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1. Boltzmann statistics, a balance between diffusion and migration transports. 

In the equilibrium chemical regime, the derivatives of the local M and ML concentrations with 

respect to time vanish so that summing eqs 13 and 14 leads to 
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where the superscript ‘e’ holds for quantities at equilibrium. It is immediately seen that the above 

equation is also valid for radial positions  (eq 15) under the condition c+a r a r≤ ≤

( )M , / 0c r t t∂ ∂ = . Equation S1 may then be rewritten in the form 
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 the divergence operator applied to a radial function G. After 

straightforward simplification and integration of eq S2 between a  and , we obtain r
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Second integration provides 
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which is the well-known Boltzmann statistic distribution for M species across the interphase between 

particle and outer electrolytic medium. 

 

2. Derivation of the effective kinetic rate constants  and . ak∗ dk∗

The integration of eq 13 for  over the shell volume leads to i=ML
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where we have introduced the ML concentration  over the shell layer volume of the particle: s
MLρ
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with  the volume over which the reactive binding sites L are distributed. 

The condition of conservation of total binding sites throughout the soft diffuse interphase when 

changing 

( ){ 3 3
s 4V a d aπ= + −

/ dα  and/or  is ensured by eq 5. This allows us to write d

 . (S7) V
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Substitution of eq S7 into eq S5 and multiplication of both sides of the resulting equation by  

yields 
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 where we have used the relationship ( ) ( )V s
ML ML s c/t t Vρ ρ = /V  (obtained from combining eq 28 for 

with eq S6) and we have defined the concentration  over the shell volume by i=ML s
Mρ
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Let introduce the colloidal complex stability constant defined by K∗

 . (S10) a d/K k k∗ ∗=

Then, eliminating the time-derivative terms between eqs 27 and S8 and using eq S10, one obtains the 

searched general relationship (eq 30 in the main text) between  and : ak∗ ak

 
( ) ( ) ( )

( ) ( )

s V V
a M L ML

1V V Va M L ML

k t t t K
k t t

ρ ρ ρ

ρ ρ ρ

∗ −

−∗

−
=

−

1

K
, (S11) 

where the time-dependences of , ,  and  have been written explicitly. The remaining 

issue is the derivation of the expression for the stability constant , which is presented below. 
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Under chemical equilibrium conditions reached at t  where →∞ ( )V
ML /t tρ∂ ∂ = 0 , eq S8 shows 

that  
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where the superscript ‘e’ refers to quantities defined at chemical equilibrium. Similarly, eq 27 provides 

at   t →∞
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Recalling that the intrinsic (chemical) stability constant of ML complex is given by , the 

combination of eqs S10, S12 and S13 gives 
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Equations 13-15 may be straightforwardly integrated under chemical equilibrium conditions 

( ( )V
i=M,ML /t tρ∂ ∂ = 0 ), and the results reads as the well-known Boltzmann formulation, i.e. eq S4. 

As shown above, eq S4 basically results from the balance between free metal migration and diffusion 

fluxes. For cases where , i.e. in the absence of EDL overlap between adjacent particles, eq 

S4 reduces to  
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Combining eqs S9, S14 and S15, we finally obtain 
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which is eq 32 in the main text. 

 

3. Numerical analysis for evaluating the M and ML concentration profiles. 

In this section, the numerical analysis of eqs 13-22 is detailed for the case where there is no 

significant overlap between electric double layers (EDL) around adjacent particles (i.e. ). 

From a numerical point of view, this situation is the most complex since the associated partial 

differential equations (eqs 13-15) are stiff with EDL extensions (  for 

) that are several orders of magnitude shorter than the free metal diffusion 

length scale at steady-state (

c 1rκ >>

( )-1 O 1nm 30nmκ −∼

0.1mM 100mMc∞ = −

( )O mμ ).  

For the sake of mathematical and numerical convenience, we introduce the dimensionless variables 

 ( )2M /t tD p a d⎡ ⎤= +⎢ ⎥⎣ ⎦
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 ( )2an a L M/k k p a d c D∗= + , (S18) 
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 ( )2dn d M/k k p a d D= + , (S19) 

 ( ) ( )/x r a a d= − + , (S20) 

and ( ) ( )M,ML M,ML M, ,c r t c r t / c∗=� . (S21) 

One of the difficulties in the original formulation of the problem as given in [17] is the existence of a 

sharp discontinuity at the radial position  that marks the transition between the reactive 

particle phase and the electrolyte medium. This difficulty is here circumvented by the introduction of 

the continuous function 

+r a d=

f  given by eqs 4-5. The continuity of f  is verified for any position 

[ ]c, +r a a r∈  and any values of / dα . The set of eqs 13-15 may then be reduced to  
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with 
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with N an integer and  the time discretization step. Replacing the time derivatives in 

eqs S22, S23 by their implicit backward Euler finite element differences equivalent, we obtain 

(1/ 1t NΔ = − )
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, where we define ( ) ( )M,ML M,ML ,k
kc x c x t= �� � . Let us now pose ( ) ( )1

