Highly Z- and Enantioselective Ring-Opening/Cross-Metathesis Reactions Catalyzed by Stereogenic-at-Mo Adamantylimido Complexes

Ismail Ibrahem, ${ }^{\dagger}$ Miao Yu, ${ }^{\dagger}$ Richard R. Schrock, ${ }^{\ddagger}$ and Amir H. Hoveyda ${ }^{\dagger, *}$
${ }^{\dagger}$ Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467,
${ }^{\ddagger}$ Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

SUPPORTING INFORMATION, PART A

General. Infrared (IR) spectra were recorded on a Bruker FTIR Alpha (ATR Mode) spectrometer, $v_{\text {max }}$ in cm^{-1}. Bands are characterized as broad (br), strong (s), medium (m), or weak (w). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Unity INOVA 400 (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from incomplete deuterium incorporation as the internal standard $\left(\mathrm{CDCl}_{3}: \delta\right.$ $\left.7.26 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: \delta 7.16 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), and coupling constants (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Unity INOVA 400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard ($\left.\mathrm{CDCl}_{3}: \delta 77.26 \mathrm{ppm}\right)$. High-resolution mass spectrometry was performed on a Micromass LCT ESI-MS (positive mode) at the Boston College Mass Spectrometry Facility. Enantiomer ratios were determined by HPLC (Chiral Technologies Chiralpak OD, OJ-H, AS column or Chiralcel OD-R column Boston College ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$)) in comparison with authentic racemic materials. Optical rotations were measured on a Rudolph Research Analytical Autopol IV Polarimeter. A CIF file of the Xray structure on page is SI-21 attached.
Unless otherwise noted, all reactions were performed with distilled and degassed solvents under an atmosphere of dry N_{2} in oven- $\left(135{ }^{\circ} \mathrm{C}\right)$ or flame-dried glassware with standard dry box or vacuum line techniques. Oxabicycles were prepared according to previously published procedures ${ }^{1}$ and dried by azeotropic distillation with $\mathrm{C}_{6} \mathrm{H}_{6}$ prior to use in reactions with Mo-based complexes. Styrene (Aldrich), p-methoxystyrene (Acros), p-trifluoromethylstyrene (Aldrich), omethylstyrene (Fluka) and o-bromostyrene (Aldrich), were dried by distillation from CaH_{2} under N_{2} prior to use.

Solvents: Solvents were purged with argon and purified under a positive pressure of dry Ar by a modified Innovative Technologies purification system. Toluene (Doe \& Ingalls), and benzene (Aldrich) were passed successively through activated copper and alumina columns. Tetrahydrofuran was purified by distillation from sodium benzophenone ketyl immediately prior to use. All work-up and purification procedures were carried out with reagent grade solvents (purchased from Doe \& Ingalls) under air atmosphere.

[^0]Metal-based Complexes: Mo bispyrrolide complexes 1a-1b ${ }^{2}$ and Mo monoaryloxides 3a, 3b, 3c were synthesized according to previously disclosed procedures. ${ }^{3}$ Alkylidenes 5a, 5b, 5c and 5d were synthesized based on the general protocols described below (procedure A). All Mo complexes were handled under an inert atmosphere of N_{2} in a dry box.
\boldsymbol{d}_{6}-Benzene was purchased from Cambridge Isotope Laboratories and distilled over Na into activated 4 Å molecular sieves prior to use.
Tetrabutylammonium fluoride, 1.0 M solution in tetrahydrofuran was purchased from Aldrich and used as received.

