SUPPORTING INFORMATION

Metal speciation dynamics in soft colloidal ligand suspensions. Electrostatic and site distribution aspects.

Jérôme F.L. Duval

Laboratory Environment and Mineral Processing, Nancy-University, CNRS UMR CNRS-INPL 7569, BP 40 – F-54501 Vandoeuvre-lès-Nancy Cedex, France.

1. Boltzmann statistics, a balance between diffusion and migration transports.

In the equilibrium chemical regime, the derivatives of the local M and ML concentrations with respect to time vanish so that summing eqs 13 and 14 leads to

$$a \le r \le a + d: \quad D_{\mathbf{M}} \nabla_{r}^{2} c_{\mathbf{M}}^{\mathbf{e}}(r) + \frac{z_{\mathbf{M}} D_{\mathbf{M}}}{z} \left\{ \frac{\partial c_{\mathbf{M}}^{\mathbf{e}}(r)}{\partial r} \frac{\partial y(r)}{\partial r} + c_{\mathbf{M}}^{\mathbf{e}}(r) \nabla_{r}^{2} y(r) \right\} = 0,$$
(S1)

where the superscript 'e' holds for quantities at equilibrium. It is immediately seen that the above equation is also valid for radial positions $a \le r \le a + r_c$ (eq 15) under the condition $\partial c_{\rm M}(r,t)/\partial t = 0$. Equation S1 may then be rewritten in the form

$$a \le r \le a + r_{\rm c}: \qquad \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_{\rm M}^{\rm e}(r)}{\partial r} \right) = -\frac{z_{\rm M}}{z} \nabla \cdot \left\{ c_{\rm M}^{\rm e}(r) \frac{\partial y(r)}{\partial r} \right\}$$
(S2)

with $\nabla G(r) \equiv \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 G(r))$ the divergence operator applied to a radial function G. After

straightforward simplification and integration of eq S2 between a and r, we obtain

$$a \le r \le a + r_{\rm c}$$
: $\frac{\partial c_{\rm M}^{\rm e}(r)}{\partial r} = -\frac{z_{\rm M}}{z} c_{\rm M}^{\rm e}(r) \frac{\partial y(r)}{\partial r}.$ (S3)

Second integration provides

$$a \le r \le a + r_{\rm c}: \quad c_{\rm M}^{\rm e}(r) = c_{\rm M}^{\rm e}(r = a + r_{\rm c}) \exp\{z_{\rm M} \left[y(r = a + r_{\rm c}) - y(r)\right]/z\},\tag{S4}$$

which is the well-known Boltzmann statistic distribution for M species across the interphase between particle and outer electrolytic medium.

2. Derivation of the effective kinetic rate constants k_a^* and k_d^* .

The integration of eq 13 for i=ML over the shell volume leads to

$$\frac{\partial \rho_{\mathrm{ML}}^{\mathrm{s}}(t)}{\partial t} = -k_{\mathrm{d}}\rho_{\mathrm{ML}}^{\mathrm{s}}(t) + \frac{4\pi c_{\mathrm{L}}^{*}}{V_{\mathrm{s}}}k_{\mathrm{a}}\int_{a}^{a+d}r^{2}c_{\mathrm{M}}(r,t)f(r)\mathrm{d}r\,,\tag{S5}$$

where we have introduced the ML concentration ρ_{ML}^{s} over the shell layer volume of the particle:

$$\rho_{\mathrm{ML}}^{\mathrm{s}}\left(t\right) = \frac{4\pi}{V_{\mathrm{s}}} \int_{a}^{a+d} r^{2} c_{\mathrm{ML}}\left(r,t\right) \mathrm{d}r\,,\tag{S6}$$

with $V_{\rm s} = 4\pi \left\{ (a+d)^3 - a^3 \right\} / 3$ the volume over which the reactive binding sites L are distributed. The condition of conservation of total binding sites throughout the soft diffuse interphase when changing α/d and/or d is ensured by eq 5. This allows us to write

