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Derivation of (kcat/Km)nox- The initial rate equation for the branched mechanism of
Scheme 2 that applies when the reaction is followed by monitoring nitronate release

during enzymatic turnover with nitroethane is given by:
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Where ES™ is the enzyme-ethylnitronate complex.
The [ES’] can be converted into kinetic rate constants by applying the method of
King and Altman(/) to express the initial rate equation as:
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Where 4 = [Nitroethane].
Since the bimolecular oxidation of the flavosemiquinone becomes significantly
faster than its formation (O, k7 >> ks) at high concentrations of oxygen, as was the case in

the experiments reported here (2), the net flux of the enzyme-nitronate intermediate



through the flavin reduction step becomes practically irreversible. The expression for
(keat/ Kim)nox after canceling common terms in both the numerator and denominator is

therefore given by:
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Based on the lack of solvent viscosity effects previously measured for (kca/Km)ox

(2) ky>> k3. Grouping these terms in the denominator and canceling k3 gives:
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Or as described in the text:
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Derivation of (kca/Km)ox. The initial rate equation for the branched mechanism of
Scheme 2 that applies when the reaction is followed by monitoring oxygen consumption

during enzymatic turnover with nitroethane is given by:

2= [EP]ku (6)
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Where EP is the enzyme-peroxynitroethane complex.
The [EP] can be converted into kinetic rate constants by applying the method of
King and Altman (/) to express the initial rate equation as:
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Where 4 = [Nitroethane].



The expression for (ke./Km)ox after canceling common terms in both the numerator

and denominator is therefore given by:
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Based on the lack of solvent viscosity effects previously measured for (kca/Km)ox

(2) ky>> k3. Grouping these terms in the denominator and canceling k3 gives:
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Or as described in the text:
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Derivation of ” (kcat/ Kim)ox- In the mechanism of Scheme 2, the kinetic steps k3, k4 and ki3
are isotope sensitive. Taking the ratio of (kca/Km)ox With nitroethane and [1,1-

*H,]nitroethane therefore gives:
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Where the subscript D denotes the rate of the kinetic step with [1,1-°H]nitroethane as
substrate.

Dividing each term in the parenthesis by k4 gives:
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Dividing each term by k—5 gives:
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Since "k, :( L j, ki3 can be written as—2-. Inserting this expression into (15)
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gives:
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Defining P as—2- and C; as 2—4 gives eq 14 of the main text:
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Derivation of © (kcat/ Km)nox- In the mechanism of Scheme 2, the kinetic steps k3, k4 and &3

are isotope sensitive. Taking the ratio of (kca/Km)nox With nitroethane and [1,1-

*H,nitroethane therefore gives eq 18:
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Since this expression is eq 13 multiplied by ki3, the expression for (kcat/Km)nox 1S the that

for (kcat/Kim)ox multiplied by ki3 as shown in the main text:
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