^{31}-9.0$ (c 1.0, $\mathrm{CHCl}_{3} ; 92 \%$ ee); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-8.04$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.59-7.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.47-7.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 5.90-5.79 ($1 \mathrm{H}, \mathrm{m},-\mathrm{CH}=\mathrm{CH}_{2}$), 5.24-5.09 (3H, m, $-\mathrm{CH}(\mathrm{OBz})-$ and $\left.-\mathrm{CH}=\mathrm{CH}_{2}\right), 3.86(1 \mathrm{H}, \mathrm{dd}, J=12.4,3.6 \mathrm{~Hz},-\mathrm{CHHOH}), 3.80(1 \mathrm{H}, \mathrm{dd}, J=12.0,6.0$ $\mathrm{Hz},-\mathrm{CHHOH}), 2.53\left(2 \mathrm{H}, \mathrm{dd}, J=6.8,6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7$, $133.1,132.9,130.1,129.7,128.4,118.4,75.2,64.3,35.3$; IR (neat) $3468,2941,1717,1364,1273$, $1114 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{3}: 229.0835\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$), Found: 229.0831 ([M $+\mathrm{Na}]^{+}$); HPLC analysis: Daicel Chiralpak AD-H, 220 nm , hexane/2-propanol $=30: 1$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$, retention time: $24.6 \mathrm{~min}(S)$ and $26.3 \mathrm{~min}(R)$.

(S)-3-Methyl-1-oxobutan-2-yl Benzoate (Table 2, entry 7)

The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol.
$[\alpha]_{\mathrm{D}}^{30}-23$ (c 1.3, $\mathrm{CHCl}_{3} ; 92 \%$ ee $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.66(1 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz},-\mathrm{CHO})$, 8.13-8.10 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.64-7.59 (1H, m, Ar-H), 7.51-7.46 (2H, m, Ar-H), $5.08(1 \mathrm{H}, \mathrm{dd}, J=4.6$, $0.8 \mathrm{~Hz},-\mathrm{CH}(\mathrm{OBz})-), 2.47-2.38\left(1 \mathrm{H}, \mathrm{m},-\mathrm{CH}(\mathrm{Me})_{2}\right), 1.42\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 1.20(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 198.8,166.1,133.5,129.8,129.3,128.5,82.6,29.2$, 18.8, 17.2; IR (neat) 2968, 1721, 1275, $1111 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}: 207.1016$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $207.1013\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(S)-3-Methyl-1-hydroxybutan-2-yl Benzoate

$[\alpha]_{\mathrm{D}}^{23}-27$ (c 0.8, $\mathrm{CHCl}_{3} ; 92 \%$ ee); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-8.06(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.60-7.56$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.48-7.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.98(1 \mathrm{H}, \mathrm{dt}, J=6.4,3.6 \mathrm{~Hz},-\mathrm{CH}(\mathrm{OBz})-)_{, ~ 3.91-3.79}(2 \mathrm{H}$, $\left.\mathrm{m},-\mathrm{CH}_{2} \mathrm{OH}\right), 2.19-2.07\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}(\mathrm{Me})_{2}\right.$ and -OH$), 1.03\left(6 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,133.1,130.2,129.7,128.4,81.0,63.6,29.4,18.9,18.0$; IR (neat) 3460, 2967, 1717, 1273, $1115 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3}: 209.1172\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, Found: $209.1176\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HPLC analysis: Daicel Chiralpak AD-H, 220 nm , hexane/2-propanol = 30:1, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $18.0 \mathrm{~min}(S)$ and $19.6 \mathrm{~min}(R)$.

(S)-1-Cyclohexyl-2-oxoethyl Benzoate (Table 2, entry 8)

The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol.
$[\alpha]_{\mathrm{D}}^{31}-23$ (c 1.5, $\mathrm{CHCl}_{3} ; 94 \%$ ee $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.66(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz},-\mathrm{CHO})$, 8.12-8.09 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.63-7.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.50-7.46 (2H, m, Ar-H), $5.07(1 \mathrm{H}, \mathrm{dd}, J=4.4$,
$1.2 \mathrm{~Hz},-\mathrm{CH}(\mathrm{OBz})-)$, 2.14-2.06 ($1 \mathrm{H}, \mathrm{m},-\mathrm{CH}(\mathrm{OBz}) \mathrm{CH}-), 1.82-1.70\left(5 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right), 1.45-1.15(5 \mathrm{H}, \mathrm{m}$, $-\mathrm{CH}_{2}-$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.9,166.1,133.4,129.8,129.4,128.5,82.3,38.8,29.2$, 27.7, 26.0, 25.9, 25.9; IR (neat) 2927, 1719, 1450, 1273, $1111 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{3}: 269.1148\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: $269.1145\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