$$\rho_{\rm L}^{\rm V} / c_{\rm L}^* = V_{\rm s} / V_{\rm c} \,. \tag{S7}$$

Substitution of eq S7 into eq S5 and multiplication of both sides of the resulting equation by $V_{\rm s}/V_{\rm c}$ yields

$$\frac{\partial \rho_{\mathrm{ML}}^{\mathrm{V}}(t)}{\partial t} = -k_{\mathrm{d}} \rho_{\mathrm{ML}}^{\mathrm{V}}(t) + k_{\mathrm{a}} \rho_{\mathrm{L}}^{\mathrm{V}} \rho_{\mathrm{M}}^{\mathrm{s}}(t), \qquad (S8)$$

where we have used the relationship $\rho_{ML}^{V}(t)/\rho_{ML}^{s}(t) = V_{s}/V_{c}$ (obtained from combining eq 28 for i=ML with eq S6) and we have defined the concentration ρ_{M}^{s} over the shell volume by

$$\rho_{\mathbf{M}}^{\mathbf{s}}\left(t\right) = \frac{4\pi}{V_{\mathbf{s}}} \int_{a}^{a+d} r^{2} c_{\mathbf{M}}\left(r,t\right) f\left(r\right) \mathrm{d}r \,. \tag{S9}$$

Let introduce the colloidal complex stability constant K^* defined by

$$K^* = k_a^* / k_d^*$$
. (S10)

Then, eliminating the time-derivative terms between eqs 27 and S8 and using eq S10, one obtains the searched general relationship (eq 30 in the main text) between k_a^* and k_a :

$$\frac{k_{\rm a}^{*}(t)}{k_{\rm a}} = \frac{\rho_{\rm M}^{\rm s}(t)\rho_{\rm L}^{\rm V} - \rho_{\rm ML}^{\rm V}(t)K^{-1}}{\rho_{\rm M}^{\rm V}(t)\rho_{\rm L}^{\rm V} - \rho_{\rm ML}^{\rm V}(t)K^{*^{-1}}},$$
(S11)

where the time-dependences of $\rho_{\rm M}^{\rm s}$, $\rho_{\rm M}^{\rm V}$, $\rho_{\rm ML}^{\rm V}$ and $k_{\rm a}^{*}$ have been written explicitly. The remaining issue is the derivation of the expression for the stability constant K^{*} , which is presented below.

Under chemical equilibrium conditions reached at $t \to \infty$ where $\partial \rho_{ML}^{V}(t) / \partial t = 0$, eq S8 shows that

$$\frac{k_{\rm a}}{k_{\rm d}} = \frac{\rho_{\rm ML}^{\rm V,e}}{\rho_{\rm L}^{\rm V}\rho_{\rm M}^{\rm s,e}},\tag{S12}$$

where the superscript 'e' refers to quantities defined at chemical equilibrium. Similarly, eq 27 provides at $t \rightarrow \infty$

$$\frac{k_{\rm a}^{*}}{k_{\rm d}^{*}} = \frac{\rho_{\rm ML}^{\rm V,e}}{\rho_{\rm L}^{\rm V}\rho_{\rm M}^{\rm V,e}}.$$
(S13)

Recalling that the intrinsic (chemical) stability constant of ML complex is given by $K = k_a / k_d$, the combination of eqs S10, S12 and S13 gives

$$K^* = K \frac{\rho_{\rm M}^{\rm s,e}}{\rho_{\rm M}^{\rm v,e}} \tag{S14}$$

Equations 13-15 may be straightforwardly integrated under chemical equilibrium conditions $(\partial \rho_{i=M,ML}^{V}(t)/\partial t = 0)$, and the results reads as the well-known Boltzmann formulation, *i.e.* eq S4. As shown above, eq S4 basically results from the balance between free metal migration and diffusion fluxes. For cases where $\kappa r_{c} >> 1$, *i.e.* in the absence of EDL overlap between adjacent particles, eq S4 reduces to

$$c_{\rm M}^{\rm e}(r) = c_{\rm M}^{\rm e}(r = a + r_{\rm c})\exp(-z_{\rm M}y(r)/z).$$
 (S15)

