<Supporting Information>

Additive Pummerer Reaction of 3,5-O-(Di-tert-butyl)silylene-4-thiofuranoid Glycal : A High Yield and β-Selective Entry to 4^{\prime}-Thioribonucleosides

Kazuhiro Haraguchi,* Mitsuhiro Matsui, Shin Takami, and Hiromichi Tanaka

CONTENTS

Page S2-S22 General Experimental Section and procedures for compounds 6-30
Page S23-S44 Fig. 1- Fig.22: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 6-31 in CDCl_{3}

General Experimental Section

Melting points are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded either at 400 MHz or at 500 MHz . Chemical sifts are reported relative to $\mathrm{Me}_{4} \mathrm{Si}$. Mass spectra (MS) were taken in FAB mode with m-nitrobenzyl alcohol as a matrix. Column chromatography was carried out on silica gel. Thin-layer chromatography (TLC) was performed on silica gel. When necessary, analytical samples were purified by high performance liquid chromatography (HPLC). THF was distilled from benzophenone ketyl.

1,4-Anhydro-2-deoxy-3,5-O-(di-t-butylsilylene)-4-thio-D-erythro-pento-1-enitol 1oxide (6)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ solution of $\mathbf{3}(1.04 \mathrm{~g}, 3.82 \mathrm{mmol})$ was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ solution of m-CPBA $(1.05 \mathrm{~g}, 6.11 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h . The reaction mixture was neutralized with $\mathrm{Et}_{3} \mathrm{~N}$ and partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3}. Silica gel column chromatography (hexane/AcOEt $=2 / 1$) of the organic layer gave a mixture of $\left(\boldsymbol{S}_{\boldsymbol{R}}\right)-\mathbf{6}$ (major isomer) and $\left(\boldsymbol{S}_{\boldsymbol{S}}\right)-\mathbf{6}$ (minor isomer) ($926.9 \mathrm{mg}, 84 \%) .\left(\boldsymbol{S}_{\boldsymbol{R}}\right)-\mathbf{6}\left(t_{\mathrm{R}} 14 \mathrm{~min}\right)$ and $\left(\boldsymbol{S}_{\boldsymbol{S}}\right)-\mathbf{6}\left(t_{\mathrm{R}} 18 \mathrm{~min}\right)$ were separated by HPLC (hexane/AcOEt = 1/4).

Physical data for $\left(\boldsymbol{S}_{\boldsymbol{R}}\right)$-6: m.p. $163-164{ }^{\circ} \mathrm{C}$. UV(MeOH) $\lambda_{\max } 249 \mathrm{~nm}(\varepsilon \quad 830) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.01$ and $1.08(18 \mathrm{H}$, each as s, $\mathrm{t}-\mathrm{Bu}), 2.77(1 \mathrm{H}, \mathrm{ddd}, J=7.4, J=10.4, J=5.6$
$\mathrm{Hz}), 4.52(1 \mathrm{H}, \mathrm{t}, J=J=10.4 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{dd}, J=5.6$ and $J=10.4 \mathrm{~Hz}), 5.92(1 \mathrm{H}, \mathrm{dt}, J$ $=J=1.6$ and $J=8.0 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{dd}, J=2.0$ and $J=6.0 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $J=1.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.97,22.66,26.93,27.20,63.93,74.93,78.38$, 136.72, 140.11. FAB-MS $(\mathrm{m} / \mathrm{z}) 289\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3}$ SSi: C, $54.13 ; \mathrm{H}$, 8.39. Found: C, $54.26 ;$ H, 8.59.

Physical data for $\left(\boldsymbol{S}_{\boldsymbol{S}}\right)$-6: m.p. $156-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.03$ and $1.05(9 \mathrm{H}$, each as s, $\operatorname{Si}-t-\mathrm{Bu}), 3.67(1 \mathrm{H}, \mathrm{ddd}, J=5.2, J=12.4$ and $J=8.4 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{dd}, J=12.4$ and $J=10.4 \mathrm{~Hz}), 4.76-4.81(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and 5 b$), 6.64(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $J=2.0 \mathrm{~Hz})$, $6.71(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $J=0.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.19,22.46,26.94,27.17$, 62.59, 64.17, 80.68, 133.79, 148.35. FAB-MS (m / z) $289\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SSi}: \mathrm{C}, 54.13$; H, 8.39. Found: C, 54.46; H, 8.58.

Additive Pummerer reaction of 6 with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{TMSOTf}$: Formation of $\mathbf{1 , 2}$-di- O -

 acetyl-3,5- O-(di- t-butylsilylene)- $\beta, \alpha-4$-thioribofuranose (7) and 1-O-Acetyl-3,5-O-(di-t-butylsilylene)-2- O-(trifluoromethanesulfonyl)- β, α-4-thioribofuranose (8) To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ solution of $\mathbf{6}(43.3 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added $\mathrm{Ac}_{2} \mathrm{O}(22 \mu \mathrm{~L}, 0.23$ $\mathrm{mmol})$ and TMSOTf ($15 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under Ar atmosphere and the mixture was stirred for 7 h . The reaction mixture was partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3} and column chromatography (hexane/AcOEt $=50 / 1$) of the organic layer gave 7 ($11.6 \mathrm{mg}, 20 \%$, syrup, β-isomer $/ \alpha$-isomer $=12: 1$) and $\mathbf{8}(15.9 \mathrm{mg}, 22 \%$, syrup, β isomer $/ \alpha$-isomer $=7: 1$).Physical data for 7 (β-anomer): m.p. $105-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00$ and 1.07 $(18 \mathrm{H}$, each as $\mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 2.10$ and $2.13(6 \mathrm{H}$, each as $\mathrm{s}, \mathrm{Ac}), 3.66-3.73(2 \mathrm{H}, \mathrm{m}), 4.02$ $(1 \mathrm{H}, \mathrm{t}, J=J=11.2 \mathrm{~Hz}), 4.28-4.35(2 \mathrm{H}, \mathrm{m}), 5.47(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 5.70(1 \mathrm{H}, \mathrm{s}) ; \mathrm{NOE}$ experiment: $\mathrm{H}-1 / \mathrm{H}-4(1.7 \%)$ and $\mathrm{H}-2 / \mathrm{H}-3(7.3 \%) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.79,20.86$, 22.67, 26.91, 27.18, 44.61, 68.43, 78.55, 79.06, 169.30, 169.48. FAB-MS $(\mathrm{m} / \mathrm{z}) 391\left(\mathrm{M}^{+}\right.$ $+\mathrm{H})$ and $331\left(\mathrm{M}^{+}-\mathrm{OAc}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{SSi}$: C, 52.28; H, 7.74. Found: C, 52.42; H, 7.89.

Physical data for 7 (α-anomer): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \quad 1.01$ and $1.04(18 \mathrm{H}$, each as s, Si -$t-\mathrm{Bu}), 2.07$ and $2.19(6 \mathrm{H}$, each as $\mathrm{s}, \mathrm{Ac}), 3.91-3.99(2 \mathrm{H}, \mathrm{m}), 4.17(1 \mathrm{H}, \mathrm{dd}, J=4.6$ and $J=7.4 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and $J=10.8 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{t}, J=J=4.6 \mathrm{~Hz}), 6.21$ $(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz})$; NOE experiment: $\mathrm{H}-1 / \mathrm{H}-2(12 \%)$ and $\mathrm{H}-1 / \mathrm{H}-3(4.8 \%) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.12,20.67,22.74,26.88,27.16,45.94,72.73,75.28,78.69,169.76,169.88$. FAB-MS $(\mathrm{m} / \mathrm{z}) 391\left(\mathrm{M}^{+}+\mathrm{H}\right)$ and $331\left(\mathrm{M}^{+}-\mathrm{OAc}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{SSi}$: C , 52.28; H, 7.74. Found: C, 52.56; H, 7.87.

