<Supporting Information>

Additive Pummerer Reaction of 3,5-*O*-(Di-*tert*-butyl)silylene-4-thiofuranoid Glycal : A High Yield and β-Selective Entry to 4'-Thioribonucleosides

Kazuhiro Haraguchi,* Mitsuhiro Matsui, Shin Takami, and Hiromichi Tanaka

CONTENTS

Page S2 – S22 General Experimental Section and procedures for compounds **6**-30 Page S23-S44 Fig. 1- Fig.22: ¹H NMR and ¹³C NMR spectrum of compound **6**-31 in CDCl₃

General Experimental Section

Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded either at 400 MHz or at 500 MHz. Chemical sifts are reported relative to Me₄Si. Mass spectra (MS) were taken in FAB mode with *m*-nitrobenzyl alcohol as a matrix. Column chromatography was carried out on silica gel. Thin-layer chromatography (TLC) was performed on silica gel. When necessary, analytical samples were purified by high performance liquid chromatography (HPLC). THF was distilled from benzophenone ketyl.

1,4-Anhydro-2-deoxy-3,5-*O*-(di-*t*-butylsilylene)-4-thio-D-*erythro*-pento-1-enitol 1oxide (6)

To a CH₂Cl₂ (12 mL) solution of **3** (1.04 g, 3.82 mmol) was added CH₂Cl₂ (12 mL) solution of m-CPBA (1.05 g, 6.11 mmol) at 0 °C and the mixture was stirred for 1 h. The reaction mixture was neutralized with Et₃N and partitioned between CHCl₃/saturated aq NaHCO₃. Silica gel column chromatography (hexane/AcOEt = 2/1) of the organic layer gave a mixture of (S_R)-6 (major isomer) and (S_S)-6 (minor isomer) (926.9 mg, 84%). (S_R)-6 (t_R 14 min) and (S_S)-6 (t_R 18 min) were separated by HPLC (hexane/AcOEt = 1/4).

Physical data for (S_R)-6: m.p. 163-164 °C. UV(MeOH) λ_{max} 249 nm (ϵ 830). ¹H NMR (CDCl₃) δ 1.01 and 1.08 (18H, each as s, t-Bu), 2.77 (1H, ddd, J = 7.4, J = 10.4, J = 5.6

Hz), 4.52 (1H, t, J = J = 10.4 Hz), 4.61 (1H, dd, J = 5.6 and J = 10.4 Hz), 5.92 (1H, dt, J = J = 1.6 and J = 8.0 Hz), 6.79 (1H, dd, J = 2.0 and J = 6.0 Hz), 7.06 (1H, dd, J = 6.0 and J = 1.6 Hz); ¹³C NMR (CDCl₃) δ 19.97, 22.66, 26.93, 27.20, 63.93, 74.93, 78.38, 136.72, 140.11. FAB-MS (m/z) 289 (M⁺ + H). Anal. Calcd for C₁₃H₂₄O₃SSi: C, 54.13; H, 8.39. Found: C, 54.26; H, 8.59.

Physical data for (S_S)-6: m.p. 156-159 °C. ¹H NMR (CDCl₃) δ 1.03 and 1.05 (9H, each as s, Si-*t*-Bu), 3.67 (1H, ddd, J = 5.2, J = 12.4 and J = 8.4 Hz), 4.51 (1H, dd, J = 12.4 and J = 10.4 Hz), 4.76-4.81 (2H, m, H-3 and 5b), 6.64 (1H, dd, J = 6.4 and J = 2.0 Hz), 6.71 (1H, dd, J = 6.4 and J = 0.8 Hz); ¹³C NMR (CDCl₃) δ 20.19, 22.46, 26.94, 27.17, 62.59, 64.17, 80.68, 133.79, 148.35. FAB-MS (m/z) 289 (M⁺+ H). Anal. Calcd for C₁₃H₂₄O₃SSi: C, 54.13; H, 8.39. Found: C, 54.46; H, 8.58.

Additive Pummerer reaction of 6 with $Ac_2O/TMSOTf$: Formation of 1,2-di-*O*-acetyl-3,5-*O*-(di-*t*-butylsilylene)- β , α -4-thioribofuranose (7) and 1-*O*-Acetyl-3,5-*O*-

 $(di-t-butylsilylene)-2-O-(trifluoromethanesulfonyl)-\beta, \alpha-4-thioribofuranose (8)$

To a CH₂Cl₂ (2.5 mL) solution of **6** (43.3 mg, 0.15 mmol) was added Ac₂O (22 μ L, 0.23 mmol) and TMSOTf (15 μ L, 0.08 mmol) at 0 °C under Ar atmosphere and the mixture was stirred for 7 h. The reaction mixture was partitioned between CHCl₃/saturated aq NaHCO₃ and column chromatography (hexane/AcOEt = 50/1) of the organic layer gave **7** (11.6 mg, 20%, syrup, β -isomer/ α -isomer = 12:1) and **8** (15.9 mg, 22%, syrup, β -isomer/ α -isomer = 7:1).

Physical data for **7** (β-anomer): m.p. 105-107 °C. ¹H NMR (CDCl₃)δ 1.00 and 1.07 (18H, each as s, Si-*t*-Bu), 2.10 and 2.13 (6H, each as s, Ac), 3.66-3.73 (2H, m), 4.02 (1H, t, J = J = 11.2 Hz), 4.28-4.35 (2H, m), 5.47 (1H, d, J = 3.2 Hz), 5.70 (1H, s); NOE experiment: H-1/H-4 (1.7%) and H-2/H-3 (7.3%); ¹³C NMR (CDCl₃) δ 20.79, 20.86, 22.67, 26.91, 27.18, 44.61, 68.43, 78.55, 79.06, 169.30, 169.48. FAB-MS (*m/z*) 391 (M⁺ + H) and 331 (M⁺ - OAc). *Anal*. Calcd for C₁₇H₃₀O₆SSi: C, 52.28; H, 7.74. Found: C, 52.42; H, 7.89.

Physical data for 7 (α-anomer): ¹H NMR (CDCl₃)δ 1.01 and 1.04 (18H, each as s, Sit-Bu), 2.07 and 2.19 (6H, each as s, Ac), 3.91-3.99 (2H, m), 4.17 (1H, dd, J = 4.6 and J = 7.4 Hz), 4.27 (1H, dd, J = 3.2 and J = 10.8 Hz), 6.70 (1H, t, J = J = 4.6 Hz), 6.21 (1H, d, J = 4.6 Hz); NOE experiment: H-1/H-2 (12%) and H-1/H-3 (4.8%); ¹³C NMR (CDCl₃) δ 20.12, 20.67, 22.74, 26.88, 27.16, 45.94, 72.73, 75.28, 78.69, 169.76, 169.88. FAB-MS (m/z) 391 (M⁺ + H) and 331 (M⁺ - OAc). *Anal*. Calcd for C₁₇H₃₀O₆SSi: C, 52.28; H, 7.74. Found: C, 52.56; H, 7.87.