Combining eqs S9, S14 and S15, we finally obtain

$$\frac{K^{*}}{K} = \frac{V_{c}}{V_{s}} \frac{\int_{a}^{a+a} r^{2} f(r) \exp(-z_{M} y(r)/z) dr}{\int_{a}^{a+r_{c}} r^{2} \exp(-z_{M} y(r)/z) dr},$$
(S16)

which is eq 32 in the main text.

3. Numerical analysis for evaluating the M and ML concentration profiles.

In this section, the numerical analysis of eqs 13-22 is detailed for the case where there is no significant overlap between electric double layers (EDL) around adjacent particles (*i.e.* $\kappa r_c \gg 1$). From a numerical point of view, this situation is the most complex since the associated partial differential equations (eqs 13-15) are stiff with EDL extensions ($\kappa^{-1} \sim O(1nm - 30nm)$ for $c^{\infty} = 0.1mM - 100mM$) that are several orders of magnitude shorter than the free metal diffusion length scale at steady-state ($O(\mu m)$).

For the sake of mathematical and numerical convenience, we introduce the dimensionless variables

$$\tilde{t} = tD_{\rm M} / \left[p \left(a + d \right)^2 \right], \tag{S17}$$

$$k_{\rm an} = k_{\rm a} p \left(a + d \right)^2 c_{\rm L}^* / D_{\rm M} ,$$
 (S18)

$$k_{\rm dn} = k_{\rm d} p \left(a + d \right)^2 / D_{\rm M} \,,$$
 (S19)

$$x = (r-a)/(a+d), \qquad (S20)$$

 $\tilde{c}_{\mathrm{M,ML}}(r,t) = c_{\mathrm{M,ML}}(r,t) / c_{\mathrm{M}}^{*}.$ (S21)

and

One of the difficulties in the original formulation of the problem as given in [17] is the existence of a sharp discontinuity at the radial position r = a+d that marks the transition between the reactive particle phase and the electrolyte medium. This difficulty is here circumvented by the introduction of the continuous function f given by eqs 4-5. The continuity of f is verified for any position $r \in [a, a+r_c]$ and any values of α/d . The set of eqs 13-15 may then be reduced to

$$a \leq r \leq a + r_{c} : \begin{cases} \frac{\partial \tilde{c}_{\mathrm{ML}}(x,\tilde{t})}{\partial t} = -\left\{k_{\mathrm{dn}}\tilde{c}_{\mathrm{ML}}(x,\tilde{t}) - k_{\mathrm{an}}c_{\mathrm{M}}(x,\tilde{t})f(x)\right\}\\ \frac{\partial \tilde{c}_{\mathrm{M}}(x,\tilde{t})}{\partial t} = p\nabla_{x}^{2}\tilde{c}_{\mathrm{M}}(x,\tilde{t}) + \left\{k_{\mathrm{dn}}c_{\mathrm{ML}}(x,\tilde{t}) - k_{\mathrm{an}}c_{\mathrm{M}}(x,\tilde{t})f(x)\right\}\\ + p\frac{z_{\mathrm{M}}}{z}\left\{\frac{\partial c_{\mathrm{M}}(x,\tilde{t})}{\partial x}\frac{\partial y(x)}{\partial x} + c_{\mathrm{M}}(x,\tilde{t})\nabla_{x}^{2}y(x)\right\} \end{cases}$$
(S22,S23)

with $\nabla_x^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{2}{x + a/(a+d)} \frac{\partial}{\partial x}$. The dimensionless time \tilde{t} is discretized according to