Preparation of Monoaryloxide Mo Complexes

General Precedure: In an N_{2}-filled glovebox, a $4-\mathrm{mL}$ vial with magnetic stir bar was charged with 1b ($8.6 \mathrm{mg}, 15.2 \mu \mathrm{~mol}$), 2a ($7.2 \mathrm{mg}, 15.2 \mu \mathrm{~mol}$), and $\mathrm{C}_{6} \mathrm{D}_{6}(760 \mu \mathrm{~L})$. The vial was tightly capped and the mixture was allowed to stir for 1 hour, at which time it was transferred to an NMR tube (screw cap NMR) by a pipette. The NMR tube was capped and sealed with Teflon tape. (Please note that for in situ-generated complexes, only the diagnostic signals of the α carbon of the syn-alkylidenes are reported. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 12.94(1 \mathrm{H}, \mathrm{s}), 12.74$ $(1 \mathrm{H}, \mathrm{s}), 12.46(1 \mathrm{H}, \mathrm{s}), 12.38(1 \mathrm{H}, \mathrm{s}) ; \mathrm{dr}=3: 1$ (entry 1 , Table 1$).{ }^{1} \mathrm{H}$ NMR data are summarized in Table 1 (see manuscript text).
Representative procedure for preparation of Mo complex 5b (used in situ): In an N_{2}-filled glovebox, a 4-mL vial containing a magnetic stir bar was charged with $\mathbf{1 b}(6.0 \mathrm{mg}, 10.5 \mu \mathrm{~mol})$, 2b $(6.0 \mathrm{mg}, 10.5 \mu \mathrm{~mol})$, and $\mathrm{C}_{6} \mathrm{H}_{6}(500 \mu \mathrm{~L}, 0.02 \mathrm{M})$, causing the mixture to turn orange. The vial was capped and the mixture was allowed to stir for 1 hour at $22^{\circ} \mathrm{C}$, after which the catalyst solution was transferred to the reaction mixture by a syringe (dried at $65^{\circ} \mathrm{C}$ under vacuum).
General Procedure for Catalytic Enantioselective Ring-Opening/Cross-Metathesis (ROCM) Reactions with in situ-Generated Catalyst: In an N_{2}-filled glovebox, an oven-dried 4-mL vial with a magnetic stir bar was charged with the appropriate amount of the chiral complex in $\mathrm{C}_{6} \mathrm{H}_{6}$ (or toluene), prepared as mentioned above, and the cross partner. The resulting mixture was allowed to stir for 3-4 min, and added by syringe to a solution of the oxabicycle in $\mathrm{C}_{6} \mathrm{H}_{6}$ (or toluene) in an over-dried $4-\mathrm{mL}$ vial. The resulting solution was allowed to stir for the required period of time. The reaction was then quenched by exposure to air and concentrated in vacuo (percent conversion determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis). Purification was performed by silica gel chromatography. Enantiomeric purity of the product was determined by HPLC analysis.