Physical data for 8: ¹H NMR (CDCl₃) (β -isomer) δ 1.02 and 1.09 (18H, each as s, Si-*t*-Bu), 2.11 (3H, s), 3.62-3.69 (1H, m), 4.04 (1H, t, $J_{4,5a} = J_{5a,5b} = 10.6$ Hz), 4.34 (1H, dd, J = 4.4 and J = 10.6 Hz), 4.40 (1H, dd, J = 3.4 and J = 10.2 Hz), 5.31 (1H, d, J = 3.4 Hz), 5.89 (1H, s); (α -isomer, selected data) δ 1.01 and 1.05 (18H, each as s, Si-*t*-Bu), 2.16 (3H, s), 3.21-3.27 (1H, m), 4.04 4.27 (1H, dd, J = 4.8 and J = 10.0 Hz), 4.95 (1H, dd, $J_2 = 10.3$ and J = 5.3 Hz), 4.95 (1H, dd, J = 10.3 and J = 5.3 Hz), 6.02 (1H, J = 5.3 Hz);

¹³C NMR (CDCl₃) δ (β-anomer) 20.1, 20.8, 22.8, 26.7, 27.3, 44.0, 68.5, 76.7, 78.1, 78.5, 88.7, 168.8; (α-anomer, selected data) 19.9, 20.9, 22.7, 26.8, 27.2, 40.3, 68.9, 71.8, 77.2, 86.0. FAB-MS (m/z) 481 (M⁺+H), 421 (M⁺–OAc). High resolution FAB-MS (m/z) calcd for C₁₆H₂₇F₃O₇S₂Si: 481.0998. Found: 481.0962.

Additive Pummerer reaction of 6 with Ac₂O/SnCl₄: Formation of 9

To a CH₂Cl₂ (2.5 mL) solution of 6 (43.3 mg, 0.15 mmol) was added Ac₂O (44 µL, 0.46 mmol) and SnCl₄ (1.0 M CH₂Cl₂ solution) (0.31 mL, 0.31 mmol) at 0 °C under Ar atmosphere and the mixture was stirred overnight. The reaction mixture was partitioned between $CHCl_3$ /saturated aq NaHCO₃ and column chromatography (hexane/AcOEt = 60/1) of the organic layer gave 9 (36.3 mg, 52%, syrup, β -isomer/ α -isomer = 5:1): ¹H NMR (CDCl₃) (β-isomer)δ 1.09 and 1.10 (18H, each as s, Si-*t*-Bu), 2.07, 2.11 and 2.16 (9H, each as s), 3.69-3.73 (1H, m), 4.12 (1H, dd, J = 7.3 and J = 11.4 Hz), 4.47 (1H, dd, J = 5.4 and J = 11.4 Hz), 4.53 (1H, dd, J = J = 3.4 Hz), 4.90 (1H, dd, J = 3.4 and J = 6.6Hz), 5.93 (1H, d, J = 3.4 Hz). (α-isomer, selected data)δ 1.11 and 1.14 (18H, each as s, Si-t-Bu), 3.83-3.87 (1H, m), 4.07 (1H, dd, J = 7.3 and J = 11.4 Hz), 4.41 (1H, dd, J =5.1 and J = 3.5 Hz), 4.96 (1H, dd, J = 3.5 and J = 1.5 Hz), 6.19 (1H, d, J = 5.1 Hz); ¹³C NMR (CDCl₃) δ (β-anomer) 20.70, 20.80, 21.06, 21,33, 22.56, 27.24, 27.34, 48.97, 64.98, 65.24, 76.43, 82.31, 169.54, 169.92, 170.50; (α-anomer) 20.74, 20.93, 21.66, 22.63, 27.63, 27.20, 27.46, 29.65, 51.60, 61.32, 78.45, 78.61, 170.11, 170.31, 170.43. FAB-MS (*m/z*) 469 and 471 (M⁺+H). Anal. Calcd for C₁₉H₃₃ClO₇SSi : C, 48.86; H, 7.17.

Found: C, 49.20; H, 7.22.

Additive Pummerer reaction of 6 with Ac₂O/TMSOAc/BF₃ OEt₂: Formation of 7,10 and 11

To a CH₂Cl₂ (25 mL) solution of **6** (1.15 g, 3.99 mmol) was added Ac₂O (2.6 mL, 27.93 mmol), TMSOAc (4.2 mL, 27.93 mmol) and BF₃ • OEt₂ (3.5 mL, 27.93 mmol) at 0 °C under Ar atmosphere and the mixture was stirred overnight. The reaction mixture was partitioned between CHCl₃/saturated aq NaHCO₃ and column chromatography (hexane/AcOEt = 40/1-20/1) of the organic layer gave **7** (967.2 mg, 62%, solid, β-isomer/α-isomer = 13:1), **10** (54.3 mg, 3%, syrup, β-isomer/α-isomer = 13:1) and **11** (334.9 mg, 17%, syrup, β-isomer/α-isomer = 4.9:1).

Physical data for **10**: ¹H NMR (CDCl₃) (β-isomer)δ 1.05 and 1.06 (18H, each as s, Si-*t*-Bu), 2.07, 2.09 and 2.13 (9H, each as s), 3.64-3.69 (1H, m), 4.18 (1H, dd, J = 7.2 and J = 11.6 Hz), 4.43 (1H, dd, J = 5.6 and J = 11.4 Hz), 4.59 (1H, dd, J = 5.6 and J = 8.8 Hz), 5.41 (1H, dd, J = 3.2 and J = 3.6 Hz), 5.81 (1H, d, J = 3.2 Hz); (α-isomer, selected data) δ 3.40-3.45 (1H, m), 4.52 (1H, dd, $J_{4,5b} = 4.6$ and J = 11.4 Hz), 5.21 (1H, dd, J = 4.4 and J = 9.2 Hz), 5.94 (1H, d, J = 4.4 Hz); ¹³C NMR (CDCl₃) δ (β-anomer) 20.14, 20.69, 20.91, 26.73, 26,79, 21,19, 29.70, 49.08, 64.91, 74.48, 77.88, 79.21, 169.66, 169.92, 170.44; δ (α-isomer, selected data) 26.81, 45.75, 65.46, 74.23, 76.11, 78.17,170.42. FAB-MS (m/z) 393 (M⁺–OAc). *Anal*. Calcd for C₁₉H₃₃FO₇SSi · 1/3AcOEt: C, 50.67; H, 7.46. Found: C, 51.02; H, 7.37.