Physical data for 8: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\beta$-isomer) $\delta 1.02$ and $1.09(18 \mathrm{H}$, each as $\mathrm{s}, \mathrm{Si}-t$ $\mathrm{Bu}), 2.11(3 \mathrm{H}, \mathrm{s}), 3.62-3.69(1 \mathrm{H}, \mathrm{m}), 4.04\left(1 \mathrm{H}, \mathrm{t}, J_{4,5 \mathrm{a}}=J_{5 \mathrm{a}, 5 \mathrm{~b}}=10.6 \mathrm{~Hz}\right), 4.34(1 \mathrm{H}, \mathrm{dd}, J$ $=4.4$ and $J=10.6 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{dd}, J=3.4$ and $J=10.2 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz})$, $5.89(1 \mathrm{H}, \mathrm{s}) ;(\alpha$-isomer, selected data) $\delta 1.01$ and $1.05(18 \mathrm{H}$, each as $\mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 2.16$ $(3 \mathrm{H}, \mathrm{s}), 3.21-3.27(1 \mathrm{H}, \mathrm{m}), 4.044 .27(1 \mathrm{H}, \mathrm{dd}, J=4.8$ and $J=10.0 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{dd}$, $J_{2}=10.3$ and $\left.J=5.3 \mathrm{~Hz}\right), 4.95(1 \mathrm{H}, \mathrm{dd}, J=10.3$ and $J=5.3 \mathrm{~Hz}), 6.02(1 \mathrm{H}, J=5.3 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta(\beta$-anomer) 20.1, 20.8, 22.8, 26.7, 27.3, 44.0, 68.5, 76.7, 78.1, 78.5, 88.7, 168.8; (α-anomer, selected data) 19.9, 20.9, 22.7, 26.8, 27.2, 40.3, 68.9, 71.8, 77.2, 86.0. FAB-MS $(\mathrm{m} / \mathrm{z}) 481\left(\mathrm{M}^{+}+\mathrm{H}\right), 421\left(\mathrm{M}^{+}-\mathrm{OAc}\right)$. High resolution FAB-MS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}: 481.0998$. Found: 481.0962.

Additive Pummerer reaction of 6 with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{SnCl}_{4}$: Formation of 9

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ solution of $\mathbf{6}(43.3 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added $\mathrm{Ac}_{2} \mathrm{O}(44 \mu \mathrm{~L}, 0.46$ $\mathrm{mmol})$ and $\mathrm{SnCl}_{4}\left(1.0 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution) $(0.31 \mathrm{~mL}, 0.31 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere and the mixture was stirred overnight. The reaction mixture was partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3} and column chromatography (hexane/ $\mathrm{AcOEt}=$ $60 / 1$) of the organic layer gave 9 ($36.3 \mathrm{mg}, 52 \%$, syrup, β-isomer $/ \alpha$-isomer $=5: 1$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\beta$-isomer $) \delta 1.09$ and $1.10(18 \mathrm{H}$, each as s, $\mathrm{Si}-t$ - Bu$), 2.07,2.11$ and 2.16 (9 H , each as s), 3.69-3.73 $(1 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{dd}, J=7.3$ and $J=11.4 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{dd}$, $J=5.4$ and $J=11.4 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{dd}, J=J=3.4 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{dd}, J=3.4$ and $J=6.6$ $\mathrm{Hz}), 5.93(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}) .(\alpha$-isomer, selected data) $\delta 1.11$ and $1.14(18 \mathrm{H}$, each as s , $\mathrm{Si}-t-\mathrm{Bu}), 3.83-3.87(1 \mathrm{H}, \mathrm{m}), 4.07(1 \mathrm{H}, \mathrm{dd}, J=7.3$ and $J=11.4 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{dd}, J=$ 5.1 and $J=3.5 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{dd}, J=3.5$ and $J=1.5 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\beta$-anomer) 20.70, 20.80, 21.06, 21,33, 22.56, 27.24, 27.34, 48.97, 64.98, 65.24, 76.43, 82.31, 169.54, 169.92, 170.50; (α-anomer) 20.74, 20.93, 21.66, 22.63, 27.63, 27.20, 27.46, 29.65, 51.60, 61.32, 78.45, 78.61, 170.11, 170.31, 170.43. FAB-MS $(\mathrm{m} / \mathrm{z}) 469$ and $471\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{ClO}_{7} \mathrm{SSi}: \mathrm{C}, 48.86 ; \mathrm{H}, 7.17$.

Found: C, 49.20; H, 7.22.

Additive Pummerer reaction of 6 with $\mathrm{Ac}_{2} \mathbf{O} / \mathbf{T M S O A c} / \mathrm{BF}_{3} \mathbf{O E t}_{2}$: Formation of

7,10 and 11

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ solution of $\mathbf{6}(1.15 \mathrm{~g}, 3.99 \mathrm{mmol})$ was added $\mathrm{Ac}_{2} \mathrm{O}(2.6 \mathrm{~mL}, 27.93$ $\mathrm{mmol})$, TMSOAc ($4.2 \mathrm{~mL}, 27.93 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(3.5 \mathrm{~mL}, 27.93 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere and the mixture was stirred overnight. The reaction mixture was partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3} and column chromatography (hexane/AcOEt $=40 / 1-20 / 1$) of the organic layer gave $7(967.2 \mathrm{mg}, 62 \%$, solid, β isomer $/ \alpha$-isomer $=13: 1$), $\mathbf{1 0}(54.3 \mathrm{mg}, 3 \%$, syrup, β-isomer $/ \alpha$-isomer $=13: 1)$ and $\mathbf{1 1}$ ($334.9 \mathrm{mg}, 17 \%$, syrup, β-isomer $/ \alpha$-isomer $=4.9: 1$).

Physical data for 10: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\beta$-isomer) $\delta 1.05$ and $1.06(18 \mathrm{H}$, each as $\mathrm{s}, \mathrm{Si}-t$ $\mathrm{Bu}), 2.07,2.09$ and $2.13(9 \mathrm{H}$, each as s), $3.64-3.69(1 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and J $=11.6 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{dd}, J=5.6$ and $J=11.4 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{dd}, J=5.6$ and $J=8.8 \mathrm{~Hz})$, $5.41(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and $J=3.6 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz})$; $(\alpha$-isomer, selected data) $\delta 3.40-3.45(1 \mathrm{H}, \mathrm{m}), 4.52\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5 \mathrm{~b}}=4.6\right.$ and $\left.J=11.4 \mathrm{~Hz}\right), 5.21(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=9.2 \mathrm{~Hz}), 5.94(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\beta$-anomer) 20.14, 20.69, 20.91, 26.73, 26,79, 21,19, 29.70, 49.08, 64.91, 74.48, 77.88, 79.21, 169.66, 169.92, $170.44 ; \delta$ (α-isomer, selected data) 26.81, 45.75, 65.46, 74.23, 76.11, 78.17,170.42. FAB-MS $(m / z) 393\left(\mathrm{M}^{+}-\mathrm{OAc}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{FO}_{7} \mathrm{SSi} \cdot 1 / 3 \mathrm{AcOEt}: \mathrm{C}, 50.67 ; \mathrm{H}$, 7.46. Found: C, 51.02; H, 7.37.