[^1]Representative Procedure for Desilylation with \boldsymbol{n}-Tetrabutylammonium Fluoride (TBAF): Silyl ether $\mathbf{6 a}(0.035 \mathrm{mmol}, 12.0 \mathrm{mg}$) was dissolved in 2.0 mL distilled THF. 1.0 M TBAF in THF (20.0 equiv. $0.7 \mathrm{mmol}, 200 \mu \mathrm{~L}$) was added and the mixture was allowed to stir at $22^{\circ} \mathrm{C}$ for 6-8 h. The mixture was concentrated in vacuo and the residue purified by silica gel chromatography ($1: 1$ hexanes:diethyl ether).
Representative Procedure for Catalytic Enantioselective Ring-Opening/Cross-Metathesis Reactions with in situ-Generated Catalyst: In an N_{2}-filled glovebox, an oven-dried 4-mL vial with a magnetic stir bar was charged with ($1 \mathrm{~mol} \%$) of in situ-generated complex $\mathbf{5 b}$ ($20.0 \mu \mathrm{~L}$, $0.02 \mathrm{M}, 0.40 \mu \mathrm{~mol}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$), prepared as mentioned above, and 2.0 equivalent of styrene ($10 \mu \mathrm{l}$, 0.0832 mmol). The resulting mixture was allowed to stir for $3-4 \mathrm{~min}$, and added by syringe to a solution of the oxabicycle $4(10.0 \mathrm{mg}, 41.6 \mu \mathrm{~mol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(190 \mu \mathrm{~L})$ in a $4-\mathrm{mL}$ vial, (final substrate concentration $=0.2 \mathrm{M}$). The resulting solution was allowed to stir for 1 hour, after which the reaction was quenched through exposure of the solution to air. The mixture was concentrated in vacuo and conversion determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis. Purification of the resulting oil residue (typically light yellow) was performed by silica gel chromatography. Enantiomeric purity of $\mathbf{6 a}$ was determined by HPLC analysis of the derived secondary alcohol in comparison with authentic racemic material.
tert-Butyldimethyl((2S,4R,6R)-2-Z-styryl-6-vinyltetrahydro-2H-pyran-4-yloxy)silane
(Table 1, entry 2). Following the aforementioned procedure, oxabicycle 4 ($10.0 \mathrm{mg}, 41.6 \mu \mathrm{~mol}$) dissolved in $\mathrm{C}_{6} \mathrm{H}_{6}(190 \mu \mathrm{~L})$ was treated with ($1 \mathrm{~mol} \%$) of in situ-generated $\mathbf{5 b}(20.0 \mu \mathrm{~L}, 0.02 \mathrm{M}$, $0.40 \mu \mathrm{~mol})$ and styrene $(10 \mu \mathrm{~L}, 83.2 \mu \mathrm{~mol}, 2.0$ equiv; final substrate concentration $=0.2 \mathrm{M})$; the mixture was allowed to stir for 1 hour. The resulting brown oil was purified by silica gel chromatography ($50: 1$ hexanes:diethyl ether) to afford $\mathbf{6 a}(11.70 \mathrm{mg}, 0.0340 \mathrm{mmol}, 85.0 \%$ yield) as a colorless oil. IR (neat): 2949 (s), 2927 (s), 2855 (s), 1471 (m), 1376 (m), 1252 (m), 1064 (s), 909 (m), $834(\mathrm{~m}), 773(\mathrm{~m}), 733(\mathrm{~m}), 701(\mathrm{~m}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.37-7.28(\mathrm{~m}$, $5 \mathrm{H}), 6.60(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92$ (ddd, $J=17.3,10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=11.6,8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30$ (ddd, $J=17.2,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (ddd, $J=10.5,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.19$ (m, $1 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=15.5,10.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H})$, $1.40(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 138.7$, 137.1, 132.1, 132.0, 129.0, 128.5, 127.5, 115.6, 76.3, 72.3, 68.6, 41.8, 41.3, 26.1, 18.4, -4.3; HRMS (ESI ${ }^{+}$) $[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}: 345.2250$, found: 345.2254; $[\alpha]_{\mathrm{D}}{ }^{20}+51.2$ ($\mathrm{c}=$ $0.375, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of $98.5: 1.5 \mathrm{er}$ (97% ee). Enantiomeric purity was determined by analysis of HPLC of the corresponding alcohol (after removal of the silyl group) in comparison with authentic racemic material.
(2S,4R,6R)-2-Z-Styryl-6-vinyltetrahydro-2H-pyran-4-ol. Following the aforementioned procedure, pyran 6a was desilylated. IR (neat): 3374 (br), 3081 (w), 3018 (w), 2942 (m), 2918 (m), 2849 (m), 1647 (m), 1493 (w), 1447 (w), 1362 (m), 1303 (m), 1061(s), 988 (s), 773 (s), 693 (s); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.36-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddd}, J=$
$17.3,10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (dd, $J=11.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{ddd}, J=17.4,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{ddd}, J=10.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.83(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 2 \mathrm{H})$, 1.56 (br s, 1H), 1.50-1.30 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 138.4,137.0,132.2,131.8$, 129.0, 128.5, 127.6, 115.8, 76.0, 72.3, 68.0, 41.2, 40.8; HRMS (ESI ${ }^{+}$) [M+H] ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}: 231.1385$, found: 231.1391; $[\alpha]_{\mathrm{D}}{ }^{20}+76.12\left(\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of $98.5: 1.5$ er (97% ee). Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (OD column, $98 / 2$ hexanes $i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major enantiomer $)=23.16 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor enantiomer $)=19.51 \mathrm{~min}$.

