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Derivation of (kcat/Km)nox. The initial rate equation for the branched mechanism of 

Scheme 2 that applies when the reaction is followed by monitoring nitronate release 

during enzymatic turnover with nitroethane is given by: 
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Where ES
-
 is the enzyme-ethylnitronate complex.  

The [ES
-
] can be converted into kinetic rate constants by applying the method of 

King and Altman(1) to express the initial rate equation as:  
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Where A = [Nitroethane]. 

 Since the bimolecular oxidation of the flavosemiquinone becomes significantly 

faster than its formation (O2 k7 >> k5) at high concentrations of oxygen, as was the case in 

the experiments reported here (2), the net flux of the enzyme-nitronate intermediate 
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through the flavin reduction step becomes practically irreversible. The expression for 

(kcat/Km)nox after canceling common terms in both the numerator and denominator is 

therefore given by: 
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Based on the lack of solvent viscosity effects previously measured for (kcat/Km)ox  

(2) k2 >> k3. Grouping these terms in the denominator and canceling k3 gives:  
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 Or as described in the text: 
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Derivation of (kcat/Km)ox. The initial rate equation for the branched mechanism of 

Scheme 2 that applies when the reaction is followed by monitoring oxygen consumption 

during enzymatic turnover with nitroethane is given by: 
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Where EP is the enzyme-peroxynitroethane complex.  

The [EP] can be converted into kinetic rate constants by applying the method of 

King and Altman (1) to express the initial rate equation as:  
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Where A = [Nitroethane]. 
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 The expression for (kcat/Km)ox after canceling common terms in both the numerator 

and denominator is therefore given by: 
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Based on the lack of solvent viscosity effects previously measured for (kcat/Km)ox  

(2) k2 >> k3. Grouping these terms in the denominator and canceling k3 gives:  
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 Or as described in the text: 
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Derivation of 
D
(kcat/Km)ox. In the mechanism of Scheme 2, the kinetic steps k3, k4 and k13 

are isotope sensitive. Taking the ratio of (kcat/Km)ox with nitroethane and  [1,1-

2
H2]nitroethane therefore gives:  
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Or: 
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Where the subscript D denotes the rate of the kinetic step with [1,1-
2
H2]nitroethane as 

substrate. 

Dividing each term in the parenthesis by k4 gives: 
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Or: 
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Where 
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Defining P as
5

13

k

k
and Cr as 

5

4

k

k
 gives eq 14 of the main text: 
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Derivation of 
D
(kcat/Km)nox. In the mechanism of Scheme 2, the kinetic steps k3, k4 and k13 

are isotope sensitive. Taking the ratio of (kcat/Km)nox with nitroethane and  [1,1-

2
H2]nitroethane therefore gives eq 18:  

DDDDDD

DD

DD

DD

noxm

cat

D

kkkkkkkkk

kkkkkkkkk

kkk

kkkkkk

kkkkkk

kkk

K

k

1334133131335

4133131335133

1331

4213252

4213252

1331

++

++
=

++
×

++
=









 

Or: 
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Since this expression is eq 13 multiplied by 
D
k13, the expression for (kcat/Km)nox is the that 

for (kcat/Km)ox multiplied by 
D
k13 as shown in the main text: 
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