Physical data for 11: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(\beta$-isomer) $\delta 1.07$ and $1.08(18 \mathrm{H}, \mathrm{s}, \mathrm{Si}-t-\mathrm{Bu})$, 2.10, 2.13 and $2.15(12 \mathrm{H}$, each as s), $3.68-3.73(1 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{dd}, J=7.6$ and $J=$ $11.6 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=11.6 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{dd}, J=3.6$ and $J=7.2 \mathrm{~Hz})$, $5.50(1 \mathrm{H}, \mathrm{dd}, J=2.8$ and $J=3.6 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}) ;(\alpha$-isomer) $\delta 1.09$ and $1.11(18 \mathrm{H}$, each as s), $2.06,2.08,2.10$ and $2.14(12 \mathrm{H}$, each as s), $3.79(1 \mathrm{H}, \mathrm{dt}, J=2.0, J$ $=4.8$ and $J=6.8 \mathrm{~Hz}), 410(1 \mathrm{H}, \mathrm{dd}, J=4.8$ and $J=10.8 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{dd}, J=6.8$ and J $=10.8 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=2.0 \mathrm{~Hz}), 5.28(1 \mathrm{H}, \mathrm{dd}, J=5.6$ and $J=4.4 \mathrm{~Hz})$, $6.24(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\beta$-anomer $) 20.30,20.49,20.54,20.65$, $22.11,26.81,26.88,48.57,64.85,72.35,74.69,77.29,78.73,169.30,169.44,169.47$, 169.97; δ (α-anomer) 20.56, 20.64, 20.93, 21.31, 22.45, 27.03, 27.11, 27.17, 50.03, 64.87, 74.47, 76.19, 76.32, 169.61, 169.68, 170.09, 170.33. FAB-MS $(m / z) 433$ $\left(\mathrm{M}^{+}-\mathrm{OAc}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{9}$ SSi: C, 51.20; H, 7.37. Found: C, 51.41; H, 7.56.

1-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio- β, α-D-ribofuranosyl]uracil (12)

To an $\mathrm{CH}_{3} \mathrm{CN}(3.5 \mathrm{~mL})$ solution of bis- O-trimethylsilyluracil, prepared from uracil ($90.8 \mathrm{mg}, 0.81 \mathrm{mmol}$) and BSA ($0.4 \mathrm{~mL}, 1.62 \mathrm{mmol}$,), was added an $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.5 mL) solution of $7(104.1 \mathrm{mg}, 0.27 \mathrm{mmol})$ and $\operatorname{TMSOTf}(0.21 \mathrm{~mL}, 1.08 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3} and column chromatography (hexane $/ \mathrm{AcOEt}=3 / 1$) of the organic layer gave $\mathbf{1 2}(111.7 \mathrm{mg}, 93 \%, \mathbf{1 2 \beta} / \mathbf{1 2} \boldsymbol{\alpha}=22: 1)$ as

$(\mathbf{1 2 \beta}) \delta 1.00$ and $1.05(18 \mathrm{H}$, each as s), $2.15(3 \mathrm{H}, \mathrm{s}), 3.70-3.76(1 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{dd}, J$ $=10.4$ and $J=11.2 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=10.0 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=11.2 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{dd}, J=0.8$ and $J=4.4 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 5.96$ $(1 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 9.18(1 \mathrm{H}, \mathrm{br}) ;(\mathbf{1 2 \boldsymbol { \alpha }}$, selected data) $\delta 1.01$ and $1.07(18 \mathrm{H}$, each as s), $2.12(3 \mathrm{H}, \mathrm{s}), 5.21(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and $J=9.5 \mathrm{~Hz}), 5.89(1 \mathrm{H}$, $\mathrm{d}, J=8.2 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$; NOE experiment $(\beta-$ isomer): $\mathrm{H}-1^{\prime} / \mathrm{H}-4^{\prime}(1.2 \%), \mathrm{H}-6 / \mathrm{H}-2^{\prime}(2.5 \%), \mathrm{H}-6 / \mathrm{H}-5^{\prime} \mathrm{a}(6.2 \%), \mathrm{COCH}_{3} / \mathrm{H}-4^{\prime}(0.6 \%)$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathbf{1 2 \beta}) 20.06,20.82,22.84,26.84,27.17,27.32,46.34,63.61,67.80$, 79.38, 103.36, 140.30, 149.74, 162.00, 168.86. FAB-MS $(\mathrm{m} / \mathrm{z}) 443\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SSi} 1 / 4 \mathrm{AcOEt}$: C, $51.70 ; \mathrm{H}, 6.94$; N, 6.02. Found: C, 51.98; H, 7.07; N, 5.83.

1-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio- β, α-D-ribofuranosyl]thymine (13)

To an $\mathrm{CH}_{3} \mathrm{CN}(3.5 \mathrm{~mL})$ solution of bis- O-trimethylsilylthymine, prepared from thymine ($102.1 \mathrm{mg}, 0.81 \mathrm{mmol}$) and BSA ($0.4 \mathrm{~mL}, 1.62 \mathrm{mmol}$), was added an $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ solution of $\mathbf{7}(106.6 \mathrm{mg}, 0.27 \mathrm{mmol})$ and $\operatorname{TMSOTf}(0.21 \mathrm{~mL}, 1.08 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 19 h . The reaction mixture was partitioned between $\mathrm{CHCl}_{3} /$ sat. NaHCO_{3} and silica gel column chromatography (hexane/AcOEt $=3 / 1$) of the organic layer gave $\mathbf{1 3}(114.8 \mathrm{mg}, 93 \%, \mathbf{1 3} \beta / \mathbf{1 3} \boldsymbol{\alpha}=22: 1)$ as a foam: UV (MeOH) $\lambda{ }_{\text {max }} 269 \mathrm{~nm}(\varepsilon 9700), \lambda \min ^{236} \mathrm{~nm}(\varepsilon 2400) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $(\mathbf{1 3 \beta}) \delta 1.00$ and $1.07(18 \mathrm{H}$, each as s), $1.96(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.05(3 \mathrm{H}, \mathrm{s}), 3.68-3.75$
$(1 \mathrm{H}, \mathrm{m}), 4.14(1 \mathrm{H}, \mathrm{dd}, J=10.4$ and $J=11.2 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=10.2 \mathrm{~Hz})$, $4.40(1 \mathrm{H}, \mathrm{dd}, J=4.8$ and $J=11.2 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{dd}, J=0.8$ and $J=4.4 \mathrm{~Hz}), 5.96(1 \mathrm{H}$, d, $J=0.8 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 8.84(1 \mathrm{H}, \mathrm{br}) ;(\mathbf{1 3} \boldsymbol{\alpha}$, selected data) $\delta 0.99$ and $1.05(18 \mathrm{H}$, each as s), $2.00(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 2.13(3 \mathrm{H}, \mathrm{s}), 3.62-3.67(1 \mathrm{H}, \mathrm{m}), 4.26$ $(1 \mathrm{H}, \mathrm{dd}, J=4.8$ and $J=10.2 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{dd}, J=7.3$ and $J=9.5 \mathrm{~Hz}), 6.12(1 \mathrm{H}, \mathrm{d}, J=$ 7.3 Hz), 7.39 ($1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}$); NOE experiment ($\mathbf{1 3 \beta}$): $\mathrm{H}^{\prime}{ }^{\prime} / \mathrm{H}-\mathbf{4}^{\prime}(2.0 \%), \mathrm{H}-6 / \mathrm{H}-\mathbf{2}^{\prime}$ (4.0\%), H-6/H-3' $\left.{ }^{\prime} 7.0 \%\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathbf{1 3 \beta}) 12.76,20.07,20.84,22.85,26.85$, $26.89,27.17,46.51,63.61,67.69,79.48,112.09,136.02,149.78,162.69,168.99$. FABMS $(m / z) 457\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$ SSi 1/4AcOEt: C, 52.70; H, 7.16; N, 5.85. Found: C, 52.64; H, 7.31; N, 5.66.