$$k = 1, \dots, N: \qquad \qquad \tilde{t}_k = (k-1)\Delta t , \qquad (S24)$$

with *N* an integer and $\Delta t = 1/(N-1)$ the time discretization step. Replacing the time derivatives in eqs S22, S23 by their implicit backward Euler finite element differences equivalent, we obtain $a \le r \le a + r_c$:

$$\begin{cases} \tilde{c}_{\mathrm{ML}}^{k+1}(x) = -\left\{k_{\mathrm{dn}}\tilde{c}_{\mathrm{ML}}^{k+1}(x) - k_{\mathrm{an}}\tilde{c}_{\mathrm{M}}^{k+1}(x)f(x)\right\}\Delta t + \tilde{c}_{\mathrm{ML}}^{k}(x) \\ \tilde{c}_{\mathrm{M}}^{k+1}(x) = p\Delta t\nabla_{x}^{2}\tilde{c}_{\mathrm{M}}^{k+1}(x) + \left\{k_{\mathrm{dn}}\tilde{c}_{\mathrm{ML}}^{k+1}(x) - k_{\mathrm{an}}\tilde{c}_{\mathrm{M}}^{k+1}(x)f(x)\right\}\Delta t \\ + p\Delta t\frac{z_{\mathrm{M}}}{z}\left\{\frac{\partial\tilde{c}_{\mathrm{M}}^{k+1}(x)}{\partial x}\frac{\partial y(x)}{\partial x} + \tilde{c}_{\mathrm{M}}^{k+1}(x)\nabla_{x}^{2}y(x)\right\} + \tilde{c}_{\mathrm{M}}^{k}(x) \end{cases}$$
(S25,S26)

, where we define $\tilde{c}_{M,ML}^{k}(x) = \tilde{c}_{M,ML}(x,\tilde{t}_{k})$. Let us now pose $Y_{l}^{k+1}(x) = \tilde{c}_{M}^{k+1}(x)$ and $Y_{2}^{k+1}(x) = \partial \tilde{c}_{M}^{k+1}(x) / \partial x$. Combining eqs S25-S26, one shows that eq S26 may be rearranged in a set of two ordinary differential equations of the first order as follows

$$a \le r \le a + r_{c}:$$

$$\left\{ \frac{dY_{1}^{k+1}(x)}{dx} = Y_{2}^{k+1}(x) \\ \frac{dY_{2}^{k+1}(x)}{dx} = -Y_{2}^{k+1}(x) \left\{ \frac{2}{x + a/(a + d)} + \frac{z_{M}}{z} \frac{\partial y(x)}{\partial x} \right\} + Y_{1}^{k+1}(x) \left[\frac{1}{p\Delta t} + \frac{k_{an}}{p} f(x) - \frac{z_{M}}{z} \nabla_{x}^{2} y(x) - \frac{1}{p} \frac{k_{dn}k_{an}\Delta t f(x)}{1 + k_{dn}\Delta t} \right] - \Omega^{k}(x)$$
(S27,S28)

, with
$$\Omega^{k}(x) = \frac{1}{p\Delta t} Y_{1}^{k}(x) + \frac{1}{p} \frac{k_{\mathrm{dn}}}{1 + k_{\mathrm{dn}}\Delta t} \tilde{c}_{\mathrm{ML}}^{k}(x)$$
(S29)

Let \mathfrak{I} be a numerical solver which enables the calculation of the searched $Y_1^{k+1}(x)$ and $Y_2^{k+1}(x)$ at any *k* for a given function Ω^k , *i.e.*

$$k = 1, ..., N - 1: Y_{1,2}^{k+1}(x) = \Im\left(\Omega^k(x)\right). (S30)$$

The function Ω^1 corresponds to the situation at $\tilde{t} = 0$ with $Y_1^1(x) \left(=\tilde{c}_M^1(x)\right)$ and $\tilde{c}_{ML}^1(x)$ provided by eqs 16-18. Iterating *k* from 1 to N-1, eq S30 leads to the evaluation of $Y_1^{k+1}(x)$ and $Y_2^{k+1}(x)$, recalling that the local concentrations $\tilde{c}_{ML}^{k+1}(x)$ and $\tilde{c}_{ML}^k(x)$ are interrelated *via* the recursive relationship S25 which reads as

$$a \le r \le a + r_{\rm c}: \quad \tilde{c}_{\rm ML}^{k+1}(x) = (1 + k_{\rm dn}\Delta t)^{-1} \{k_{\rm an}\Delta t Y_1^{k+1}(x) f(x) + \tilde{c}_{\rm ML}^k(x)\}.$$
(S31)