Physical data for **11**: ¹H NMR (CDCl₃) (β-isomer) δ 1.07 and 1.08 (18H, s, Si-*t*-Bu), 2.10, 2.13 and 2.15 (12H, each as s), 3.68-3.73 (1H, m), 4.12 (1H, dd, J= 7.6 and J= 11.6 Hz), 4.51 (1H, dd, J= 4.4 and J= 11.6 Hz), 4.79 (1H, dd, J= 3.6 and J= 7.2 Hz), 5.50 (1H, dd, J= 2.8 and J= 3.6 Hz), 5.77 (1H, d, J= 2.8 Hz); (α-isomer) δ 1.09 and 1.11 (18H, each as s), 2.06, 2.08, 2.10 and 2.14 (12H, each as s), 3.79 (1H, dt, J= 2.0, J= 4.8 and J= 6.8 Hz), 410 (1H, dd, J= 4.8 and J= 10.8 Hz), 4.15 (1H, dd, J= 6.8 and J= 10.8 Hz), 4.90 (1H, dd, J= 4.4 and J= 2.0 Hz), 5.28 (1H, dd, J= 5.6 and J= 4.4 Hz), 6.24 (1H, d, J= 5.6 Hz); ¹³C NMR (CDCl₃) δ (β-anomer) 20.30, 20.49, 20.54, 20.65, 22.11, 26.81, 26.88, 48.57, 64.85, 72.35, 74.69, 77.29, 78.73, 169.30, 169.44, 169.47, 169.97; δ (α-anomer) 20.56, 20.64, 20.93, 21.31, 22.45, 27.03, 27.11, 27.17, 50.03, 64.87, 74.47, 76.19, 76.32, 169.61, 169.68, 170.09, 170.33. FAB-MS (m/z) 433 (M⁺–OAc). *Anal.* Calcd for C₂₁H₃₆O₉SSi: C, 51.20; H, 7.37. Found: C, 51.41; H, 7.56.

1-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio-β,α-D-ribofuranosyl]uracil (12)

To an CH₃CN (3.5 mL) solution of bis-*O*-trimethylsilyluracil, prepared from uracil (90.8 mg, 0.81 mmol) and BSA (0.4 mL, 1.62 mmol,), was added an CH₂Cl₂ (3.5 mL) solution of **7** (104.1 mg, 0.27 mmol) and TMSOTf (0.21 mL, 1.08 mmol) at 0 °C under Ar atmosphere and the mixture was stirred at 60 °C for 24 h. The reaction mixture was partitioned between CHCl₃/saturated aq NaHCO₃ and column chromatography (hexane/AcOEt = 3/1) of the organic layer gave **12** (111.7 mg, 93%, **12β/12α** = 22:1) as a foam: UV (MeOH) λ max 264 nm (ε 10500), λ min 232 nm (ε 2400); ¹H NMR (CDCl₃)

(12β)δ 1.00 and 1.05 (18H, each as s), 2.15 (3H, s), 3.70-3.76 (1H, m), 4.12 (1H, dd, J = 10.4 and J = 11.2 Hz), 4.27 (1H, dd, J = 4.4 and J = 10.0 Hz), 4.41 (1H, dd, J = 4.4 and J = 11.2 Hz), 5.50 (1H, dd, J = 0.8 and J = 4.4 Hz), 5.83 (1H, d, J = 8.2 Hz), 5.96 (1H, d, J = 0.8 Hz), 7.61 (1H, d, J = 8.2 Hz), 9.18 (1H, br);(12α, selected data)δ 1.01 and 1.07 (18H, each as s), 2.12 (3H, s), 5.21 (1H, dd, J = 7.2 and J = 9.5 Hz), 5.89 (1H, d, J = 8.2 Hz), 6.11 (1H, d, J = 7.2 Hz), 7.86 (1H, d, J = 8.2 Hz); NOE experiment (β-isomer): H-1'/H-4' (1.2%), H-6/H-2' (2.5%), H-6/H-5'a (6.2%), CO<u>CH</u>₃/H-4' (0.6%); ¹³C NMR (CDCl₃) δ (12β) 20.06, 20.82, 22.84, 26.84, 27.17, 27.32, 46.34, 63.61, 67.80, 79.38, 103.36, 140.30, 149.74, 162.00, 168.86. FAB-MS (m/z) 443 (M⁺+H). Anal. Calcd for C₁₉H₃₀N₂O₆SSi 1/4AcOEt: C, 51.70; H, 6.94; N, 6.02. Found: C, 51.98; H, 7.07; N, 5.83.

1-[2-*O*-Acetyl-**3**,**5**-*O*-(di-t-butylsilylene)-4-thio-β,α-D-ribofuranosyl]thymine (13)

To an CH₃CN (3.5 mL) solution of bis-*O*-trimethylsilylthymine, prepared from thymine (102.1 mg, 0.81 mmol) and BSA (0.4 mL, 1.62 mmol), was added an CH₂Cl₂ (3.5 mL) solution of **7** (106.6 mg, 0.27 mmol) and TMSOTf (0.21 mL, 1.08 mmol) at 0 °C under Ar atmosphere and the mixture was stirred at 80 °C for 19 h. The reaction mixture was partitioned between CHCl₃/sat. NaHCO₃ and silica gel column chromatography (hexane/AcOEt = 3/1) of the organic layer gave **13** (114.8 mg, 93%, **13β/13α** = 22:1) as a foam: UV (MeOH) λ max 269 nm (ε 9700), λ min 236 nm (ε 2400); ¹H NMR (CDCl₃) (**13β)δ** 1.00 and 1.07 (18H, each as s), 1.96 (3H, d, *J* = 1.2 Hz), 2.05 (3H, s), 3.68-3.75

(1H, m), 4.14 (1H, dd, J = 10.4 and J = 11.2 Hz), 4.34 (1H, dd, J = 4.4 and J = 10.2 Hz), 4.40 (1H, dd, J = 4.8 and J = 11.2 Hz), 5.50 (1H, dd, J = 0.8 and J = 4.4 Hz), 5.96 (1H, d, J = 0.8 Hz), 7.30 (1H, d, J = 1.2 Hz), 8.84 (1H, br); (**13** α , selected data) δ 0.99 and 1.05 (18H, each as s), 2.00 (3H, d, J = 1.3 Hz), 2.13 (3H, s), 3.62-3.67 (1H, m), 4.26 (1H, dd, J = 4.8 and J = 10.2 Hz), 5.23 (1H, dd, J = 7.3 and J = 9.5 Hz), 6.12 (1H, d, J =7.3 Hz), 7.39 (1H, d, J = 1.3 Hz); NOE experiment (**13** β): H-1'/H-4' (2.0%), H-6/H-2' (4.0%), H-6/H-3' (7.0%); ¹³C NMR (CDCl₃) δ (**13** β) 12.76, 20.07, 20.84, 22.85, 26.85, 26.89, 27.17, 46.51, 63.61, 67.69, 79.48, 112.09, 136.02, 149.78, 162.69, 168.99. FAB-MS (m/z) 457 (M⁺+H). *Anal*. Calcd for C₂₀H₃₂N₂O₆SSi 1/4AcOEt: C, 52.70; H, 7.16; N, 5.85. Found: C, 52.64; H, 7.31; N, 5.66.