$\#$	time (\min)	area	area \%	$\#$	time (\min)	area	area \%
1	20.17	1680092	49.640	1	19.51	86557	1.108
2	23.07	1704467	50.360	2	23.16	7723354	98.892

tert-Butyl((2S,4R,6R)-2-Z-(4-methoxystyryl)-6-vinyltetrahydro-2H-pyran-4-
yloxy)dimethylsilane ($\mathbf{6 b}$) (Table 2, entry 1). Following the aforementioned procedure, oxabicycle $4(10.0 \mathrm{mg}, 41.6 \mu \mathrm{~mol})$ was treated with in situ-generated $\mathbf{5 b}(20.0 \mu \mathrm{~L}, 0.02 \mathrm{M}, 0.40$ $\mu \mathrm{mol}$, neat) and p-methoxystyrene ($11.0 \mu \mathrm{~L}, 83.2 \mu \mathrm{~mol}, 2.0$ equiv); the mixture was allowed to stir for 0.5 h . The resulting oil was purified by silica gel chromatography ($50: 1$ hexanes:diethyl ether) to afford $\mathbf{6 b}(12.5 \mathrm{mg}, 33.3 \mu \mathrm{~mol}, 80.0 \%$ yield) as colorless oil. IR (neat): 2951 (s), 2929 (s), 2856 (s), 1462 (m), 1376 (m), 1250 (m), 1069 (s$), 910$ (m), 837 (m), 775 (m); ${ }^{1} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.91 (ddd, $J=17.2,10.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=11.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (ddd, $J=17.2,1.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{ddd}, J=10.5,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.87-$ $3.84(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06$ ($\mathrm{s}, 3 \mathrm{H}$) ; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.1,138.8,132.0,130.5,130.4,129.7,115.6,114.0$, $76.3,72.4,68.6,55.5,41.8,41.3,26.1,18.4,-4.3$; $\mathbf{H R M S}\left(\mathbf{E S I}^{+}\right)[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}$: 375.2355, found: $375.2339 ;[\alpha]_{D}{ }^{20}+60.8\left(c=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 97:3 er (94% ee). Enantiomeric purity was determined by analysis of HPLC of the
corresponding alcohol after removal of the silyl group, in comparison with authentic racemic material.
(2S,4R,6R)-2-Z-(4-Methoxystyryl)-6-vinyltetrahydro-2H-pyran-4-ol. Following the aforementioned procedure, pyran 6b was desilylated. IR (neat): 3386 (br), 3012 (m), 2920 (m), 1607 (s), 1510 (s), 1301 (m), 1247 (s), 1175 (m), 1061 (m), 1033 (m), 989 (m), 842 (m); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.92 (ddd, $J=18.0,10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63$ (dd, $J=11.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{ddd}, J=$ $17.4,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{ddd}, J=10.5,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.84(\mathrm{~m}$, 2H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 159.1,138.4,132.0,130.3,130.1,129.5,115.8,114.0,76.0,72.3,68.0,55.5,41.3$, 40.8; HRMS (ESI') $[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3}$: 261.1490, found: 261.1498; $[\alpha]_{\mathrm{D}}{ }^{20}=+71.1(\mathrm{c}$ $=0.375, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of $97: 3$ er (94% ee). Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (OD column, $98 / 2$ hexanes $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major enantiomer $)=26.01 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (minor enantiomer) $=37.67 \mathrm{~min}$.