(S)-1-Cyclohexyl-2-hydroxyethyl Benzoate

$[\alpha]_{\mathrm{D}}^{31}-23$ (c 1.2, $\mathrm{CHCl}_{3} ; 94 \%$ ee); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.58(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.46(2 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 5.00(1 \mathrm{H}, \mathrm{dt}, J=6.4,3.2 \mathrm{~Hz}$, $-\mathrm{CH}(\mathrm{OBz})-), 3.89-3.81\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2} \mathrm{OH}\right), 1.99(\mathrm{t}, J=6.0 \mathrm{~Hz},-\mathrm{OH}), 1.84-1.77(5 \mathrm{H}, \mathrm{m},-\mathrm{CHH}-)$, $1.70-1.67(1 \mathrm{H}, \mathrm{m},-\mathrm{CH}(\mathrm{OBz}) \mathrm{CH}-), 1.30-1.13(5 \mathrm{H}, \mathrm{m},-\mathrm{CHH}-) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4$, 133.1, 130.2, 129.7, 128.4, 80.3, 63.3, 38.8, 29.2, 28.4, 26.2, 26.0, 25.9; IR (neat) 3460, 2928, 1719 , 1450, 1366, 1275, $1115 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{3}: 271.1305\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: $271.1304\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; HPLC analysis: Daicel Chiralpak AD-H, 220 nm , hexane/2-propanol $=30: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: $20.1 \mathrm{~min}(S)$ and $22.2 \mathrm{~min}(R)$.

Synthesis of (S)-3-Phenylpropane-1,2-diol 6

To a solution of (S)-1-oxo-3-phenylpropan-2-yl benzoate ($15 \mathrm{mg}, 0.06 \mathrm{mmol}$) in methanol (0.5 mL) was added $\mathrm{NaBH}_{4}(6.8 \mathrm{mg}, 0.18 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 10 min at $0{ }^{\circ} \mathrm{C}$, the mixture was heated to $50{ }^{\circ} \mathrm{C}$ and stirred for 18 h . The reaction mixture was then poured into saturated NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane $=1: 2 \sim 2: 1$ as eluent) to furnish the title compound ($8.3 \mathrm{mg}, 0.055 \mathrm{mmol}, 94 \%$ yield $)$. A literature data ${ }^{9}$ was referenced for the spectral data of the title compound.

Synthesis of (S)-2-Hydroxy-3-phenylpropyl Benzoate 8

To a solution of (S)-1-hydroxy-3-phenylpropan-2-yl benzoate ($11 \mathrm{mg}, 0.043 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 mL) was added DBU ($26 \mu \mathrm{l}, 0.16 \mathrm{mmol}$). After stirring for 12 h at room temperature, the reaction mixture was poured into 1 N HCl and extracted with ethyl acetate three times. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane $=1: 10$ as eluent) to furnish the title compound ($7.9 \mathrm{mg}, 0.031 \mathrm{mmol}, 72 \%$ yield): $[\alpha]_{\mathrm{D}}^{29} 12$ (c $1.1, \mathrm{CHCl}_{3} ; 94 \%$ ee); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.06 ($2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.58 ($1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.46 ($2 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.35-7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.42(1 \mathrm{H}, \mathrm{dd}, J=11.2,3.6 \mathrm{~Hz},-\mathrm{CHHOBz}), 4.29(1 \mathrm{H}, \mathrm{dd}, J=11.2,6.4 \mathrm{~Hz}$, $-\mathrm{CHHOBz}), 4.25(1 \mathrm{H}, \mathrm{br},-\mathrm{CHOH}), 2.95(1 \mathrm{H}, \mathrm{dd}, J=13.6,6.0 \mathrm{~Hz},-\mathrm{CHHPh}), 2.89(1 \mathrm{H}, \mathrm{dd}, J=13.6$, $7.2 \mathrm{~Hz},-\mathrm{CHHPh}), 2.20(1 \mathrm{H}, \mathrm{br},-\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.7, 137.2, 133.2, 129.8, 129.7, 129.4, 128.7, 128.4, 126.8, 70.9, 68.1, 40.1; IR (neat) 3460, 3028, 1717, 1452, 1273, 1123
cm^{-1}; HRMS (ESI-TOF) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NaO}_{3}: 279.0992$ ([M + Na] ${ }^{+}$), Found: 279.0996 ([M + $\mathrm{Na}]^{+}$); HPLC analysis: Daicel Chiralpak AD-H, 220 nm , hexane/2-propanol $=15: 1$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$, retention time: $17.3 \mathrm{~min}(R)$ and $20.8 \mathrm{~min}(S)$.

References

1) Stratakis, M.; Nencka, R.; Rabalakos, C. J. Org. Chem. 2002, 67, 8758.
2) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 794.
3) Murahashi, S.; Mitsui, H.; Shiota, T.; Tsuda, T.; Watanabe, S. J. Org. Chem. 1990, 55, 1736.
4) Wheland, G. W.; Danish, A. A. J. Am. Chem. Soc. 1940, 62, 1125.
5) Klumpp, D. A.; Aguirre, S. L.; Sanchez, G. V., Jr.; de Leon, S. J. Org. Lett. 2001, 3, 2781.
6) SIR97, Program for the solution of crystal structures: A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115.
7) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.
8) Abate, A.; Brenna, E.; Fuganti, C.; Malpezzi, L. Serra, S. Tetrahedron: Asymmetry 2007, 18, 1145.
9) Córdova, A.; Sundén, H.; Engqvist, M.; Ibrahem, I.; Casas, J. J. Am. Chem. Soc. 2004, 126, 891

(