1 M
k kY x c+ += � 1 x  and 

( ) ( )1 1
2 M /k kY x c x+ += ∂� x∂ . Combining eqs S25-S26, one shows that eq S26 may be rearranged in a 

set of two ordinary differential equations of the first order as follows 
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Let ¡ be a numerical solver which enables the calculation of the searched ( )1
1
kY + x  and ( )1

2
kY x+  at 

any k for a given function , i.e. kΩ

1,..., 1:k N= −  ( ) ( )( )1
1,2
kY x xΩ+ =ℑ k . (S30) 

The function  corresponds to the situation at 1Ω 0t =�  with ( ) ( )( )1 1
1 MY x c x= �  and ( )1

MLc x�  provided 

by eqs 16-18. Iterating k from 1 to , eq S30 leads to the evaluation of 1N − ( )1
1
kY + x  and  ( )1

2
kY x+ , 

recalling that the local concentrations ( )1
ML
kc x+�  and ( )ML

kc x�  are interrelated via the recursive 

relationship S25 which reads as 
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Equations S27-S31 thus provide the M and ML concentrations profiles at any time . Let us now 

describe the numerical procedure subsumed in the solver ¡. 
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with ( ) =1,2i iΓ  the operators that define the right hand sides of eqs S27 ( )1i =  and S28( )2i = . At 

,  satisfies eq 19 rewritten as 1 0x x= = 1
2
kY +

 ( )1
2 1 0kY x+ = . (S33) 

At the position 1x , we set  

 ( )1
1 1 1
kY x ζ+ = 1k+ , (S34) 
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where  is a time-dependent parameter to be subsequently determined. At the edge of the unit 

cell, i.e. at the position 

1
1
kζ +

( )2 c /x x r a d= = + , eq 20 provides 

 ( )1
2 2 0kY x+ = , (S35) 

and we define ( )1
1 2
kY x+  as 

 ( )1
1 2 2
kY x ζ+ = 1k+ , (S36) 

with  a second time-dependent variable to be evaluated. The two boundary problem (S32)-(S36) 

is solved by numerical shooting from the position 

1
2
kζ +

1x  to fx  (forward shooting, denoted as FS) and 

from the position 2x  to fx  (backward shooting, denoted as BS) with  1 2fx x x< <   and  

 ( ) ( )1 1
1 1BS FS
k k

fY x Y x+ += f , (S37) 

 ( ) ( )1 1
2 2BS FS
k k

fY x Y x+ += f . (S38) 

For that purpose,  and  are iteratively updated with a globally convergent Newton-

Raphson

1
1
kζ + 1

2
kζ +

1  scheme till the continuity equations S37 and S38 are satisfied. This method called ‘shooting 

to a fitting point’ (located at fx x= ) is based on the use of an adaptive stepsize Runge-Kutta method 

of the fifth-order implemented with the aforementioned Newton-Raphson scheme.1 Within this 

procedure, many small steps tiptoe through treacherous spatial regions (especially at the edge of the 

shell layer i.e. at ( )/x d a d= + ) where strong variations of the function to be determined are 

encountered, while larger step sizes are automatically defined in ‘uninteresting spatial zones’ where 

smooth function gradients are computed (i.e. far from the shell layer). Doing so, fast convergence is 

met for ( )/fx d a d+∼ . 

Following the above numerical strategy, the author verified that two modes of computations are 

equivalent. In the first mode, the resolution of the time dependent M and ML concentration profiles is 

carried out according to eq S30 with initial guesses for  and  obtained from the solutions at  1
1
kζ + 1

2
kζ +

kt� . In the second mode, the computation is performed according to  

 ( ) ( )( )1 1
1,2
kY x xΩ+ =ℑ , (S39) 

where the time  (eq S24) is now iterated upon changing  on the premise that  

remains well below 1. 

kt� N ( )1/ 1t NΔ = −

The accuracy and stability of the numerical solution was systematically verified by controlling the 

independence of the results on the quantities fx , p, tΔ , the initial guesses for  and  as 1
1
kζ + 1

2
kζ +

 6



well as the convergence criterion that defines how well the continuity conditions S37-S38 for  at 1
1,2
kY +

fx x=  are satisfied.  Typical values for  around 300 or above lead to numerical results with 

accuracy up to three digits.  

N

Once the spatial and temporal dependences of  are known and therewith the EDL potential 

distribution throughout the soft interphase (see point 4 below), the calculation of the quantities , 

M,MLc

K∗

( )s
M tρ , ( )V

M tρ  and ( )V
ML tρ  may be easily carried out via the numerical evaluations (using 

Simpson’s rule1) of the various integrals involved in eqs 28, S9 and 32. Following this, eq 30 

straightforwardly leads to the searched ratio ( )a a/k t k∗ . 

The evaluation of the time- and space-dependent M and ML concentration profiles as previously 

described requires knowledge of the scaled equilibrium potential y . Derivation of the latter is 

presented below.  