tert-Butyldimethyl((2S,4R,6R)-2-Z-(4-(trifluoromethyl)styryl)-6-vinyltetrahydro-2H-pyran-4-yloxy)silane (6c) (Table 2, entry 2). Following the previously mentioned procedure, oxabicycle $4(10.0 \mathrm{mg}, 41.6 \mu \mathrm{~mol})$ was treated with ($1 \mathrm{~mol} \%$) of in situ-generated $\mathbf{5 b}(20.0 \mu \mathrm{~L}$, $0.02 \mathrm{M}, 0.40 \mu \mathrm{~mol}$, neat) and p-trifluoromethylstyrene ($12.0 \mu \mathrm{~L}, 83.2 \mu \mathrm{~mol}, 2.0$ equiv); the mixture was allowed to stir for 1.0 h . The resulting oil was purified by silica gel chromatography
(50:1 hexanes:diethyl ether) to afford $\mathbf{6 c}(11.2 \mathrm{mg}, 30.0 \mu \mathrm{~mol}, 67.0 \%$ yield) as colorless oil. IR (neat): 2951 (s), 2928 (s$), 2856$ (s$), 1471$ (m), 1377 (m), 1254 (m), 1069 (s$), 910$ (m), 837 (m), 775 (m); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.61$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=17.2,10.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=11.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (ddd, $J=17.3,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{ddd}, J=10.6,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.92-$ $3.86(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 140.6,138.5,134.0,131.0,129.4\left(\mathrm{q}, J_{\mathrm{CF}}=33.2\right.$ $\mathrm{Hz}), 129.2,126.1\left(\mathrm{q}, J_{\mathrm{CF}}=271.9 \mathrm{~Hz}\right), 125.5\left(\mathrm{q}, J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 115.8,76.4,72.1,68.4,41.6,41.3$, 26.1, 18.3, $-4.29,-4.32 ;{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-63.00$; $\mathbf{H R M S}\left(\mathbf{E S I}^{+}\right)[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Si}: 413.2123$, found: 413.2121; $[\alpha]_{\mathrm{D}}{ }^{20}+32.8$ (c $=0.5, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of 98:2 er (96% ee). Enantiomeric purity was determined by analysis of HPLC of the corresponding alcohol after removal of the silyl group, in comparison with authentic racemic material.
(2S,4R,6R)-2-Z-(4-(Trifluoromethyl)styryl)-6-vinyltetrahydro-2H-pyran-4-ol. Following the aforementioned procedure, pyran $\mathbf{6 c}$ was desilylated. IR (neat): 3378 (br), 3019 (m), 2921 (m), 1616 (m), 1427 (m), 1323 (s), 1163 (s), 1122 (s), 1065 (s), 988 (m), 854 (m); ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H})$, 7.17-7.12 (m, 1H), $6.63(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddd}, J=17.2,10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=$ $11.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{ddd}, J=17.2,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{ddd}, J=10.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.10-4.00 (m, 1H), 3.90-3.80 (m, 1H), 3.78-3.72 (m, 1H), 1.88-1.83 (m, 2H), 1.48-1.43 (m, 1H), 1.40-1.35 (m, 1H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 140.5,138.2$, $133.7,131.1,129.4\left(\mathrm{q}, J_{\mathrm{CF}}=32.5 \mathrm{~Hz}\right), 129.2,125.5\left(\mathrm{q}, J_{\mathrm{CF}}=271.9 \mathrm{~Hz}\right), 123.0\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right)$, 116.0, 76.2, 72.1, 68.0, 41.1, 40.8; HRMS (ESI ${ }^{+}$[$\left.\mathbf{M + H}\right]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{2}$: 299.1258, found: 299.1248; $[\alpha]_{D}{ }^{20}+64.5\left(c=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 98:2 er (96% ee). Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (OD column, 99/1 hexanes i i- $\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$; t_{r} (major enantiomer $)=37.36 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor enantiomer $)=33.76 \mathrm{~min}$.