1-[2-O-Acetyl-3,5- O-(di- t-butylsilylene)-4-thio- β, α-D-ribofuranosyl]- N -

acetylcytosine (14)

To an $\mathrm{CH}_{3} \mathrm{CN}(3.5 \mathrm{~mL})$ solution of bis- N, O-trimethylsilyl- N -acetylcytosine, prepared from N-acetylcytosine ($128.6 \mathrm{mg}, 0.84 \mathrm{mmol}$) and BSA ($0.42 \mathrm{~mL}, 1.68 \mathrm{mmol}$,), was added an $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ solution of $\mathbf{7}(108 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\operatorname{TMSOTf}(0.22 \mathrm{~mL}$, $1.12 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was partitioned between $\mathrm{CHCl}_{3} / \mathrm{sat} . \mathrm{NaHCO}_{3}$ and silica gel column chromatography (hexane/ $\mathrm{AcOEt}=1 / 1$) of the organic layer gave 14 (123.4 $\mathrm{mg}, 91 \%, \mathbf{1 4 \beta} / \mathbf{1 4} \boldsymbol{\alpha}=23: 1)$ as a foam: $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {shoulder }} 305 \mathrm{~nm}(\varepsilon 4400)$ and 279 $\mathrm{nm}(\varepsilon 6500), \lambda_{\max } 249 \mathrm{~nm}(\varepsilon 11900), \lambda{ }_{\min } 228 \mathrm{~nm}(\varepsilon 6400) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(\mathbf{1 4 \beta})$

ס 0.99 and $1.04(18 \mathrm{H}$, each as s), 2.15 and $2.27(6 \mathrm{H}$, each as s$), 3.73-3.79(1 \mathrm{H}, \mathrm{m}), 4.14$ $(1 \mathrm{H}, \mathrm{dd}, J=10.4$ and $J=11.2 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{dd}, J=4.0$ and $J=11.2 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{dd}$, $J=4.4$ and $J=10.2 \mathrm{~Hz}), 5.58(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 6.02(1 \mathrm{H}, \mathrm{s}), 7.49(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, $8.13(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 9.81(1 \mathrm{H}, \mathrm{br}) ;(\mathbf{1 4 \alpha}) \delta 1.02$ and $1.07(18 \mathrm{H}$, each as s), 2.09 and $2.26(6 \mathrm{H}$, each as s), $3.80-3.86(1 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{t}, J=J=10.3 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{dd}, J=$ 4.6 and $J=10.3 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{d}, J=6.4$ and $J=6.3 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{d}, J=6.4), 7.53$ $(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.24(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 9.61(1 \mathrm{H}, \mathrm{br})$; NOE experiment $(\mathbf{1 4 \beta}): \mathrm{H}-$ $1^{\prime} / \mathrm{H}-4{ }^{\prime}(0.8 \%), \mathrm{H}-6 / \mathrm{H}-2{ }^{\prime}(2.5 \%)$ and $\mathrm{H}-6 / \mathrm{H}-3$ ' $(5.2 \%) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathbf{1 4 \beta})$ 19.86, 20.83, 22.69, 24.79, 26.80, 27.10, 45.91, 64.98, 67.99, 76.94, 78.73, 97.47, $145.29,155.02,162.86,168.58,171.44$. FAB-MS $(\mathrm{m} / \mathrm{z}) 484\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{SSi}: \mathrm{C}, 52.15 ; \mathrm{H}, 6.88 ; \mathrm{N}, 8.69$. Found: C, $52.18 ; \mathrm{H}, 6.98 ; \mathrm{N}, 8.45$.

9-[2-O-Acetyl-3,5- O-(di- t-butylsilylene)-4-thio- β, α-D-ribofuranosyl]-6-chloropurine

(15) and 7-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio- β, α-D-ribofuranosyl]-6chloropurine (16)

To an $\mathrm{CH}_{3} \mathrm{CN}$ (3.5 mL) solution of N -trimethylsilyl-6-chloropurine, prepared from 6chloropurine ($129.8 \mathrm{mg}, 0.84 \mathrm{mmol}$) and BSA ($0.21 \mathrm{~mL}, 0.84 \mathrm{mmol}$,), was added an $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ solution of $7(108.2 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\operatorname{TMSOTf}(0.22 \mathrm{~mL}, 1.12$ $\mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was partitioned between $\mathrm{CHCl}_{3} /$ sat. NaHCO_{3} and preparative TLC purification (hexane/AcOEt = 2/1) of the organic layer gave $15(78.8 \mathrm{mg}, 58 \%$,
$\mathbf{1 5} \beta / \mathbf{1 5} \boldsymbol{\alpha}=24: 1$, syrup $)$ and $\mathbf{1 6}(28.4 \mathrm{mg}, 21 \%, \mathbf{1 6} \boldsymbol{\beta} / \mathbf{1 6} \boldsymbol{\alpha}=23: 1$, solid $)$.

Physical data for 15: UV $(\mathrm{MeOH}) \lambda{ }_{\max } 265 \mathrm{~nm}(\varepsilon 8800), \lambda_{\min } 229 \mathrm{~nm}(\varepsilon 3000) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathbf{1 5} \boldsymbol{\beta}) \delta 1.03$ and $1.08(18 \mathrm{H}$, each as s), $2.22(3 \mathrm{H}, \mathrm{s}), 3.85-3.91(1 \mathrm{H}, \mathrm{m})$, $4.25(1 \mathrm{H}, \mathrm{dd}, J=10.4$ and $J=10.8 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{dd}, J=4.8$ and $J=10.8 \mathrm{~Hz}), 4.93$ $(1 \mathrm{H}, \mathrm{dd}, J=4.0$ and $J=10.0 \mathrm{~Hz}), 5.64(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 5.98(1 \mathrm{H}, \mathrm{s}), 8.35$ and 8.77 (2 H , each as s); $\mathbf{(1 5 \alpha}$, selected data) $\delta 2.27(3 \mathrm{H}, \mathrm{s}), 5.93(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 8.33$ and 8.74 (2H, each as s); NOE experiment (β-isomer): H-1’/H-4’ (1.4\%), H-8/H-3' (3.7\%); ${ }^{13} \mathrm{CNMR}^{\mathrm{NM}}\left(\mathrm{CDCl}_{3}\right) \delta(\mathbf{1 5 \beta}) 20.08,20.85,22.86,26.88,27.17,29.69,46.10,61.37,67.94$, 77.67, 78.86, 132.46, 143.98, 151.15, 152.20, 169.27. HMBC spectra; H-1'/C-4; FABMS $(\mathrm{m} / \mathrm{z}) 487$ and $485\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{SSi} 1 / 10 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.34$; H, 6.05; N, 11.51. Found: C, 49.65; H, 5.97; N, 11.14.

Physical data for 16: m.p. $212-215{ }^{\circ} \mathrm{C}$. $\mathrm{UV}(\mathrm{MeOH}) \lambda \max 273 \mathrm{~nm}(\varepsilon 6500), \lambda_{\text {shoulder }}$ $\left.256 \mathrm{~nm}(\varepsilon 5700), \lambda \min 232 \mathrm{~nm}(\varepsilon 3600) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\right)(\mathbf{1 6 \beta}) \delta 1.01$ and 1.03 (18 H, each as s), $2.17(3 \mathrm{H}, \mathrm{s}), 3.83-3.90(1 \mathrm{H}, \mathrm{m}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=J=11.2 \mathrm{~Hz}), 4.37$ $(1 \mathrm{H}, \mathrm{dd}, J=3.6$ and $J=11.2 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=10.2 \mathrm{~Hz}), 5.73(1 \mathrm{H}, \mathrm{d}, J$ $=4.4 \mathrm{~Hz}), 6.41(1 \mathrm{H}, \mathrm{s}), 8.51$ and $8.93(2 \mathrm{H}$, each as s); $(\mathbf{1 6} \boldsymbol{\alpha}$, selected data) $\delta 5.86(1 \mathrm{H}$, dd, $J=4.4$ and $J=3.2 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 8.89$ and $8.90(2 \mathrm{H}$, each as s$)$; NOE experiment: H-1'/H-4' (2.0\%), H-8/H-2' (2.0\%), H-8/H-3' (5.0\%); ${ }^{13}$ C NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathbf{1 6} \boldsymbol{\beta}) 20.02,20.71,22.83,26.85,27.11,29.69,45.81,63.29,67.99,77.47$, 78.85, 122.40, 143.04, 147.25, 153.10, 168.45.; HMBC spectra; H-1'/C-5; FAB-MS
$(m / z) 487$ and $485\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{SSi} 2 / 3 \mathrm{AcOEt}: \mathrm{C}, 50.06 ; \mathrm{H}$, 6.36; N, 10.30. Found: C, 50.37; H, 6.20; N, 10.63.