1-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio-β,α-D-ribofuranosyl]-N-

acetylcytosine (14)

To an CH₃CN (3.5 mL) solution of bis-*N*,*O*-trimethylsilyl-*N*-acetylcytosine, prepared from *N*-acetylcytosine (128.6 mg, 0.84 mmol) and BSA (0.42 mL, 1.68 mmol,), was added an CH₂Cl₂ (3.5 mL) solution of **7** (108 mg, 0.28 mmol) and TMSOTf (0.22 mL, 1.12 mmol) at 0 °C under Ar atmosphere and the reaction mixture was stirred at 60 °C for 15 h. The reaction mixture was partitioned between CHCl₃/sat. NaHCO₃ and silica gel column chromatography (hexane/AcOEt = 1/1) of the organic layer gave **14** (123.4 mg, 91%, **14**β/**14**α = 23:1) as a foam: UV (MeOH) λ _{shoulder} 305 nm (ε 4400) and 279 nm (ε 6500), λ max 249 nm (ε 11900), λ min 228 nm (ε 6400); ¹H NMR (CDCl₃) (**14**β) **δ** 0.99 and 1.04 (18H, each as s), 2.15 and 2.27 (6H, each as s), 3.73-3.79 (1H, m), 4.14 (1H, dd, J = 10.4 and J = 11.2 Hz), 4.24 (1H, dd, J = 4.0 and J = 11.2 Hz), 4.42 (1H, dd, J = 4.4 and J = 10.2 Hz), 5.58 (1H, d, J = 4.4 Hz), 6.02 (1H, s), 7.49 (1H, d, J = 7.2 Hz), 8.13 (1H, d, J = 7.2 Hz), 9.81 (1H, br); (14α)**δ** 1.02 and 1.07 (18H, each as s), 2.09 and 2.26 (6H, each as s), 3.80-3.86 (1H, m), 4.00 (1H, t, J = J = 10.3 Hz), 4.27 (1H, dd, J = 4.6 and J = 10.3 Hz), 5.31 (1H, d, J = 6.4 and J = 6.3 Hz), 6.19 (1H, d, J = 6.4), 7.53 (1H, d, J = 7.7 Hz), 8.24 (1H, d, J = 7.7 Hz), 9.61 (1H, br); NOE experiment (14β): H-1'/H-4' (0.8%), H-6/H-2' (2.5%) and H-6/H-3' (5.2%); ¹³C NMR (CDCl₃) δ (14β) 19.86, 20.83, 22.69, 24.79, 26.80, 27.10, 45.91, 64.98, 67.99, 76.94, 78.73, 97.47, 145.29, 155.02, 162.86, 168.58, 171.44. FAB-MS (*m*/*z*) 484 (M⁺+H). *Anal.* Calcd for C₂₁H₃₃N₃O₆SSi: C, 52.15; H, 6.88; N, 8.69. Found: C, 52.18; H, 6.98; N, 8.45.

9-[2-*O*-Acetyl-3,5-*O*-(di-*t*-butylsilylene)-4-thio-β,α-D-ribofuranosyl]-6-chloropurine (15) and 7-[2-*O*-Acetyl-3,5-*O*-(di-*t*-butylsilylene)-4-thio-β,α-D-ribofuranosyl]-6chloropurine (16)

To an CH₃CN (3.5 mL) solution of *N*-trimethylsilyl-6-chloropurine, prepared from 6chloropurine (129.8 mg, 0.84 mmol) and BSA (0.21 mL, 0.84 mmol,), was added an CH₂Cl₂ (3.5 mL) solution of **7** (108.2 mg, 0.28 mmol) and TMSOTf (0.22 mL, 1.12 mmol) at 0 °C under Ar atmosphere and the mixture was stirred at 80 °C for 8 h. The reaction mixture was partitioned between CHCl₃/sat. NaHCO₃ and preparative TLC purification (hexane/AcOEt = 2/1) of the organic layer gave **15** (78.8 mg, 58%, **15**β/15α= 24:1, syrup) and **16** (28.4 mg, 21%, 16β/16α = 23:1, solid).

Physical data for **15**: UV (MeOH)λ max 265 nm (ε 8800),λ min 229 nm (ε 3000); ¹H NMR (CDCl₃) (**15**β)δ 1.03 and 1.08 (18H, each as s), 2.22 (3H, s), 3.85-3.91 (1H, m), 4.25 (1H, dd, J = 10.4 and J = 10.8 Hz), 4.45 (1H, dd, J = 4.8 and J = 10.8 Hz), 4.93 (1H, dd, J = 4.0 and J = 10.0 Hz), 5.64 (1H, d, J = 4.0 Hz), 5.98 (1H, s), 8.35 and 8.77 (2H, each as s); (**15**α, selected data)δ 2.27 (3H, s), 5.93 (1H, d, J = 4.0 Hz), 8.33 and 8.74 (2H, each as s); NOE experiment (β-isomer): H-1'/H-4' (1.4%), H-8/H-3' (3.7%); ¹³C NMR (CDCl₃) δ (**15**β) 20.08, 20.85, 22.86, 26.88, 27.17, 29.69, 46.10, 61.37, 67.94, 77.67, 78.86, 132.46, 143.98, 151.15, 152.20, 169.27. HMBC spectra; H-1'/C-4; FAB-MS (*m*/*z*) 487 and 485 (M⁺+H). *Anal*. Calcd for C₂₀H₂₉ClN₄O₄SSi 1/10H₂O: C, 49.34; H, 6.05; N, 11.51. Found: C, 49.65; H, 5.97; N, 11.14.

Physical data for **16**: m.p. 212-215 °C₋ UV (MeOH) λ_{max} 273 nm (ϵ 6500), $\lambda_{shoulder}$ 256 nm (ϵ 5700), λ_{min} 232 nm (ϵ 3600); ¹H NMR (CDCl₃)) (**16** β) δ 1.01 and 1.03 (18H, each as s), 2.17 (3H, s), 3.83-3.90 (1H, m), 4.21 (1H, dd, J = J = 11.2 Hz), 4.37 (1H, dd, J = 3.6 and J = 11.2 Hz), 4.50 (1H, dd, J = 4.4 and J = 10.2 Hz), 5.73 (1H, d, J = 4.4 Hz), 6.41 (1H, s), 8.51 and 8.93 (2H, each as s); (**16** α , selected data) δ 5.86 (1H, dd, J = 4.4 and J = 3.2 Hz), 6.93 (1H, d, J = 4.4 Hz), 8.89 and 8.90 (2H, each as s); NOE experiment: H-1'/H-4' (2.0%), H-8/H-2' (2.0%), H-8/H-3' (5.0%); ¹³C NMR (CDCl₃) δ (**16** β) 20.02, 20.71, 22.83, 26.85, 27.11, 29.69, 45.81, 63.29, 67.99, 77.47, 78.85, 122.40, 143.04, 147.25, 153.10, 168.45.; HMBC spectra; H-1'/C-5; FAB-MS

(*m/z*) 487 and 485 (M⁺+H). *Anal*. Calcd for C₂₀H₂₉ClN₄O₄SSi 2/3AcOEt: C, 50.06; H, 6.36; N, 10.30. Found: C, 50.37; H, 6.20; N, 10.63.

9-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio-β,α-D-ribofuranosyl]-2-amino-6-

chloropurine (17) and 7-[2-*O*-Acetyl-3,5-*O*-(di-*t*-butylsilylene)-4-thio-β,α-Dribofuranosyl]-2-amino-6-chloropurine (18)

To an CH₃CN (3 mL) solution of bis-*N*,*O*-trimethylsilyl-2-amino-6-chloropurine, prepared from 2-amino-6-chloropurine (132.3 mg, 0.78 mmol) and BSA (0.39 mL, 1.56 mmol), was added an ClCH₂CH₂Cl(3 mL) solution of **7** (101.5 mg, 0.26 mmol) and TMSOTF (0.2 mL, 1.04 mmol) at 0 °C under Ar atmosphere and the reaction mixture was stirred at 100 °C for 28 h. The reaction mixture was partitioned between CHCl₃/sat. NaHCO₃ and preparative TLC purification (hexane/AcOEt = 1/1) of the organic layer gave **17** (63.3 mg, 49%, **17** β /**17** α = 23:1, syrup) and **18** (29 mg, 22%, **18** β /**18** α = 13:1, syrup).