((2S,4R,6R)-2-Z-(2-Bromostyryl)-6-vinyltetrahydro-2H-pyran-4-yloxy)(tertbutyl)dimethylsilane (6d) (Table 2, entry 3). Following the general procedure described previously, oxabicycle $\mathbf{4}(10.0 \mathrm{mg}, 41.6 \mu \mathrm{~mol})$ was treated with in situ-generated complex $\mathbf{5 b}$ ($40.0 \mu \mathrm{~L}, 0.02 \mathrm{M}, 0.80 \mu \mathrm{~mol}$, neat) and o-bromostyrene ($52.0 \mu \mathrm{~L}, 416 \mu \mathrm{~mol}, 10.0$ equiv); the mixture was allowed to stir for 1.0 hour. The resulting oil was purified by silica gel chromatography ($50: 1$ hexanes:diethyl ether) to afford $\mathbf{6 d}(8.9 \mathrm{mg}, 21.0 \mu \mathrm{~mol}, 50.0 \%$ yield) as colorless oil. IR (neat): 3019 (s), 2927 (s), 2856 (s), 1470 (m), 1376 (m), 1254 (m), 1070 (s), $910(\mathrm{~m}), 837(\mathrm{~m}), 773(\mathrm{~m}), 746(\mathrm{~m}), 730(\mathrm{~m}){ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} \mathbf{C D C l}_{3}$): $\delta 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.90$ (ddd, $J=17.2,10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=11.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{ddd}, J=17.2$, $1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{ddd}, J=10.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 1 \mathrm{H})$, 3.78-3.72 (m, 1H), 1.88-1.83 (m, 2H), 1.47-1.43 (m, 1H), 1.40-1.36 (m, 1H), 0.87 (s, 9H), 0.04 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 138.7, 137.2, 133.0, 132.8, 131.6, 131.0, 129.1, 127.3, 124.2, 115.6, 76.3, 72.3, 68.5, 41.6, 41.3, 26.1, 18.3, -4.3; HRMS (ESI ${ }^{+}$[$\left.\mathbf{M + H}\right]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{Br} \mathrm{O}_{2} \mathrm{Si}: 423.1353$, found: 423.1349; $[\alpha]_{\mathrm{D}}{ }^{20}+43.7$ (c $=0.375, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of $>98:<2$ er ($>98 \%$ ee). Enantiomeric purity was determined by analysis of HPLC of the corresponding alcohol after removal of the silyl group, in comparison with authentic racemic material.
(2S,4R,6R)-2-Z-(2-Bromostyryl)-6-vinyltetrahydro-2H-pyran-4-ol. Following the aforementioned procedure, pyran 6d was desilylated. IR (neat): 3360 (br), 3019 (m), 2920 (m),
$2853(\mathrm{~m}), 1468(\mathrm{~m}), 1362(\mathrm{~m}), 1302(\mathrm{~m}), 1065(\mathrm{~m}), 988(\mathrm{~m}), 926(\mathrm{~m}), 768(\mathrm{~m}),{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.58(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H})$, 7.17-7.12 (m, 1H), $6.63(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddd}, J=17.3,10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=$ $11.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (ddd, $J=17.2,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (ddd, $J=10.6,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.12-4.05 (m, 1H), 3.88-3.76 (m, 2H), 1.99-1.85 (m, 2H), 1.55 (br s, 1H), 1.42-1.32 (m, 2H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): 138.4, 137.1, 133.0, 132.7, 131.7, 130.7, 129.2, 127.3, 124.1, 115.8, 76.0, 72.2, 68.0, 41.1, 40.7; HRMS (ESI ${ }^{+}$) $[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrO}_{2}: 309.0490$, found: 309.0496; $[\alpha]_{D}{ }^{20}+45.9\left(\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of $>98:<2$ er ($>98 \%$ ee). Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (OD column, 99/1 hexanes $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}$ (major enantiomer) $=53.35 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor enantiomer $)=46.14 \mathrm{~min}$.

$\#$	time (min)	area	area \%	$\#$	time (min)	area	area \%
1	45.27	2391163	49.785	1	46.14	34040	0.484
2	53.93	2411786	50.215	2	53.35	6993783	99.516