9-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio- β, α-D-ribofuranosyl]-2-amino-6-

 chloropurine (17) and 7-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio- β, α-D-ribofuranosyl]-2-amino-6-chloropurine (18)To an $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ solution of bis- N, O-trimethylsilyl-2-amino-6-chloropurine, prepared from 2-amino-6-chloropurine ($132.3 \mathrm{mg}, 0.78 \mathrm{mmol}$) and BSA ($0.39 \mathrm{~mL}, 1.56$ $\mathrm{mmol})$, was added an $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(3 \mathrm{~mL})$ solution of $7(101.5 \mathrm{mg}, 0.26 \mathrm{mmol})$ and TMSOTf ($0.2 \mathrm{~mL}, 1.04 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under Ar atmosphere and the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 28 h . The reaction mixture was partitioned between $\mathrm{CHCl}_{3} /$ sat. NaHCO_{3} and preparative TLC purification (hexane/ $\mathrm{AcOEt}=1 / 1$) of the organic layer gave 17 ($63.3 \mathrm{mg}, 49 \%, \mathbf{1 7} \beta / \mathbf{1 7} \boldsymbol{\alpha}=23: 1$, syrup) and $\mathbf{1 8}(29 \mathrm{mg}, 22 \%, \mathbf{1 8 \beta} / \mathbf{1 8} \boldsymbol{\alpha}=13: 1$, syrup).

Physical data for 17: UV (MeOH) $\lambda_{\text {max }} 310 \mathrm{~nm}(\varepsilon 7800), 250 \mathrm{~nm}(\varepsilon 6500)$ and 224 nm $(\varepsilon 19000), \lambda{ }_{\min } 272 \mathrm{~nm}(\varepsilon 1400)$ and $241 \mathrm{~nm}(\varepsilon 5900) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(\mathbf{1 7 \beta}) \delta$ 1.02 and $1.07(18 \mathrm{H}$, each as s), $2.20(3 \mathrm{H}, \mathrm{s}), 3.80-3.86(1 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=J=$ $11.2 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{dd}, J=4.8$ and $J=11.2 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{dd}, J=4.0$ and $J=10.2 \mathrm{~Hz})$, $5.13(2 \mathrm{H}, \mathrm{br}), 5.66(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{s}), 7.96(1 \mathrm{H}, \mathrm{s}) ;(17 \alpha$, selected data) δ $2.09(3 \mathrm{H}, \mathrm{s}), 5.18(2 \mathrm{H}, \mathrm{br}), 6.73(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 8.62(1 \mathrm{H}, \mathrm{s})$; NOE experiment: H$1^{\prime} / \mathrm{H}-4^{\prime}(1.9 \%), \mathrm{H}-8 / \mathrm{H}-2{ }^{\prime}(3.8 \%) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathbf{1 7 \beta}) \delta 20.04,20.87,22.85,26.86$,
$27.18,45.91,60.90,68.01,77.45,78.96,125.91,140.80,151.85,153.06,158.94$, 169.13. HMBC spectra; $\mathrm{H}^{-1} / \mathrm{C}-4$; FAB-MS $(\mathrm{m} / \mathrm{z}) 500$ and $502\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{4} \mathrm{SSi}: \mathrm{C}, 48.03 ; \mathrm{H}, 6.05 ; \mathrm{N}, 14.00$. Found: C, $48.40 ; \mathrm{H}, 5.98 ; \mathrm{N}, 14.21$. Physical data for 18: $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\max } 326 \mathrm{~nm}(\varepsilon 4700)$ and $220 \mathrm{~nm}(\varepsilon 23500), \lambda_{\min }$ $279 \mathrm{~nm}(\varepsilon 700) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00$ and $1.02(18 \mathrm{H}$, each as s), $2.02(3 \mathrm{H}, \mathrm{s}), 3.78-$ $3.85(1 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{dd}, J=10.4$ and $J=11.4 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{dd}, J=4.0$ and $J=$ $10.2 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{dd}, J=4.5$ and $J=11.4 \mathrm{~Hz}), 5.14(2 \mathrm{H}, \mathrm{br}), 5.70(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz})$, $6.23(1 \mathrm{H}, \mathrm{s}), 8.57(1 \mathrm{H}, \mathrm{s}) ;(18 \alpha$, selected data) $\delta 6.73(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}) ;$ NOE experiment: $\mathrm{H}-8 / \mathrm{H}-2^{\prime}(1.1 \%)$ and $\mathrm{H}-1^{\prime} / \mathrm{H}-4{ }^{\prime}(0.8 \%) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ (for $\mathbf{1 8 \beta}$) δ 20.01, 20.74, 22.81, 26.86, 27.12, 29.69, 45.55, 63.07, 68.04, 78.88, 116.34, 143.58, $146.79,159.55,000.00$, 168.43.; HMBC spectra; H-1'/C-5; FAB-MS (m / z) 500 and 502 $\left(\mathrm{M}^{+}+\mathrm{H}\right) ;(+\mathrm{KI}) 538$ and $540\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{4} \mathrm{SSi} \cdot 1 / 10 \mathrm{AcOEt}:$ C, 48.15; H, 6.10; N, 13.76. Found: C, 47.85; H, 6.05; N, 13.41.

2-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio- β, α-D-ribofuranosyl]thiophene

To an $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ solution of $7(102.1 \mathrm{mg}, 0.26 \mathrm{mmol})$ was added 2tributylstannylthiphene ($0.25 \mathrm{~mL}, 0.78 \mathrm{mmol}$) and TMSOTf $(0.15 \mathrm{~mL}, 0.78 \mathrm{mmol})$ at $-70{ }^{\circ} \mathrm{C}$ under Ar atmosphere and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C} 12.5 \mathrm{~h}$. The reaction mixture was partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3} and preparative TLC (hexane/AcOEt $=10 / 1)$ of the organic layer gave $20(84.9 \mathrm{mg}, \mathbf{7 9} \%, \mathbf{2 0} \boldsymbol{\beta} / \mathbf{2 0} \boldsymbol{\alpha}=$

23:1, syrup).

Physical data of 20: UV $(\mathrm{MeOH}) \lambda_{\max } 238 \mathrm{~nm}(\varepsilon 7300), \lambda_{\min } 211 \mathrm{~nm}(\varepsilon 1800) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathbf{2 0 \beta}) \delta 1.02$ and $1.03(18 \mathrm{H}$, each as s), $2.16(3 \mathrm{H}, \mathrm{s}), 3.76-3.83(1 \mathrm{H}, \mathrm{m})$, $4.12(1 \mathrm{H}, \mathrm{dd}, J=11.0$ and $J=10.0 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=10.0 \mathrm{~Hz}), 4.42$ $(1 \mathrm{H}, \mathrm{dd}, J=3.6$ and $J=10.0 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{s}), 5.36(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{dd}, J$ $=3.5$ and $J=5.1 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{dt}, J=1.2$ and $J=3.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, J=1.2$ and J $=5.1 \mathrm{~Hz}) ;(\mathbf{2 0 \alpha}$, selected data) $\delta 2.07(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{ddd}, J=4.6, J=10.0$ and $J=$ $11.0 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{dd}, J=10.3$ and $J=11.0 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.41(1 \mathrm{H}, \mathrm{dd}$, $J=8.8$ and $J=9.0 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{dd}, J=3.4$ and $J=5.1 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{ddd}, J=0.8, J$ $=1.2$ and $J=5.0 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{dd}, J=2.2$ and $J=4.5 \mathrm{~Hz})$; NOE experiment (20ß): H$1^{\prime} / \mathrm{H}-4{ }^{\prime}(2 \%), \mathrm{H}-3 / \mathrm{H}-2{ }^{\prime}(2.0 \%) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 20.09, 21.10, 22.74, 26.95, 27.20, 45.26, 47.65, 68.48, 79.01, 81.12, 125.49, 125.83, 127.28, 144.97, 170.06. FAB-MS $(m / z) 415\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}$: C, 55.03 ; H, 7.29. Found: C, 54.98 ; H, 7.35 .