 

4. Numerical analysis for evaluating the equilibrium potential profile. 

The spatial variable r is now rewritten in dimensionless form as follows 

 ( ) o/x r a R= −� , (S40) 

and is discretisized according to 

1,...,  :i M=  ( )1ix i x= − Δ� �

)

, (S41) 

with  the space discretization step and (1/ 1x MΔ = −� oR  the position where 1d / d xy x ε= <��  with 

 a prescribed scalar satisfying , typically of the order of ε 1ε<< 410−  or lower. It is recalled that 

o cR r<<  for .  Given eqs S40-S41, the finite element differences formulation of eqs 7, 23-

26 is given by   
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     (S43) 2 1 0y y− =

 1 0M My y −− =  (S44) 

, with ( )i iy y x= � . The non-linear tridiagonal system that consists of the M  equations (S42-S44) 

with the ( ) 1,...,i iy = M  as unknown variables, was solved using a globally convergent Newton-Raphson 

method already invoked above. oR  was iteratively updated till the far field condition (S44)- 
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equivalent to setting ( )1y x= =� 0  under the condition c 1rκ >> - was satisfied within the predefined 

convergence criterion 1d / d xy x ε= <�� . Initial guesses for oR  and ( ) 1,...,i iy = M  were obtained from 

the analytical solution of the linearized Poisson-Boltzmann equation (Debye-Hückel approximation) 

given by eq 34. It was systematically verified that the computed potential distributions were 

independent of the electrostatic cutt-off condition 1d / d xy x ε= <��   and on the grid size (  or 

larger). Once the electric potential distribution is known on the uniform grid 

400M ∼

( ) 1,...,i ix =� M , it is cubic-

spline interpolated in the -space region r [ ]c,a a r+  (with ( )o 0y r a R> + =  and 

( )
o

d / d
r a R

y r r > + = 0 ) or equivalently in the x -space region ( )c0, /r a d⎡ ⎤+⎣ ⎦  as defined by eq S20. 

Subsequently, the Laplacian term 2
x y∇  appearing in eq S28 may be evaluated for any position x  

according to the expression 

 ( ) ( ) ( ) ( )22 L Lsinh
2

x
z cy x a d y x f x
zc

κ
∗
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, (S45) 

which directly follows from eqs 7, 12, 23 and 24. The electric field ( )d / dy x x involved in eq S28 may 

be straightforwardly estimated via 

 
( ) ( )

o

d d
d d
y x ya d x

x R x
+=

�
�

, (S46) 

where ( )d / dy x� x�  is the function cubic-spline interpolated from the field values 

( )1 1,..., 1 /i i i My y Δ+ = −− �x  evaluated on the uniform grid ( ) 1,...,i ix =� M . The author experienced that 

this way of determining the double layer electric field, while very accurate for , suffers at 

 from instability at spatial positions located in the vicinity of 

1dκ >>

( )1d Oκ = r a d= + , i.e. in the EDL 

region where the potential distribution is the steepest. This instability is reflected in subtle but 

significant (a few percent) variations of ( ) / o
d / d

x d R
y x x �∼� �  upon variation of oR  and/or M even for 

xΔ�  values as low as . This feature ultimately leads to very inaccurate evaluation of  at 

low , thereby recalling that the coupled electric field and M/ML concentration gradients exhibit 

abrupt developments in the vicinity of 

310−< a a/k k∗

dκ

r a d= + . To solve for this issue, the electric field was 

determined as follows. Posing  ( ) ( )1 d / dY x y= x  (with x  defined by eq S20), one may show on the 

basis of the non-linear PB equation (eqs 23-24) that the electric field ( )1Y  is governed by 

 8



 
( )( )

( )
( )( ) ( )

1
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Y x y x
x x a a d

=− +∇
+ +

 (S47) 

where ( )2
x y x∇  is yielded by eq S45. Equation S47 is solved following a numerical procedure of the 

type ‘shooting to a fitting point’ similar to that employed for solving eqs S32-S36. For that purpose, 

the boundaries verified by ( )1Y  at  and 1 0x x= = ( )2 c /x x r a d= = +  (eqs 25-26 in the main 

text) are written in the form  

 ( )( )1
1Y x ν= 1  (S48) 

and  ( )( )1
2 0Y x = , (S49) 

with  a scalar to be determined. The advantage of this method over that which consists in evaluating 

the electric field on the basis of a uniform grid, is the use of an adaptive step size-mesh with, in 

particular, detailed computation in the vicinity of 

1ν

( )/x d a d= +  ( )fx∼ . The value of  is 

updated by means of a globally convergent Newton Raphson method till continuity of the electric field 

is met at 

1ν

fx x= . Comparison of eqs S48 with eq 25 reveals that  must be zero, in agreement with 

the numerical outcome (typical values obtained for  are well below ). The consistency of the 

above method for evaluating the field distribution was verified by changing the starting guess value 

chosen for  as well as the convergence criterion that defines how well the continuity condition for 

the electric field at 

1ν

1ν
410−

1ν

fx x=  is met. Finally, the electric field was cubic-spline interpolated over the 

whole x -space region ( )c0, /r a d⎡ ⎤+⎣ ⎦  on the basis of the field values obtained on the non-uniform 

mesh grid. The resulting function, which allows the evaluation of the electric field for any position x, 

was then employed within the numerical scheme adopted for solving the M and ML concentration 

profiles. 
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