Physical data for **17**: UV (MeOH)λ max 310 nm (ε 7800), 250 nm (ε 6500) and 224 nm (ε 19000),λ min 272 nm (ε 1400) and 241 nm (ε 5900); ¹H NMR (CDCl₃) (**17**β)δ 1.02 and 1.07 (18H, each as s), 2.20 (3H, s), 3.80-3.86 (1H, m), 4.20 (1H, dd, J = J = 11.2 Hz), 4.43 (1H, dd, J = 4.8 and J = 11.2 Hz), 4.85 (1H, dd, J = 4.0 and J = 10.2 Hz), 5.13 (2H, br), 5.66 (1H, d, J = 4.0 Hz), 5.75 (1H, s), 7.96 (1H, s); (**17**α, selected data)δ 2.09 (3H, s), 5.18 (2H, br), 6.73 (1H, d, J = 4.8 Hz), 8.62 (1H, s); NOE experiment: H-1'/H-4' (1.9%), H-8/H-2' (3.8%); ¹³C NMR (CDCl₃) (**17**β) δ 20.04, 20.87, 22.85, 26.86,

27.18, 45.91, 60.90, 68.01, 77.45, 78.96, 125.91, 140.80, 151.85, 153.06, 158.94, 169.13. HMBC spectra; H-1'/C-4; FAB-MS (m/z) 500 and 502 (M⁺+H). *Anal*. Calcd for C₂₀H₃₀ClN₅O₄SSi: C, 48.03; H, 6.05; N, 14.00. Found: C, 48.40; H, 5.98; N, 14.21.

Physical data for **18**: UV (MeOH) λ_{max} 326 nm (ϵ 4700) and 220 nm (ϵ 23500), λ_{min} 279 nm (ϵ 700); ¹H NMR (CDCl₃) δ 1.00 and 1.02 (18H, each as s), 2.02 (3H, s), 3.78-3.85 (1H, m), 4.18 (1H, dd, J = 10.4 and J = 11.4 Hz), 4.32 (1H, dd, J = 4.0 and J = 10.2 Hz), 4.47 (1H, dd, J = 4.5 and J = 11.4 Hz), 5.14 (2H, br), 5.70 (1H, d, J = 4.0 Hz), 6.23 (1H, s), 8.57 (1H, s); (**18** α , selected data) δ 6.73 (1H, d, J = 4.8 Hz); NOE experiment: H-8/H-2' (1.1%) and H-1'/H-4' (0.8%); ¹³C NMR (CDCl₃) (for **18** β) δ 20.01, 20.74, 22.81, 26.86, 27.12, 29.69, 45.55, 63.07, 68.04, 78.88, 116.34, 143.58, 146.79, 159.55, 000.00, 168.43.; HMBC spectra; H-1'/C-5; FAB-MS (*m*/*z*) 500 and 502 (M⁺+H); (+KI) 538 and 540 (M⁺+H). *Anal*. Calcd for C₂₀H₃₀ClN₅O₄SSi · 1/10 AcOEt: C, 48.15; H, 6.10; N, 13.76. Found: C, 47.85; H, 6.05; N, 13.41.

2-[2-*O*-Acetyl-3,5-*O*-(di-*t*-butylsilylene)-4-thio-β,α-D-ribofuranosyl]thiophene (20)

To an CH₂Cl₂ (5.0 mL) solution of **7** (102.1 mg, 0.26 mmol) was added 2tributylstannylthiphene (0.25 mL, 0.78 mmol) and TMSOTf (0.15 mL, 0.78 mmol) at -70 °C under Ar atmosphere and the reaction mixture was stirred at 0 °C 12.5 h. The reaction mixture was partitioned between CHCl₃/saturated aq NaHCO₃ and preparative TLC (hexane/AcOEt = 10/1) of the organic layer gave **20** (84.9 mg, 79%, **20β/20α** = 23:1, syrup).

Physical data of **20**: UV (MeOH)λ max 238 nm (ε 7300),λ min 211 nm (ε 1800); ¹H NMR (CDCl₃) (**20β**)δ 1.02 and 1.03 (18H, each as s), 2.16 (3H, s), 3.76-3.83 (1H, m), 4.12 (1H, dd, J = 11.0 and J = 10.0 Hz), 4.37 (1H, dd, J = 4.4 and J = 10.0 Hz), 4.42 (1H, dd, J = 3.6 and J = 10.0 Hz), 4.63 (1H, s), 5.36 (1H, d, J = 3.6 Hz), 6.96 (1H, dd, J = 3.5 and J = 5.1 Hz), 7.08 (1H, dt, J = 1.2 and J = 3.5 Hz), 7.23 (1H, dd, J = 1.2 and J = 5.1 Hz); (**20α**, selected data) δ 2.07 (3H, s), 3.70 (1H, ddd, J = 4.6, J = 10.0 and J = 11.0 Hz), 3.98 (1H, dd, J = 10.3 and J = 11.0 Hz), 4.60 (1H, d, J = 8.8 Hz), 5.41 (1H, dd, J = 8.8 and J = 9.0 Hz), 6.90 (1H, dd, J = 3.4 and J = 5.1 Hz); NOE experiment (**20β**): H-1'/H-4' (2%), H-3/H-2' (2.0%); ¹³C NMR (CDCl₃) δ 20.09, 21.10, 22.74, 26.95, 27.20, 45.26, 47.65, 68.48, 79.01, 81.12, 125.49, 125.83, 127.28, 144.97, 170.06. FAB-MS (m/z) 415 (M⁺+H). Anal. Calcd for C₁₉H₃₀O₄S₂Si: C, 55.03; H, 7.29. Found: C, 54.98; H, 7.35.

2-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio-β,α-D-ribofuranosyl]furan (21)

To an CH₂Cl₂ (5.0 mL) solution of **7** (102.3 mg, 0.26 mmol) was added 2tributylstannylfuran (0.25 mL, 0.78 mmol) and TMSOTf (0.15 mL, 0.78 mmol) at -70 °C under Ar atmosphere and the reaction mixture was stirred at -10 °C for 5.5 h. The reaction mixture was partitioned between CHCl₃/saturated aq NaHCO₃ and preparative TLC (hexane/AcOEt = 10/1) of the organic layer gave a mixture of **20** (63 mg, 61%, **21β/21α** = 24:1, syrup): UV (MeOH)λ max 225 nm (ε 11000),λ min 206 nm (ε 7200); ¹H NMR (CDCl₃) (**21β**)δ 1.00 and 1.05 (18H, each as s), 2.15 (3H, s), 3.73-3.79 (1H, m), 4.08 (1H, t, J = J = 10.4 Hz), 4.37 (1H, dd, J = 4.4 and J = 10.4 Hz), 4.42 (1H, dd, J = 4.0 and J = 10.4 Hz), 4.63 (1H, s), 5.36 (1H, d, J = 4.0 Hz), 6.11 (1H, dt, J = 0.8 and J = 3.2 Hz), 6.16 (1H, dd, J = 2.0, J = 3.2 Hz), 7.25 (1H, dd, J = 0.8 and J = 2.0 Hz); (**21α**, selected data) δ 3.78 (1H, dd, J = 10.0 and J = 11.2 Hz), 6.20 (1H, dd, J = 2.0 Hz); (**21α**, selected data) δ 3.78 (1H, dd, J = 2.0 Hz); NOE experiment (for **21β**): H-1'/H-4' (2%), H-3/H-2' (1.0%); ¹³C NMR (CDCl₃) (for **21β**) δ 20.08, 21.08, 22.74, 26.97, 27.24, 29.69, 44.97, 45.10, 68.41, 77.63, 79.99, 107.72, 142.80, 152.35, 169.72. FAB-MS (m/z) 399 (M⁺+H). *Anal*. Calcd for C₁₉H₃₀O₅SSi: C, 57.25; H, 7.59. Found: C, 57.28; H, 7.71.