2-[2-O-Acetyl-3,5-O-(di-t-butylsilylene)-4-thio- β, α-D-ribofuranosyl]furan (21)

To an $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ solution of $7(102.3 \mathrm{mg}, 0.26 \mathrm{mmol})$ was added 2tributylstannylfuran ($0.25 \mathrm{~mL}, 0.78 \mathrm{mmol}$) and TMSOTf ($0.15 \mathrm{~mL}, 0.78 \mathrm{mmol}$) at $-70^{\circ} \mathrm{C}$ under Ar atmosphere and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 5.5 h . The reaction mixture was partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3} and preparative TLC (hexane/ $\mathrm{AcOEt}=10 / 1$) of the organic layer gave a mixture of $\mathbf{2 0}$ (63
$\mathrm{mg}, 61 \%, \mathbf{2 1 \beta} / \mathbf{2 1} \boldsymbol{\alpha}=24: 1$, syrup): UV (MeOH) $\lambda_{\max } 225 \mathrm{~nm}(\varepsilon 11000), \lambda \min ^{206} \mathrm{~nm}$ ($\varepsilon 7200) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\mathbf{2 1} \boldsymbol{\beta}) \delta 1.00$ and $1.05(18 \mathrm{H}$, each as s), $2.15(3 \mathrm{H}, \mathrm{s}), 3.73-$ $3.79(1 \mathrm{H}, \mathrm{m}), 4.08(1 \mathrm{H}, \mathrm{t}, J=J=10.4 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=10.4 \mathrm{~Hz}), 4.42$ $(1 \mathrm{H}, \mathrm{dd}, J=4.0$ and $J=10.4 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{s}), 5.36(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{dt}, J$ $=0.8$ and $J=3.2 \mathrm{~Hz}), 6.16(1 \mathrm{H}, \mathrm{dd}, J=2.0, J=3.2 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{dd}, J=0.8$ and $J=$ $2.0 \mathrm{~Hz})$; $\mathbf{(2 1} \boldsymbol{\alpha}$, selected data) $\delta 3.78(1 \mathrm{H}, \mathrm{dd}, J=10.0$ and $J=11.2 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{dd}, J$ $=2.0$ and $J=3.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{dd}, J=0.8$ and $J=2.0 \mathrm{~Hz}) ;$ NOE experiment (for 21ß): $\mathrm{H}^{\prime} \mathbf{1}^{\prime} / \mathrm{H}-4{ }^{\prime}(2 \%), \mathrm{H}-3 / \mathrm{H}-2{ }^{\prime}(1.0 \%) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)($ for 21 $\boldsymbol{\beta}) \delta 20.08,21.08,22.74$, 26.97, 27.24, 29.69, 44.97, 45.10, 68.41, 77.63, 79.99, 107.72, 142.80, 152.35, 169.72. FAB-MS (m / z) $399\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{SSi}$: C, 57.25; H, 7.59. Found: C, 57.28; H, 7.71.

Reaction of 7 with cyanotrimethylsilane: (2R)-(2-Cyano-2-methyl)-1,2-dideoxy-[3,5-O-(di- t-butylsilylene)-4-thio- α-D-ribofuranoso][3,4- d][1,3]dioxolane
and (2S)-(2-Cyano-2-methyl)-1,2-dideoxy-[3,5-O-(di-t-butylsilylene)-4-thio- α-Dribofuranoso $][3,4-d][1,3]$ dioxolane (22b)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ solution of $7(78.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added cyanotrimethylsilane ($0.13 \mathrm{~mL}, 1.0 \mathrm{mmol}$) and TMSOTf ($0.19 \mathrm{~mL}, 1.0 \mathrm{mmol}$) at $-70^{\circ} \mathrm{C}$ under Ar atmosphere and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 21 h . The reaction mixture was partitioned between CHCl_{3} saturated aq NaHCO_{3} and column chromatography (hexane/AcOEt = 100/1) of the organic layer gave 22a $(19.4 \mathrm{mg}, 27 \%$,
solid) and 22b ($7.3 \mathrm{mg}, 10 \%$, solid).
Physical data for 22a : m.p. $116-118{ }^{\circ} \mathrm{C}$. IR (neat) $2231 \mathrm{~cm}^{-1}(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.03 and $1.06(18 \mathrm{H}$, each as s), $1.86(3 \mathrm{H}, \mathrm{s}), 3.54-3.60(1 \mathrm{H}, \mathrm{m}), 3.97(1 \mathrm{H}, \mathrm{dd}, J=11.4$ and $J=10.4 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=10.4 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=$ $10.2 \mathrm{~Hz}), 5.01(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $J=4.4 \mathrm{~Hz}), 5.80(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}) ; \mathrm{NOE}$ experiment: $\mathrm{CH}_{3} / \mathrm{H}-4(3.0 \%) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.26,22.71,24.26,26.84,27.16$, $44.60,66.39,81.12,81.84,84.92,100.34,116.60$. FAB-MS $(m / z) 358\left(\mathrm{M}^{+}+\mathrm{H}\right)$ and 331 $\left(\mathrm{M}^{+}-\mathrm{CN}\right)$. High resolution $\mathrm{FAB}-\mathrm{MS}(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}: 481.0998$. Found: 481.0962.

Physical data for 22b: m.p. $148-151{ }^{\circ} \mathrm{C}$. IR (neat) $2231 \mathrm{~cm}^{-1}(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.06 and $1.07(18 \mathrm{H}$, each as s), $1.86(3 \mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}, \mathrm{t}, J=J=10.4 \mathrm{~Hz}), 4.04-4.12(2 \mathrm{H}$, $\mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{dd}, J=4.4$ and $J=9.6 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{dd}, J=4.8$ and $J=4.4 \mathrm{~Hz}), 6.03$ $(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.26,22.76,26.97,27.09,27.17,46.70,67.67$, 81.59, 83.83.76, 86.51, 101.34, 117.79. FAB-MS $(m / z) 358\left(\mathrm{M}^{+}+\mathrm{H}\right)$ and $331\left(\mathrm{M}^{+}-\right.$ $\mathrm{CN})$. High resolution FAB-MS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4}$ NSSi: 358.1508. Found: 358.1489 .

2-O-Acetyl-1-phenylthio-3,5- O-(di- t-butylsilylene)- β, α-D-4-thioribofuranose (23)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ solution of $7(242.6 \mathrm{mg}, 0.62 \mathrm{mmol})$ was added TMSSPh $(0.59$ $\mathrm{mL}, 3.1 \mathrm{mmol})$ and $\mathrm{SnCl}_{4}\left(1 \mathrm{M}\right.$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(1.9 \mathrm{~mL}, 1.86 \mathrm{mmol})$ at $-70{ }^{\circ} \mathrm{C}$ under Ar atmosphere and the reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 10 h . The
reaction mixture was partitioned between CHCl_{3} /saturated aq NaHCO_{3} and column chromatography (hexane/ $\mathrm{AcOEt}=100 / 1$) of the organic layer gave $23(237.5 \mathrm{mg}, 87 \%$, syrup, β-isomer/ α-isomer $=24 / 1$): UV $(\mathrm{MeOH}) \lambda_{\max } 253 \mathrm{~nm}(\varepsilon 5100), \lambda \min ^{242 \mathrm{~nm}}$ ($\varepsilon 4700) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(\beta$-isomer) $\delta 0.98$ and $1.02(18 \mathrm{H}$, each as $\mathrm{s}, \mathrm{Si}-t-\mathrm{Bu}), 2.08$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.68(1 \mathrm{H}, \mathrm{ddd}, J=4.4, J=10.7$ and $J=10.7 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{t}, J=J=10.7$ $\mathrm{Hz}), 4.27-4.30(2 \mathrm{H}, \mathrm{m}), 4.47(1 \mathrm{H}, \mathrm{s}), 5.52\left(1 \mathrm{H}, \mathrm{d}, J_{2,3}=3.4 \mathrm{~Hz}\right) ;(\alpha$-isomer, selected data) $\delta 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 3.31(1 \mathrm{H}, \mathrm{ddd}, J=4.4, J=J=10.4 \mathrm{~Hz}), 4.56(1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 3.31(1 \mathrm{H}, \mathrm{dd}, J=7.6$ and $J=9.0 \mathrm{~Hz})$; NOE experiment $(\beta$-isomer): $\mathrm{H}-1 / \mathrm{H}-4$ (0.7\%); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.05,20.95,22.67,26.92,27.24,45.21,53.72,68.39$, $78.60,79.46,128.34,129.16,132.49,133.85,169.55$. FAB-MS $(\mathrm{m} / \mathrm{z}) 441\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}$: C, $57.23 ; \mathrm{H}, 7.32$. Found: C, $57.44 ; \mathrm{H}, 7.37$.

