Inflated Kinetic Isotope Effects in the Branched Mechanism of *Neurospora crassa* 2-Nitropropane Dioxygenase

Kevin Francis[§], and Giovanni Gadda^{§, #,+}

Departments of [§]Chemistry and [#]Biology, and ⁺The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098

Derivation of $(k_{cat}/K_m)_{nox}$. The initial rate equation for the branched mechanism of Scheme 2 that applies when the reaction is followed by monitoring nitronate release during enzymatic turnover with nitroethane is given by:

$$\frac{v_o}{e} = \left[ES^{-} \right] k_{13} \tag{1}$$

Where ES⁻ is the enzyme-ethylnitronate complex.

The $[ES^{-}]$ can be converted into kinetic rate constants by applying the method of King and Altman(*1*) to express the initial rate equation as:

$$\frac{v_o}{e} = \frac{AO_2k_1k_3k_7k_9k_{11}k_{13} + Ak_1k_3k_6k_9k_{11}k_{13}}{A(k_1k_3k_5k_9k_{11}\dots + k_1k_6k_9k_{11}k_{13}) + O_2(k_2k_4k_7k_9k_{11}\dots + k_3k_7k_9k_{11}k_{13})} + AO_2(k_1k_3k_5k_7k_9\dots + k_1k_7k_9k_{11}k_{13}) + k_2k_4k_6k_9k_{11}\dots + k_3k_6k_9k_{11}k_{13})$$
(2)

Where A = [Nitroethane].

Since the bimolecular oxidation of the flavosemiquinone becomes significantly faster than its formation ($O_2 k_7 >> k_5$) at high concentrations of oxygen, as was the case in the experiments reported here (2), the net flux of the enzyme-nitronate intermediate

through the flavin reduction step becomes practically irreversible. The expression for $(k_{\text{cat}}/K_{\text{m}})_{\text{nox}}$ after canceling common terms in both the numerator and denominator is therefore given by:

$$\left(\frac{k_{cat}}{K_m}\right)_{nox} = \frac{k_1 k_3 k_{13}}{k_3 k_5 + k_2 k_5 + k_2 k_4 + k_2 k_{13} + k_3 k_{13}}$$
(3)

Based on the lack of solvent viscosity effects previously measured for $(k_{cat}/K_m)_{ox}$ (2) $k_2 >> k_3$ Grouping these terms in the denominator and canceling k_3 gives:

$$\left(\frac{k_{cat}}{K_m}\right)_{nox} = \frac{k_1 k_3 k_{13}}{k_2 k_5 + k_2 k_{13} + k_2 k_4} \tag{4}$$

Or as described in the text:

$$\left(\frac{k_{cat}}{K_{NE}}\right)_{nox} = k_{I3} \left(\frac{k_I k_3}{k_2 (k_4 + k_5 + k_{I3})}\right)$$
(5)

Derivation of $(k_{cat}/K_m)_{ox}$. The initial rate equation for the branched mechanism of Scheme 2 that applies when the reaction is followed by monitoring oxygen consumption during enzymatic turnover with nitroethane is given by:

$$\frac{v_o}{e} = [EP]k_{11} \tag{6}$$

Where EP is the enzyme-peroxynitroethane complex.

The [EP] can be converted into kinetic rate constants by applying the method of King and Altman (1) to express the initial rate equation as:

$$\frac{v_o}{e} = \frac{AO_2k_1k_3k_5k_7k_9k_{11}}{A(k_1k_3k_5k_9k_{11}\dots+k_1k_6k_9k_{11}k_{13}) + O_2(k_2k_4k_7k_9k_{11}\dots+k_3k_7k_9k_{11}k_{13})} + AO_2(k_1k_3k_5k_7k_9\dots+k_1k_7k_9k_{11}k_{13}) + k_2k_4k_6k_9k_{11}\dots+k_3k_6k_9k_{11}k_{13}}$$
(7)

Where A = [Nitroethane].

The expression for $(k_{cat}/K_m)_{ox}$ after canceling common terms in both the numerator and denominator is therefore given by:

$$\left(\frac{k_{cat}}{K_m}\right)_{ox} = \frac{k_1 k_3 k_5}{k_2 k_4 + k_2 k_5 + k_2 k_{13} + k_3 k_5 + k_3 k_{13}}$$
(8)

Based on the lack of solvent viscosity effects previously measured for $(k_{cat}/K_m)_{ox}$ (2) $k_2 >> k_3$ Grouping these terms in the denominator and canceling k_3 gives:

$$\left(\frac{k_{cat}}{K_m}\right)_{ox} = \frac{k_1 k_3 k_5}{k_2 k_4 + k_2 k_5 + k_2 k_{13}}$$
(9)

Or as described in the text:

$$\left(\frac{k_{cat}}{K_{NE}}\right)_{ox} = k_{5} \left(\frac{k_{1}k_{3}}{k_{2}(k_{4} + k_{5} + k_{13})}\right)$$
(10)

Derivation of ${}^{\mathbf{D}}(\mathbf{k_{cat}}/\mathbf{K_m})_{ox}$. In the mechanism of Scheme 2, the kinetic steps k_3 , k_4 and k_{13} are isotope sensitive. Taking the ratio of $(k_{cat}/K_m)_{ox}$ with nitroethane and [1,1- ${}^{2}\text{H}_2$]nitroethane therefore gives:

$$\binom{k_{cat}}{K_m}_{ox} = \frac{k_1 k_3 k_5}{k_2 k_4 + k_2 k_5 + k_2 k_{13}} \times \frac{k_2 k_{4D} + k_2 k_5 + k_2 k_{13D}}{k_1 k_{3D} k_5} = \frac{k_3 k_{4D} + k_3 k_5 + k_3 k_{13D}}{k_{3D} k_4 + k_{3D} k_5 + k_{3D} k_{13}}$$
(11)

Or:

$${}^{D}\left(\frac{k_{cat}}{K_{m}}\right)_{ox} = {}^{D}k_{3}\left(\frac{k_{4D} + k_{5} + k_{13D}}{k_{4} + k_{5} + k_{13}}\right)$$
(12)

Where the subscript D denotes the rate of the kinetic step with $[1,1-^{2}H_{2}]$ nitroethane as substrate.