Reaction of 7 with cyanotrimethylsilane: (2R)-(2-Cyano-2-methyl)-1,2-dideoxy-[3,5-*O*-(di-*t*-butylsilylene)-4-thio- α -D-ribofuranoso][3,4-*d*][1,3]dioxolane (22a) and (2*S*)-(2-Cyano-2-methyl)-1,2-dideoxy-[3,5-*O*-(di-*t*-butylsilylene)-4-thio- α -D-ribofuranoso][3,4-*d*][1,3]dioxolane (22b)

To a CH_2Cl_2 (3.0 mL) solution of **7** (78.1 mg, 0.2 mmol) was added cyanotrimethylsilane (0.13 mL, 1.0 mmol) and TMSOTf (0.19 mL, 1.0 mmol) at -70 °C under Ar atmosphere and the reaction mixture was stirred at 0 °C for 21 h. The reaction mixture was partitioned between CHCl₃/saturated aq NaHCO₃ and column chromatography (hexane/AcOEt = 100/1) of the organic layer gave **22a** (19.4 mg, 27%, solid) and 22b (7.3 mg, 10%, solid).

Physical data for **22a** : m.p. 116-118 °C. IR (neat) 2231 cm⁻¹ (CN). ¹H NMR (CDCl₃) δ 1.03 and 1.06 (18H, each as s), 1.86 (3H, s), 3.54-3.60 (1H, m), 3.97 (1H, dd, *J* = 11.4 and *J* = 10.4 Hz), 4.09 (1H, dd, *J* = 4.4 and *J* = 10.4 Hz), 4.32 (1H, dd, *J* = 4.4 and *J* = 10.2 Hz), 5.01 (1H, dd, *J* = 6.0 and *J* = 4.4 Hz), 5.80 (1H, d, *J* = 6.0 Hz); NOE experiment: CH₃/H-4 (3.0%); ¹³C NMR (CDCl₃) δ 20.26, 22.71, 24.26, 26.84, 27.16, 44.60, 66.39, 81.12, 81.84, 84.92, 100.34, 116.60. FAB-MS (*m*/*z*) 358 (M⁺ + H) and 331 (M⁺ – CN). High resolution FAB-MS (*m*/*z*) calcd for C₁₆H₂₇F₃O₇S₂Si: 481.0998. Found: 481.0962.

Physical data for **22b**: m.p. 148-151 °C. IR (neat) 2231 cm⁻¹ (CN). ¹H NMR (CDCl₃) δ 1.06 and 1.07 (18H, each as s), 1.86 (3H, s), 3.90 (1H, t, J = J = 10.4 Hz), 4.04-4.12 (2H, m), 4.37 (1H, dd, J = 4.4 and J = 9.6 Hz), 4.81 (1H, dd, J = 4.8 and J = 4.4 Hz), 6.03 (1H, d, J = 4.8 Hz); ¹³C NMR (CDCl₃) δ 20.26, 22.76, 26.97, 27.09, 27.17, 46.70, 67.67, 81.59, 83.83.76, 86.51, 101.34, 117.79. FAB-MS (m/z) 358 (M⁺ + H) and 331 (M⁺ – CN). High resolution FAB-MS (m/z) calcd for C₁₆H₂₈O₄ NSSi: 358.1508. Found: 358.1489.

2-*O*-Acetyl-1-phenylthio-3,5-*O*-(di-*t*-butylsilylene)-β,α-D-4-thioribofuranose (23)

To a CH_2Cl_2 (5.0 mL) solution of 7 (242.6 mg, 0.62 mmol) was added TMSSPh (0.59 mL, 3.1 mmol) and $SnCl_4$ (1 M solution in CH_2Cl_2) (1.9 mL, 1.86 mmol) at -70 °C under Ar atmosphere and the reaction mixture was stirred at -10 °C for 10 h. The

reaction mixture was partitioned between CHCl₃/saturated aq NaHCO₃ and column chromatography (hexane/AcOEt = 100/1) of the organic layer gave **23** (237.5 mg, 87%, syrup, β–isomer/α-isomer = 24/1): UV (MeOH)λ max 253 nm (ε 5100),λ min 242 nm (ε 4700); ¹H NMR (CDCl₃) (β-isomer)δ 0.98 and 1.02 (18H, each as s, Si-*t*-Bu), 2.08 (3H, s, Ac), 3.68 (1H, ddd, J = 4.4, J = 10.7 and J = 10.7 Hz), 4.00 (1H, t, J = J = 10.7 Hz), 4.27-4.30 (2H, m), 4.47 (1H, s), 5.52 (1H, d, $J_{2,3} = 3.4$ Hz); (α-isomer, selected data) δ 2.05 (3H, s, Ac), 3.31 (1H, ddd, J = 4.4, J = 4.4, J = 10.7 Hz), 4.26 (1H, J = 7.6 Hz), 3.31 (1H, dd, J = 7.6 and J = 9.0 Hz); NOE experiment (β-isomer): H-1/H-4 (0.7%); ¹³C NMR (CDCl₃) δ 20.05, 20.95, 22.67, 26.92, 27.24, 45.21, 53.72, 68.39, 78.60, 79.46, 128.34, 129.16, 132.49, 133.85, 169.55. FAB-MS (*m*/*z*) 441 (M⁺ + H). *Anal.* Calcd for C₂₁H₃₂O₄S₂Si: C, 57.23; H, 7.32. Found: C, 57.44; H, 7.37.