tert-butyldimethyl((2S,4R,6R)-2-Z-(2-methylstyryl)-6-vinyltetrahydro-2H-pyran-4-
yloxy)silane (6e) (Table 2, entry 4). Following the general procedure described previously, oxabicycle $4(10.0 \mathrm{mg}, 41.6 \mu \mathrm{~mol})$ was treated with in situ-generated complex $\mathbf{5 b}(40.0 \mu \mathrm{~L}, 0.02$ $\mathrm{M}, 0.80 \mu \mathrm{~mol}$, neat) and o-methylstyrene ($54.0 \mu \mathrm{~L}, 416 \mu \mathrm{~mol}, 10.0$ equiv), the mixture was allowed to stir for 1.0 h . The resulting oil was purified by silica gel chromatography ($50: 1$ hexanes:diethyl ether) to afford $\mathbf{6 e}(8.2 \mathrm{mg}, 23.0 \mu \mathrm{~mol}, 54.0 \%$ yield) as colorless oil. IR (neat): 2950 (s), 2927 (s), 2856 (s , 1471 (m), 1377 (m), 1253 (m), 1069 (s$), 910$ (m), 836 (m), 774 (m), $740(\mathrm{~m}), 715(\mathrm{~m}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.24-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.60(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.90(\mathrm{ddd}, J=17.1,10.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=11.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{ddd}, J=17.2,1.4$,
$1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{ddd}, J=10.6,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.73$ (ddd, $J=15.4,10.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~s}$, 9H), $0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 139.0,136.7,136.3,132.2,131.0,130.1$, 129.2, 127.7, 125.7, 115.6, 76.2, 72.5, 68.5, 41.8, 41.3, 26.1, 20.2, 18.3, -4.3 ; HRMS (ESI ${ }^{+}$) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}$: 359.2406, found: 359.2393; $[\alpha]_{\mathrm{D}}{ }^{20}+40.1\left(\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of $99: 1$ er (98% ee). Enantiomeric purity was determined by HPLC analysis of the corresponding alcohol after removal of the silyl group, in comparison with authentic racemic material.
(2S,4R,6R)-2-Z-(2-Methylstyryl)-6-vinyltetrahydro-2H-pyran-4-ol. Following the previous procedure, pyran 6e was desilylated. IR (neat): 3380 (br), $2941(\mathrm{~m}), 2920(\mathrm{~m}), 2854(\mathrm{~m}), 1486$ (m), 1361 (m), 1301 (m), 1063 (m), 988 (m), 925 (m), 793 (m); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{N}_{3} : $\delta 7.23-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.60(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=17.3,10.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dd}$, $J=11.6,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{ddd}, J=17.2,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{ddd}, J=10.5,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.13-4.06 (m, 1H), 3.85-3.74 (m, 2H), 2.26 (s, 3H), 1.98-1.88 (m, 2H), $1.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.39-1.30$ ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): 138.5, 137.0, 136.1, 132.0, 131.0, 130.1, 129.1, 127.7, $125.8,115.7,76.0,72.4,68.0,41.3,40.7,20.1 ;$ HRMS (ESI') $[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}$: 245.1542, found: 245.1537; $[\alpha]_{D}^{20}+45.9\left(c=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of $99: 1$ er (98% ee). Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (OD column, $97 / 3$ hexanes $/ i-\mathrm{PrOH}, 0.2 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major enantiomer $)=75.93 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor enantiomer $)=69.90 \mathrm{~min}$.

$\#$	time (min)	area	area (\%)	$\#$	time (min)	area	area \%
1	69.81	12734510	48.795	1	69.90	283472	1.046
2	76.22	13363450	51.205	2	75.93	26811780	98.954

(tert-Butyldimethyl((2S,4S,6R)-2-Z-styryl-6-vinyltetrahydro-2H-pyran-4-yloxy)silane