Dividing each term in the parenthesis by k_4 gives:

$${}^{D}\left(\frac{k_{cat}}{K_{m}}\right)_{ox} = {}^{D}k_{3}\left(\frac{\frac{k_{4D}}{k_{4}} + \frac{k_{5}}{k_{4}} + \frac{k_{13D}}{k_{4}}}{1 + \frac{k_{5}}{k_{4}} + \frac{k_{13}}{k_{4}}}\right)$$
(13)

Or:

$${}^{D}\left(\frac{k_{cat}}{K_{m}}\right)_{ox} = \frac{{}^{D}K_{eq3} + {}^{D}k_{3}\left(\frac{k_{5}}{k_{4}}\right) + {}^{D}k_{3}\left(\frac{k_{13D}}{k_{4}}\right)}{1 + \frac{k_{5}}{k_{4}} + \frac{k_{13}}{k_{4}}}$$
(14)

Where ${}^{D}K_{eq3} = \frac{{}^{D}k_{3}}{{}^{D}k_{4}}$

Dividing each term by $\frac{k_5}{k_4}$ gives:

$${}^{D}\left(\frac{k_{cat}}{K_{m}}\right)_{ox} = \frac{{}^{D}K_{eq3}\left(\frac{k_{4}}{k_{5}}\right) + {}^{D}k_{3} + k_{13D}\left(\frac{D}{k_{3}}\right)}{\frac{k_{4}}{k_{5}} + 1 + \frac{k_{13}}{k_{5}}}$$
(15)

Since ${}^{D}k_{13} = \left(\frac{k_{13}}{k_{13D}}\right)$, ${}^{D}k_{13}$ can be written as $\frac{k_{13}}{{}^{D}k_{13}}$. Inserting this expression into (15)

gives:

$${}^{D}\left(\frac{k_{cat}}{K_{m}}\right)_{ox} = \frac{{}^{D}K_{eq3}\left(\frac{k_{4}}{k_{5}}\right) + {}^{D}k_{3} + \frac{{}^{D}k_{3}}{{}^{D}k_{13}}\left(\frac{k_{13}}{k_{5}}\right)}{\frac{k_{4}}{k_{5}} + 1 + \frac{k_{13}}{k_{5}}}$$
(16)

Defining P as $\frac{k_{13}}{k_5}$ and C_r as $\frac{k_4}{k_5}$ gives eq 14 of the main text:

$${}^{D}\left(\frac{k_{cat}}{K_{m}}\right)_{ox} = \frac{{}^{D}k_{3} + {}^{D}k_{3}\left(\frac{1}{{}^{D}k_{13}}P\right) + {}^{D}K_{eq3}C_{r}}{1 + C_{r} + P}$$
(17)

Derivation of ${}^{\mathbf{D}}(\mathbf{k}_{cat}/\mathbf{K}_{m})_{nox}$. In the mechanism of Scheme 2, the kinetic steps k_3 , k_4 and k_{13} are isotope sensitive. Taking the ratio of $(k_{cat}/K_m)_{nox}$ with nitroethane and [1,1- ${}^{2}\text{H}_2$]nitroethane therefore gives eq 18:

$${}^{D}\left(\frac{k_{cat}}{K_{m}}\right)_{nox} = \frac{k_{1}k_{3}k_{13}}{k_{2}k_{5} + k_{2}k_{13} + k_{2}k_{4}} \times \frac{k_{2}k_{5} + k_{2}k_{13D} + k_{2}k_{4D}}{k_{1}k_{3D}k_{13D}} = \frac{k_{3}k_{13}k_{5} + k_{3}k_{13}k_{13D} + k_{3}k_{13}k_{4D}}{k_{5}k_{3D}k_{13D} + k_{13}k_{3D}k_{13D} + k_{4}k_{3D}k_{13D}}$$

Or:

$${}^{D}\left(\frac{k_{cat}}{K_{m}}\right)_{ox} = {}^{D}k_{3}{}^{D}k_{13}\left(\frac{k_{4D} + k_{5} + k_{13D}}{k_{4} + k_{5} + k_{13}}\right)$$
(19)

Since this expression is eq 13 multiplied by ${}^{\mathrm{D}}k_{13}$, the expression for $(k_{\text{cat}}/K_{\text{m}})_{\text{nox}}$ is the that for $(k_{\text{cat}}/K_{\text{m}})_{\text{ox}}$ multiplied by ${}^{\mathrm{D}}k_{13}$ as shown in the main text:

$${}^{D}\left(\frac{k_{cat}}{K_{m}}\right)_{nox} = {}^{D}k_{13}\left[\frac{{}^{D}k_{3} + {}^{D}k_{3}\left(\frac{1}{{}^{D}k_{13}}P\right) + {}^{D}K_{eq3}C_{r}}{1 + C_{r} + P}\right]$$
(20)

References

- King, E. L., and Altman, C. (1956) A Schematic Method of Deriving the Rate Laws for Enzyme-Catalyzed Reactions. J. Phys. Chem. 60, 1375-1378.
- Francis, K., and Gadda, G. (2006) Probing the chemical steps of nitroalkane oxidation catalyzed by 2-nitropropane dioxygenase with solvent viscosity, pH, and substrate kinetic isotope effects. *Biochemistry* 45, 13889-13898.