2-O-(t-Butyldimethylsilyl)-3,5-O-(di-t-butylsilylene)-1-phenylthio- $\beta, \alpha-\mathrm{D}-4-$ thioribofuranose (24)

Compound 23 ($224.5 \mathrm{mg}, 0.51 \mathrm{mmol}$) was treated with methanolic ammonia (20 mL) at rt overnight. The reaction mixture was evaporated to dryness and the residue was dried in vacuo overnight. To a DMF (5 mL) solution of the residue was added imidazole ($520.8 \mathrm{mg}, 7.65 \mathrm{mmol}$) and $\mathrm{TBDMSCl}(922.3 \mathrm{mg}, 6.12 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere and the mixture was stirred at rt overnight. The reaction mixture was partitioned between $\mathrm{AcOEt} / \mathrm{H}_{2} \mathrm{O}$ and column chromatography (hexane $/ \mathrm{AcOEt}=200 / 1$) of the organic layer gave $24(232.9 \mathrm{mg}, 89 \%, \beta$-isomer $/ \alpha$-isomer $=24 / 1)$ as a solid: mp
$72-74{ }^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}) \lambda \max 263 \mathrm{~nm}(\varepsilon 2900), \lambda \min 254 \mathrm{~nm}(\varepsilon 2800) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.24$ and $0.05(6 \mathrm{H}$, each as s, $\mathrm{Si}-t-\mathrm{Bu}), 0.80(9 \mathrm{H}, \mathrm{s}), 0.99$ and $1.06(18 \mathrm{H}$, each as s), $3.68-3.73(1 \mathrm{H}, \mathrm{m}), 4.01(1 \mathrm{H}, \mathrm{t}, J=J=11.2 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{s}), 4.26-4.30(3 \mathrm{H}$, m), 7.33-7.35 and 7.51-7.54 (5 H , each as m);); (α-isomer, selected data) $\delta \quad 3.32-3.38$ $(1 \mathrm{H}, \mathrm{m}), 4.49(1 \mathrm{H}, J=7.2 \mathrm{~Hz})$; NOE experiment (β-isomer): $\mathrm{H}-1 / \mathrm{H}-4(1.0 \%) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.57,-4.33,18.01,20.09,22.73,25.75,26.97,27.53,44.26,58.06,69.03$, 79.57, 79.76, 128.70, 129.27, 134.08, 134.24. FAB-MS $(m / z) 455\left(\mathrm{M}^{+}-t-\mathrm{Bu}\right)$ and 551 $\left(\mathrm{M}^{+}+\mathrm{K}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Si}_{2}$: C, $58.54 ; \mathrm{H}, 8.65$. Found: C, $58.71 ; \mathrm{H}, 8.91$.

1-O-Acetoxy-2-O-(t-butyldimethylsilyl)-3,5-O-(di- t-butylsilylene)- β-D-4-

thioribofuranose (25)

To an AcOH ($3.8 \mathrm{~mL}, 67.08 \mathrm{mmol}$) solution of $24(221.1 \mathrm{mg}, 0.43 \mathrm{mmol})$ was added $\mathrm{Hg}(\mathrm{OAc})_{2}(602.9 \mathrm{mg}, 1.89 \mathrm{mmol})$ at rt under Ar atmosphere and the mixture was stirred at rt for 14 h . The reaction mixture was diluted with CHCl_{3}. The solution washed with $\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3} and $5 \% \mathrm{KCN}$. Silica gel column chromatography (hexane/AcOEt $=150 / 1$) of the organic layer gave $25(190.6 \mathrm{mg}, 96 \%, \beta$-isomer/ $\alpha-$ isomer $=24 / 1)$ as a solid: $\mathrm{mp} 104-105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.13$ and $0.15(6 \mathrm{H}$, each as s), $0.92(9 \mathrm{H}, \mathrm{s}), 1.02$ and $1.07(18 \mathrm{H}$, each as s), $2.08(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{ddd}, J=4.6, J$ $=11.4$ and $J=3.2 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{dd}, J=11.4$ and $J=10.0 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and $J=10.0 \mathrm{~Hz}), 4.28-4.32(2 \mathrm{H}, \mathrm{m}), 5.60(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}) ;(\alpha$-isomer, selected data) ठ $2.09(1 \mathrm{H}, \mathrm{s}), 3.91(1 \mathrm{H}, \mathrm{d}, J=11.2$ and $J=10.0 \mathrm{~Hz}), 5.66(1 \mathrm{H}, J=5.2 \mathrm{~Hz}) ; \mathrm{NOE}$
experiment : $\mathrm{H}-1 / \mathrm{H}-4(0.7 \%) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.20,-4.38,18.16,20.15,21.10$, $22.76,25.81,27.00,27.47,43.53,69.06,77.44,80.05,82.32,169.59$. FAB-MS $(\mathrm{m} / \mathrm{z})$ $463\left(\mathrm{M}^{+}+\mathrm{H}\right)$ and $403\left(\mathrm{M}^{+}-\mathrm{OAc}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{SSi}_{2}$: C, 54.50; H, 9,15. Found: C, 54.39; H, 9.33.

1-C-Cyano-2-(t-butyldimethylsilyl)-3,5- O-(di- t-butylsilylene)- β-D-4thioribofuranose (27)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution of $\mathbf{2 5}(159.9 \mathrm{mg}, 0.35 \mathrm{mmol})$ was added $\mathrm{TMSBr}(0.28 \mathrm{~mL}$, 2.1 mmol) at $0^{\circ} \mathrm{C}$ under Ar atmosphere and the mixture was stirred at rt for 27 h . To the reaction mixture was added $\mathrm{Hg}(\mathrm{CN})_{2}(884.2 \mathrm{mg}, 3.5 \mathrm{mmmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and the mixture was stirred at rt for 22 h . The reaction mixture was partitioned between CHCl_{3} and saturated aq NaHCO_{3} and column chromatography (hexane/AcOEt $=100 / 1$) of the organic layer gave 27 ($95.1 \mathrm{mg}, 63 \%$) as a solid: $\mathrm{mp} 137-139^{\circ} \mathrm{C}$. IR (neat) 2241 $\mathrm{cm}^{-1}(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.15$ and $0.18(12 \mathrm{H}$, each as s$), 0.93(9 \mathrm{H}, \mathrm{s}), 1.01$ and $1.06(18 \mathrm{H}$, each as s), $3.58(1 \mathrm{H}, \mathrm{s}), 3.77(1 \mathrm{H}, \mathrm{ddd}, J=3.1, J=11.2$ and $J=4.6 \mathrm{~Hz})$, $4.08(1 \mathrm{H}, \mathrm{dd}, J=11.2$ and $J=10.1 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=3.2$ and $J=10.1 \mathrm{~Hz}), 4.33$ $(1 \mathrm{H}, \mathrm{dd}, J=4.6$ and $J=10.1 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz})$; NOE experiment: H-1/H-4 (0.9\%); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.30,-4.40,18.11,20.09,22.75,25.76,26.91$ 27.37, 35.51, 44.23, 68.31, 77.57, 81.86, 118.34. FAB-MS (m / z) $430\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{SSi}_{2}$: C, 55.89; H, 9.15; N. 3.26. Found: C, 55.96; H, 9.32; N. 3.18.