$2 \text{-} \textit{O-} (t \text{-} Butyl dimethylsilyl) \text{-} 3, 5 \text{-} \textit{O-} (di \text{-} t \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} D \text{-} 4 \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} butyl silylene) \text{-} 1 \text{-} phenyl thio-\beta, \alpha \text{-} butyl silylene) \text{-} 1 \text{-} butyl silylene) \text{-} butyl silylene) \text{-} butyl silylene) \text{-} butylene) \text$

thioribofuranose (24)

Compound **23** (224.5 mg, 0.51 mmol) was treated with methanolic ammonia (20 mL) at rt overnight. The reaction mixture was evaporated to dryness and the residue was dried in vacuo overnight. To a DMF (5 mL) solution of the residue was added imidazole (520.8 mg, 7.65 mmol) and TBDMSCI (922.3 mg, 6.12 mmol) at 0 °C under Ar atmosphere and the mixture was stirred at rt overnight. The reaction mixture was partitioned between AcOEt/H₂O and column chromatography (hexane/AcOEt = 200/1) of the organic layer gave **24** (232.9 mg, 89%, β –isomer/ α -isomer = 24/1) as a solid: mp

72-74 °C; UV (MeOH)λ max 263 nm (ε 2900),λ min 254 nm (ε 2800); ¹H NMR (CDCl₃)δ –0.24 and 0.05 (6H, each as s, Si-*t*-Bu), 0.80 (9H, s), 0.99 and 1.06 (18H, each as s), 3.68-3.73 (1H, m), 4.01 (1H, t, J = J = 11.2 Hz), 4.25 (1H, s), 4.26-4.30 (3H, m), 7.33-7.35 and 7.51-7.54 (5H, each as m);); (α-isomer, selected data) δ 3.32-3.38 (1H, m), 4.49 (1H, J = 7.2 Hz); NOE experiment (β-isomer): H-1/H-4 (1.0%); ¹³C NMR (CDCl₃) δ –5.57, -4.33, 18.01, 20.09, 22.73, 25.75, 26.97, 27.53, 44.26, 58.06, 69.03, 79.57, 79.76, 128.70, 129.27, 134.08, 134.24. FAB-MS (*m*/*z*) 455 (M⁺ – *t*-Bu) and 551 (M⁺ + K). *Anal*. Calcd for C₂₅H₄₄O₃S₂Si₂: C, 58.54; H, 8.65. Found: C, 58.71; H, 8.91.

1-O-Acetoxy-2-O-(t-butyldimethylsilyl)-3,5-O-(di-t-butylsilylene)-β-D-4-

thioribofuranose (25)

To an AcOH (3.8 mL, 67.08 mmol) solution of **24** (221.1 mg, 0.43 mmol) was added Hg(OAc)₂ (602.9 mg, 1.89 mmol) at rt under Ar atmosphere and the mixture was stirred at rt for 14 h. The reaction mixture was diluted with CHCl₃. The solution washed with H₂O, saturated NaHCO₃ and 5% KCN. Silica gel column chromatography (hexane/AcOEt = 150/1) of the organic layer gave **25** (190.6 mg, 96%, β -isomer/ α -isomer = 24/1) as a solid: mp 104-105 °C. ¹H NMR (CDCl₃) δ 0.13 and 0.15 (6H, each as s), 0.92 (9H, s), 1.02 and 1.07 (18H, each as s), 2.08 (3H, s), 3.70 (1H, ddd, *J* = 4.6, *J* = 11.4 and *J* = 3.2 Hz), 4.01 (1H, dd, *J* = 11.4 and *J* = 10.0 Hz), 4.16 (1H, dd, *J* = 3.2 and *J* = 10.0 Hz), 4.28-4.32 (2H, m), 5.60 (1H, d, *J* = 0.7 Hz); (α -isomer, selected data) δ 2.09 (1H, s), 3.91 (1H, d, *J* = 11.2 and *J* = 10.0 Hz), 5.66 (1H, *J* = 5.2 Hz); NOE

experiment : H-1/H-4 (0.7%); ¹³C NMR (CDCl₃) δ –5.20, –4.38, 18.16, 20.15, 21.10, 22.76, 25.81, 27.00, 27.47, 43.53, 69.06, 77.44, 80.05, 82.32, 169.59. FAB-MS (*m/z*) 463 (M⁺ + H) and 403 (M⁺ – OAc). *Anal.* Calcd for C₂₁H₄₂O₅SSi₂: C, 54.50; H, 9,15. Found: C, 54.39; H, 9.33.

1-C-Cyano-2-(t-butyldimethylsilyl)-3,5-O-(di-t-butylsilylene)-β-D-4-

thioribofuranose (27)

To a CH₂Cl₂ (5 mL) solution of **25** (159.9 mg, 0.35 mmol) was added TMSBr (0.28 mL, 2.1 mmol) at 0 °C under Ar atmosphere and the mixture was stirred at rt for 27 h. To the reaction mixture was added Hg(CN)₂ (884.2 mg, 3.5 mmmol) and CH₃CN (5 mL) and the mixture was stirred at rt for 22 h. The reaction mixture was partitioned between CHCl₃ and saturated aq NaHCO₃ and column chromatography (hexane/AcOEt = 100/1) of the organic layer gave **27** (95.1 mg, 63%) as a solid: mp 137-139 °C. IR (neat) 2241 cm⁻¹ (CN). ¹H NMR (CDCl₃) δ 0.15 and 0.18 (12H, each as s), 0.93 (9H, s), 1.01 and 1.06 (18H, each as s), 3.58 (1H, s), 3.77 (1H, ddd, *J* = 3.1, *J* = 11.2 and *J* = 4.6 Hz), 4.08 (1H, dd, *J* = 11.2 and *J* = 10.1 Hz), 4.21 (1H, dd, *J* = 3.2 and *J* = 10.1 Hz), 4.33 (1H, dd, *J* = 4.6 and *J* = 10.1 Hz), 4.60 (1H, d, *J* = 3.1 Hz); NOE experiment: H-1/H-4 (0.9%); ¹³C NMR (CDCl₃) δ -5.30, -4.40, 18.11, 20.09, 22.75, 25.76, 26.91 27.37, 35.51, 44.23, 68.31, 77.57, 81.86, 118.34. FAB-MS (*m*/*z*) 430 (M⁺ + H). *Anal.* Calcd for C₂₀H₃₉NO₃SSi₂: C, 55.89; H, 9.15; N. 3.26. Found: C, 55.96; H, 9.32; N. 3.18.

Ethyl 2-[2-*O*-(*t*-butyldimethylsilyl)-3,5-*O*-(di-*t*-butylsilylene)-β-D-4-

thioribofuranosyl]-thiazole-4-carboxylate (29)

To a ClCH₂CH₂Cl (6.0 mL) solution of 27 (95.6 mg, 0.063 mmol) was added ethyl cystein hydrochloride (246.4 mg, 1.32 mmol) and *i*-Pr₂NEt (0.23 mL, 1.32 mmol) at 0 °C under Ar atmosphere and the mixture was stirred at rt for 5 days. The reaction mixture was partitioned between CHCl₃ and saturated aq NH₄Cl and column chromatography (hexane/AcOEt = 20/1) of the organic layer gave 27 (99 mg, solid, 80%). To a CH₂Cl₂ (6.0 mL) solution of 28 was added DBN (49 µL, 0.40 mmol) and BrCCl₃ (27 µL, 0.27 mmol) at 0 °C under Ar atmosphere and the mixture was stirred at rt for 6 h. The reaction mixture was partitioned between CHCl₃ and saturated aq NH₄Cl and column chromatography (hexane/AcOEt = 40/1) of the organic layer gave 29 (89.2) mg, 88%) as a syrup: UV (MeOH) λ_{max} 237 nm (ϵ 7700), λ_{min} 222 nm (ϵ 5900); ¹H NMR (CDCl₃)δ 0.16 and 0.24 (6H, each as s), 0.97 (9H, s), 1.02 and 1.02 (18H, each as s), 1.40 (3H, t, J = 7.1 Hz), 3.86 (1H, ddd, J = 4.6, J = 10.8 and J = 10.9 Hz), 4.10 (1H, dd, J = 11.2 and J = 10.8 Hz), 4.27 (1H, dd, J = 3.1 and J = 10.9 Hz), 4.37-4.40 (3H, m), 4.53 (1H, s), 4.59 (1H, d, J = 3.1 Hz), 8.09 (1H, s).; NOE experiment: H-1'/H-4' (1.6%); ¹³C NMR (CDCl₃) δ -4.98, -4.20, 14.26, 18.14, 20.09, 22.77, 25.87, 26.96, 27.40, 44.40, 53.00, 61.37, 68.98, 79.98, 80.37, 128.12, 147.97, 161.37, 173.86. FAB-MS (m/z) 560 $(M^+ + H)$. Anal. Calcd for C₂₅H₄₅NO₅S₂Si₂: C, 53.63; H, 8.10; N, 2.50. Found: C, 53.37; H, 8.37; N, 2.49.