Equations S27-S31 thus provide the M and ML concentrations profiles at any time \tilde{t}_k . Let us now describe the numerical procedure subsumed in the solver \Im .

The set of differential equations (S27-S28) may be written for a given \tilde{t}_k in the concise form

i = 1,2:
$$\frac{\mathrm{d}Y_i^{k+1}(x)}{\mathrm{d}x} = \Gamma_i \left(x, Y_1^{k+1}, Y_2^{k+1} \right), \tag{S32}$$

with $(\Gamma_i)_{i=1,2}$ the operators that define the right hand sides of eqs S27 (i = 1) and S28(i = 2). At $x = x_1 = 0$, Y_2^{k+1} satisfies eq 19 rewritten as

$$Y_2^{k+1}(x_1) = 0. (S33)$$

At the position x_1 , we set

$$Y_1^{k+1}(x_1) = \zeta_1^{k+1}, \tag{S34}$$

where ζ_1^{k+1} is a time-dependent parameter to be subsequently determined. At the edge of the unit cell, *i.e.* at the position $x = x_2 = r_c / (a + d)$, eq 20 provides

$$Y_2^{k+1}(x_2) = 0, (S35)$$

and we define $Y_1^{k+1}(x_2)$ as

$$Y_1^{k+1}(x_2) = \zeta_2^{k+1}, \tag{S36}$$

with ζ_2^{k+1} a second time-dependent variable to be evaluated. The two boundary problem (S32)-(S36) is solved by numerical shooting from the position x_1 to x_f (forward shooting, denoted as FS) and from the position x_2 to x_f (backward shooting, denoted as BS) with $x_1 < x_f < x_2$ and

$$Y_1^{k+1}(x_f)_{\rm BS} = Y_1^{k+1}(x_f)_{\rm FS},$$
(S37)

$$Y_2^{k+1}(x_f)_{\rm BS} = Y_2^{k+1}(x_f)_{\rm FS}.$$
 (S38)

For that purpose, ζ_1^{k+1} and ζ_2^{k+1} are iteratively updated with a globally convergent Newton-Raphson¹ scheme till the continuity equations S37 and S38 are satisfied. This method called 'shooting to a fitting point' (located at $x = x_f$) is based on the use of an adaptive stepsize Runge-Kutta method of the fifth-order implemented with the aforementioned Newton-Raphson scheme.¹ Within this procedure, many small steps tiptoe through treacherous spatial regions (especially at the edge of the shell layer *i.e.* at x = d/(a+d)) where strong variations of the function to be determined are encountered, while larger step sizes are automatically defined in 'uninteresting spatial zones' where smooth function gradients are computed (*i.e.* far from the shell layer). Doing so, fast convergence is met for $x_f \sim d/(a+d)$.

Following the above numerical strategy, the author verified that two modes of computations are equivalent. In the first mode, the resolution of the time dependent M and ML concentration profiles is carried out according to eq S30 with initial guesses for ζ_1^{k+1} and ζ_2^{k+1} obtained from the solutions at \tilde{t}_k . In the second mode, the computation is performed according to

$$Y_{1,2}^{k+1}(x) = \Im\left(\Omega^1(x)\right),\tag{S39}$$

where the time \tilde{t}_k (eq S24) is now iterated upon changing N on the premise that $\Delta t = 1/(N-1)$ remains well below 1.