Ethyl 2-[2-O-(t-butyldimethylsilyl)-3,5-O-(di-t-butylsilylene)- β-D-4-

thioribofuranosyl]-thiazole-4-carboxylate (29)

To a $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(6.0 \mathrm{~mL})$ solution of $27(95.6 \mathrm{mg}, 0.063 \mathrm{mmol})$ was added ethyl cystein hydrochloride ($246.4 \mathrm{mg}, 1.32 \mathrm{mmol}$) and $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.23 \mathrm{~mL}, 1.32 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere and the mixture was stirred at rt for 5 days. The reaction mixture was partitioned between CHCl_{3} and saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ and column chromatography (hexane/AcOEt = 20/1) of the organic layer gave $27(99 \mathrm{mg}$, solid, $80 \%)$. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ solution of 28 was added DBN ($49 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) and $\mathrm{BrCCl}_{3}(27 \mu \mathrm{~L}, 0.27 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere and the mixture was stirred at rt for 6 h . The reaction mixture was partitioned between CHCl_{3} and saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ and column chromatography (hexane/AcOEt $=40 / 1$) of the organic layer gave 29 (89.2 $\mathrm{mg}, 88 \%)$ as a syrup: $\mathrm{UV}(\mathrm{MeOH}) \lambda \max ^{237 \mathrm{~nm}(\varepsilon 7700), ~} \lambda_{\min } 222 \mathrm{~nm}(\varepsilon 5900) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.16$ and $0.24(6 \mathrm{H}$, each as s), $0.97(9 \mathrm{H}, \mathrm{s}), 1.02$ and $1.02(18 \mathrm{H}$, each as s), $1.40(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{ddd}, J=4.6, J=10.8$ and $J=10.9 \mathrm{~Hz}), 4.10$ $(1 \mathrm{H}, \mathrm{dd}, J=11.2$ and $J=10.8 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{dd}, J=3.1$ and $J=10.9 \mathrm{~Hz}), 4.37-4.40$ $(3 \mathrm{H}, \mathrm{m}), 4.53(1 \mathrm{H}, \mathrm{s}), 4.59(1 \mathrm{H}, \mathrm{d}, J=3.1 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{s})$.; NOE experiment: H-1'/H$4^{\prime}(1.6 \%) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-4.98,-4.20,14.26,18.14,20.09,22.77,25.87,26.96$, $27.40,44.40,53.00,61.37,68.98,79.98,80.37,128.12,147.97,161.37,173.86$. FABMS $(m / z) 560\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Si}_{2}: \mathrm{C}, 53.63 ; \mathrm{H}, 8.10 ; \mathrm{N}, 2.50$. Found: C, 53.37; H, 8.37; N, 2.49.

2-[2-O-(t-butyldimethylsilyl)-3,5- O-(di- t-butylsilylene)- β-D-4-thioribofuranosyl]-

thiazole-4-carboxamide (30)

Compound 29 ($86 \mathrm{mg}, 0.15 \mathrm{mmol}$) was treated with methanolic ammonia (20 mL) at rt for 9 h . The reaction mixture was evaporated to dryness and the residue was chromatographed (hexane/ $\mathrm{AcOEt}=5 / 1$) on a silica gel to give $\mathbf{3 0}(78.8 \mathrm{mg}, 99 \%)$ as a solid: $\mathrm{mp} 168-169{ }^{\circ} \mathrm{C} ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max } 234 \mathrm{~nm}(\varepsilon 8240), \lambda_{\min } 228 \mathrm{~nm}(\varepsilon 8170) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.18$ and $0.24(6 \mathrm{H}$, each as s), $0.99(9 \mathrm{H}, \mathrm{s}), 1.02$ and $1.03(18 \mathrm{H}$, each as s), $3.87(1 \mathrm{H}, \mathrm{ddd}, J=10.0, J=11.2$ and $J=4.6 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}, J=11.2$ and $J=$ $10.0 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{dd},, J=3.2$ and $J=10.0 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{dd}, J=4.6$ and $J=10.0$ $\mathrm{Hz}), 4.47(1 \mathrm{H}, \mathrm{s}), 4.56(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 5.86$ and $7.03(2 \mathrm{H}$, each as br), $8.08(1 \mathrm{H}, \mathrm{s}) . ;$ NOE experiment: $\mathrm{H}-1^{\prime} / \mathrm{H}-4^{\prime}(1.6 \%) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.99,-4.23,18.24,20.10$, 22.79, 25.89, 26.95, 27.37, 44.34, 52.77, 68.91, 76.74, 80.21, 125.05, 150.14, 162.82, 173.57. FAB-MS $(m / z) 531\left(\mathrm{M}^{+}+\mathrm{H}\right)$ and $473\left(\mathrm{M}^{+}-t-\mathrm{Bu}\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}_{2}$: C, 52.03; H, 7.97; N, 5.28. Found: C, 52.10; H, 8.12; N, 5.23.

4^{\prime}-Thiotiazofurin (31)

To a stirred THF (5 mL) solution of $\mathbf{3 0}(88.8 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($172.6 \mathrm{mg}, 0.66 \mathrm{mmol}$) and the mixture was stirred at rt for 3 h . The reaction mixture was evaporated to dryness and the residue was chromatographed $(8 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) on a silica gel to give $\mathbf{3 1}(44.1 \mathrm{mg}, 94 \%)$ as a solid: $\mathrm{mp} 171-172{ }^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}) \lambda_{\max } 234 \mathrm{~nm}(\varepsilon 8100), \lambda_{\min } 226 \mathrm{~nm}(\varepsilon 8000) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.45$ $(1 \mathrm{H}, \mathrm{dt}, J=4.0$ and $J=6.3 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{dd}, J=6.3$ and $J=11.5 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{dd}, J$
$=6.3$ and $J=11.5 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{t}, J=4.0 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{dd}, J=4.0$ and $J=6.3 \mathrm{~Hz})$,
$4.68(1 \mathrm{H}, \quad \mathrm{d}, \quad J=6.3 \mathrm{~Hz}), \quad 8.14(1 \mathrm{H}, \quad \mathrm{s}) ; \quad{ }^{13} \mathrm{C} \quad \mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right)$ $\delta 51.3,54.1,65.5,76.8,81.9,126.2,150.9,165.6,174.1 ;$ FAB-MS $(m / z) 277\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 39.12; H, 4.38; N, 10.14. Found: C, 39.04; H, 4.24; N, 9.74 .

Fig. 1: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\left(S_{R}\right)-6$ in CDCl_{3}

Fig. 2: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $(S S)-6$ in CDCl_{3}

Fig. 3: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $7 \boldsymbol{\beta}$ in CDCl_{3}

Fig. 4: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7α in CDCl_{3}

Fig. 5: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 12β in CDCl_{3}

Fig. 6: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 13β in CDCl_{3}

Fig. 7: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 14β in CDCl_{3}

Fig. 8: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 15β in CDCl_{3}

Fig. 9: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 16β in CDCl_{3}

Fig. 10: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 17β in CDCl_{3}

Fig. 11: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 18β in CDCl_{3}

Fig. 12: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 20β in CDCl_{3}

Fig. 13: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 21β in CDCl_{3}

Fig. 14: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 22 a in CDCl_{3}

Fig. 15: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 22 b in CDCl_{3}

Fig. 16: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 23 in CDCl_{3}

Fig. 17: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 24 in CDCl_{3}

Fig. 18: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 25 in CDCl_{3}

Fig. 19: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 27 in CDCl_{3}

Fig. 20: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 29 in CDCl_{3}

Fig. 21: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 30 in CDCl_{3}

Fig. 22: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 31 in $\mathrm{CD}_{3} \mathrm{OD}$