2-[2-O-(t-butyldimethylsilyl)-3,5-O-(di-t-butylsilylene)-β-D-4-thioribofuranosyl]-

thiazole-4-carboxamide (30)

Compound **29** (86 mg, 0.15 mmol) was treated with methanolic ammonia (20 mL) at rt for 9 h. The reaction mixture was evaporated to dryness and the residue was chromatographed (hexane/AcOEt = 5/1) on a silica gel to give **30** (78.8 mg, 99%) as a solid: mp 168-169 °C; UV (MeOH) λ_{max} 234 nm (ϵ 8240), λ_{min} 228 nm (ϵ 8170); ¹H NMR (CDCl₃) δ 0.18 and 0.24 (6H, each as s), 0.99 (9H, s), 1.02 and 1.03 (18H, each as s), 3.87 (1H, ddd, J = 10.0, J = 11.2 and J = 4.6 Hz), 4.10 (1H, dd, J = 11.2 and J =10.0 Hz), 4.22 (1H, dd, , J = 3.2 and J = 10.0 Hz), 4.40 (1H, dd, J = 4.6 and J = 10.0Hz), 4.47 (1H, s), 4.56 (1H, d, J = 3.2 Hz), 5.86 and 7.03 (2H, each as br), 8.08 (1H, s).; NOE experiment: H-1'/H-4' (1.6%); ¹³C NMR (CDCl₃) δ -4.99, -4.23, 18.24, 20.10, 22.79, 25.89, 26.95, 27.37, 44.34, 52.77, 68.91, 76.74, 80.21, 125.05, 150.14, 162.82, 173.57. FAB-MS (m/z) 531 (M⁺ + H) and 473 (M⁺ - *t*-Bu). *Anal.* Calcd for C₂₃H₄₂N₂O₄S₂Si₂: C, 52.03; H, 7.97; N, 5.28. Found: C, 52.10; H, 8.12; N, 5.23.

4'-Thiotiazofurin (31)

To a stirred THF (5 mL) solution of **30** (88.8 mg, 0.17 mmol) was added Bu₄NF·3H₂O (172.6 mg, 0.66 mmol) and the mixture was stirred at rt for 3 h. The reaction mixture was evaporated to dryness and the residue was chromatographed (8% MeOH in CH₂Cl₂) on a silica gel to give **31** (44.1 mg, 94%) as a solid: mp 171-172 °C; UV (MeOH) λ_{max} 234 nm (ϵ 8100), λ_{min} 226 nm (ϵ 8000); ¹H NMR (CD₃OD) δ 3.45 (1H, dt, J = 4.0 and J = 6.3 Hz), 3.67 (1H, dd, J = 6.3 and J = 11.5 Hz), 3.79 (1H, dd, J

= 6.3 and J = 11.5 Hz), 4.20 (1H, t, J = 4.0 Hz), 4.37 (1H, dd, J = 4.0 and J = 6.3 Hz), 4.68 (1H, d, J = 6.3 Hz), 8.14 (1H, s); ¹³C NMR (CDCl₃) δ 51.3, 54.1, 65.5, 76.8, 81.9, 126.2, 150.9, 165.6, 174.1; FAB-MS (m/z) 277 (M⁺ + H). *Anal*. Calcd for C₉H₁₂N₂O₄S₂: C, 39.12; H, 4.38; N, 10.14. Found: C, 39.04; H, 4.24; N, 9.74.

Fig. 1: ¹H NMR and ¹³C NMR spectrum of compound (*S_R*)-6 in CDCl₃

Fig. 2: ¹H NMR and ¹³C NMR spectrum of compound (Sg)-6 in $CDCl_3$

Fig. 3: ¹H NMR and ¹³C NMR spectrum of compound 7β in CDCl_3

Fig. 4: ¹H NMR and ¹³C NMR spectrum of compound 7a in CDCl₃

4 1120 4 11200 4 112 -8.708 7.622 5.954 5.954 5.843 5.843 5.849 5.849 5.849 5.849 5.449 5.489 5.489 5.489 5.489 5.489 5.489 5.489 5.489 5.489 5.489 5.489 5.489 5.489 5.489 5.489 5.482 5.489 5.482 5.489 5.4825 5.4825 5.4825 5.4825 5.4825 5.4825 5.4825 5.4825 5.4855 5.4855555 1.01 1.07 1.16 1.00 1.01 .90 iil i 2 4 6 3.0 2.0

Fig. 5: ¹H NMR and ¹³C NMR spectrum of compound 12β in CDCl₃

Fig. 6: ¹H NMR and ¹³C NMR spectrum of compound 13β in CDCl₃

Fig. 7: ¹H NMR and ¹³C NMR spectrum of compound 14β in CDCl_3

Fig. 9: ¹H NMR and ¹³C NMR spectrum of compound 16β in CDCl₃

Fig. 10: ¹H NMR and ¹³C NMR spectrum of compound 17β in $\rm CDCl_3$

Fig. 11: ¹H NMR and ¹³C NMR spectrum of compound 18β in $\rm CDCl_3$

Fig. 12: ¹H NMR and ¹³C NMR spectrum of compound 20β in $\rm CDCl_3$

Fig. 13: ¹H NMR and ¹³C NMR spectrum of compound 21β in CDCl₃

Fig. 14: ¹H NMR and ¹³C NMR spectrum of compound $\mathbf{22a}$ in $CDCl_3$

Fig. 15: ¹H NMR and ¹³C NMR spectrum of compound **22b** in CDCl₃

Fig. 16: ¹H NMR and ¹³C NMR spectrum of compound **23** in CDCl₃

Fig. 17: ¹H NMR and ¹³C NMR spectrum of compound $\mathbf{24}$ in $CDCl_3$

Fig. 18: ¹H NMR and ¹³C NMR spectrum of compound 25 in CDCl₃

Fig. 19: ¹H NMR and ¹³C NMR spectrum of compound **27** in CDCl₃

Fig. 20: ¹H NMR and ¹³C NMR spectrum of compound **29** in CDCl₃

Fig. 21: ¹H NMR and ¹³C NMR spectrum of compound **30** in CDCl₃

S44