The accuracy and stability of the numerical solution was systematically verified by controlling the independence of the results on the quantities x_f , p, Δt , the initial guesses for ζ_1^{k+1} and ζ_2^{k+1} as

well as the convergence criterion that defines how well the continuity conditions S37-S38 for $Y_{1,2}^{k+1}$ at $x = x_f$ are satisfied. Typical values for N around 300 or above lead to numerical results with accuracy up to three digits.

Once the spatial and temporal dependences of $c_{M,ML}$ are known and therewith the EDL potential distribution throughout the soft interphase (see point 4 below), the calculation of the quantities K^* , $\rho_M^s(t)$, $\rho_M^V(t)$ and $\rho_{ML}^V(t)$ may be easily carried out *via* the numerical evaluations (using Simpson's rule¹) of the various integrals involved in eqs 28, S9 and 32. Following this, eq 30 straightforwardly leads to the searched ratio $k_a^*(t)/k_a$.

The evaluation of the time- and space-dependent M and ML concentration profiles as previously described requires knowledge of the scaled equilibrium potential y. Derivation of the latter is presented below.

4. Numerical analysis for evaluating the equilibrium potential profile.

The spatial variable r is now rewritten in dimensionless form as follows

$$\tilde{x} = (r - a) / R_0, \qquad (S40)$$

and is discretisized according to

$$i = 1, \dots, M : \qquad \qquad \tilde{x}_i = (i-1)\Delta \tilde{x} , \qquad (S41)$$

with $\Delta \tilde{x} = 1/(M-1)$ the space discretization step and R_0 the position where $dy/d\tilde{x}|_{\tilde{x}=1} < \varepsilon$ with ε a prescribed scalar satisfying $\varepsilon <<1$, typically of the order of 10^{-4} or lower. It is recalled that $R_0 << r_c$ for $\kappa r_c >> 1$. Given eqs S40-S41, the finite element differences formulation of eqs 7, 23-26 is given by

$$i = 2, \dots, M - 1: \qquad y_{i+1} - 2y_i \left[1 - \frac{\Delta \tilde{x}}{\tilde{x}_i + a/R_0} \right] + y_{i-1} \left[1 - \frac{2\Delta \tilde{x}}{\tilde{x}_i + a/R_0} \right] - \left(\kappa R_0 \Delta \tilde{x}\right)^2 \left\{ \sinh\left(y_i\right) - \frac{z_{\rm L} c_{\rm L}^*}{2zc^\infty} f\left(\tilde{x}_i\right) \right\} = 0$$
(S42)

$$y_2 - y_1 = 0$$
 (S43)

$$y_M - y_{M-1} = 0 (S44)$$

, with $y_i = y(\tilde{x}_i)$. The non-linear tridiagonal system that consists of the M equations (S42-S44) with the $(y_i)_{i=1,...,M}$ as unknown variables, was solved using a globally convergent Newton-Raphson method already invoked above. R_0 was iteratively updated till the far field condition (S44)-

equivalent to setting $y(\tilde{x}=1)=0$ under the condition $\kappa r_c \gg 1$ - was satisfied within the predefined convergence criterion $dy/d\tilde{x}|_{\tilde{x}=1} < \varepsilon$. Initial guesses for R_0 and $(y_i)_{i=1,...,M}$ were obtained from the analytical solution of the linearized Poisson-Boltzmann equation (Debye-Hückel approximation) given by eq 34. It was systematically verified that the computed potential distributions were independent of the electrostatic cutt-off condition $dy/d\tilde{x}|_{\tilde{x}=1} < \varepsilon$ and on the grid size ($M \sim 400$ or larger). Once the electric potential distribution is known on the uniform grid $(\tilde{x}_i)_{i=1,...,M}$, it is cubicspline interpolated in the r-space region $[a, a+r_c]$ (with $y(r > a+R_0) = 0$ and $dy(r)/dr|_{r>a+R_0} = 0$) or equivalently in the x-space region $[0, r_c/(a+d)]$ as defined by eq S20. Subsequently, the Laplacian term $\nabla_x^2 y$ appearing in eq S28 may be evaluated for any position xaccording to the expression

$$\nabla_x^2 y(x) = \left[\kappa(a+d)\right]^2 \left\{ \sinh\left[y(x)\right] - \frac{z_{\rm L}c_{\rm L}^*}{2zc^{\infty}}f(x) \right\},\tag{S45}$$

which directly follows from eqs 7, 12, 23 and 24. The electric field dy(x)/dx involved in eq S28 may be straightforwardly estimated *via*

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = \frac{a+d}{R_0} \frac{\mathrm{d}y(\tilde{x})}{\mathrm{d}\tilde{x}},$$
(S46)

where $dy(\tilde{x})/d\tilde{x}$ is the function cubic-spline interpolated from the field values $(y_{i+1} - y_i)_{i=1,...,M-1}/\Delta \tilde{x}$ evaluated on the uniform grid $(\tilde{x}_i)_{i=1,...,M}$. The author experienced that this way of determining the double layer electric field, while very accurate for $\kappa d \gg 1$, suffers at $\kappa d = O(1)$ from instability at spatial positions located in the vicinity of r = a + d, *i.e.* in the EDL region where the potential distribution is the steepest. This instability is reflected in subtle but significant (a few percent) variations of $dy(\tilde{x})/d\tilde{x}|_{\tilde{x}\sim d/R_0}$ upon variation of R_0 and/or M even for

 $\Delta \tilde{x}$ values as low as $< 10^{-3}$. This feature ultimately leads to very inaccurate evaluation of k_a^*/k_a at low κd , thereby recalling that the coupled electric field and M/ML concentration gradients exhibit abrupt developments in the vicinity of r = a + d. To solve for this issue, the electric field was determined as follows. Posing $Y^{(1)}(x) = dy/dx$ (with x defined by eq S20), one may show on the basis of the non-linear PB equation (eqs 23-24) that the electric field $Y^{(1)}$ is governed by

$$\frac{\mathrm{d}Y^{(1)}(x)}{\mathrm{d}x} = -\frac{2}{x+a/(a+d)}Y^{(1)}(x) + \nabla_x^2 y(x)$$
(847)

where $\nabla_x^2 y(x)$ is yielded by eq S45. Equation S47 is solved following a numerical procedure of the type 'shooting to a fitting point' similar to that employed for solving eqs S32-S36. For that purpose, the boundaries verified by $Y^{(1)}$ at $x = x_1 = 0$ and $x = x_2 = r_c / (a + d)$ (eqs 25-26 in the main text) are written in the form

$$Y^{(1)}(x_1) = \nu_1 \tag{S48}$$

and

$$Y^{(1)}(x_2) = 0, (S49)$$

with ν_1 a scalar to be determined. The advantage of this method over that which consists in evaluating the electric field on the basis of a uniform grid, is the use of an adaptive step size-mesh with, in particular, detailed computation in the vicinity of x = d/(a+d) ($\sim x_f$). The value of ν_1 is updated by means of a globally convergent Newton Raphson method till continuity of the electric field is met at $x = x_f$. Comparison of eqs S48 with eq 25 reveals that ν_1 must be zero, in agreement with the numerical outcome (typical values obtained for ν_1 are well below 10^{-4}). The consistency of the above method for evaluating the field distribution was verified by changing the starting guess value chosen for ν_1 as well as the convergence criterion that defines how well the continuity condition for the electric field at $x = x_f$ is met. Finally, the electric field was cubic-spline interpolated over the whole x-space region $[0, r_c/(a+d)]$ on the basis of the field values obtained on the non-uniform mesh grid. The resulting function, which allows the evaluation of the electric field for any position x, was then employed within the numerical scheme adopted for solving the M and ML concentration profiles.

References.

[1] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. in *Numerical recipes in Fortran, The Art of Scientific Computing*, 2nd ed.; Cambridge University Press: New-York, 1986.