(Table 3, entry 1). Following the general procedure described before, oxabicycle 7 (10.0 mg , $41.6 \mu \mathrm{~mol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(380 \mu \mathrm{~L})$ was treated with in situ-generated complex $5 \mathbf{b}(40.0 \mu \mathrm{~L}, 0.02 \mathrm{M}$, $0.80 \mu \mathrm{~mol}$; final substrate concentration $=0.1 \mathrm{M}$) and styrene ($48.0 \mu \mathrm{~L}, 416 \mu \mathrm{~mol}, 10.0$ equiv.); the mixture was allowed to stir for 1.0 hour. The resulting oil was purified by silica gel chromatography (50:1 hexanes:diethyl ether) to afford $\mathbf{7 a}(12.0 \mathrm{mg}, 35.0 \mu \mathrm{~mol}, 83.0 \%$ yield) as colorless oil. IR (neat): 3016 (w), 2950 (s), 2927 (s), 2855 (s), 1252 (m), 1092 (s), 1053 (s), 910 (m), 828 (s , 772 (m), $690(\mathrm{~m}) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.48(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{ddd}, J=17.3,10.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=11.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (ddd, J $=17.4,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{ddd}, J=10.6,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.32(\mathrm{~m}$, $1 \mathrm{H}), 4.28-4.24(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 139.5,137.1,133.2,130.2,129.1,128.4,127.3,115.1,72.3,68.8,65.2,39.0,38.9$, 26.1, 18.3, -4.6, -4.7; HRMS (ESI ${ }^{+}$) $\left.\mathbf{[M + H}\right]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{2}$ Si: 345.2249, found: 345.2260; $[\alpha]_{\mathrm{D}}{ }^{20}-1.6\left(\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 97:3 er (94\% ee). Enantiomeric purity was determined by analysis of HPLC of the corresponding alcohol after removal of the silyl group, in comparison with authentic racemic material.
(2S,4S,6R)-2-Z-Styryl-6-vinyltetrahydro-2H-pyran-4-ol. Following the procedure described above, pyran 7a was desilylated. IR (neat): 3419 (br), 3016 (w), 2917 (m), 1415 (w), 1308 (m), 1053 (s), 962 (s), 775 (s), 699 (s); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.36-7.23$ (m, 5H), 6.57 (d, J $=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=17.2,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=11.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (ddd, $J=17.4,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{ddd}, J=10.5,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.35(\mathrm{~m}$, $1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$
$\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 139.2,137.0,132.4,132.1,129.1,128.5,127.5,115.5,72.1,68.4,64.8,38.6$, 38.2; $\mathbf{H R M S}\left(\mathbf{E S I}^{+}\right)[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}: 231.1385$, found: 231.1395; $[\alpha]_{\mathrm{D}}{ }^{20}+52.8(\mathrm{c}=$ $0.375, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of 94% ee. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (OD column, 98/2 hexanes $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}$ (major enantiomer) $=23.04 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (minor enantiomer) $=20.74 \mathrm{~min}$.

$\#$	time (min)	area	area \%	$\#$	time (min)	area	area \%
1	19.55	6621971	49.882	1	20.74	372236	2.620
2	22.56	6653320	50.118	2	23.04	13834140	97.380

tert-Butyl((2S,4S,6R)-2-Z-(4-methoxystyryl)-6-vinyltetrahydro-2H-pyran-4-

yloxy)dimethylsilane (7b) (Table 3, entry 2). Following the aforementioned procedure, oxabicycle $7(10.0 \mathrm{mg}, 41.6 \mu \mathrm{~mol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(150 \mu \mathrm{~L})$ was treated with in situ-generated $\mathbf{5 b}$ (60.0 $\mu \mathrm{L}, 0.02 \mathrm{M}, 1.20 \mu \mathrm{~mol}$, final substrate concentration $=0.2 \mathrm{M}$) and p-methoxystyrene ($60.0 \mu \mathrm{~L}$, $416 \mu \mathrm{~mol}, 10.0$ equiv), and the mixture was allowed to stir for 1.0 hour. The resulting oil was purified by silica gel chromatography ($50: 1$ hexanes:diethyl ether) to afford $\mathbf{7 b}$ ($12.5 \mathrm{mg}, 33.4$ $\mu \mathrm{mol}, 80.0 \%$ yield) as colorless oil. IR (neat): 2951 (s), 2928 (s), 2855 (s), 1463 (m), 1360 (m), 1249 (m), 1092 (s), 912 (m), 836 (m), 774 (m); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.23$ (d, $J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=17.2,10.6,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.60(\mathrm{dd}, J=11.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{ddd}, J=17.4,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{ddd}, J=10.6$, $1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.76-$ $1.55(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.0,139.6,132.0$, $130.4,130.0,129.8,115.1,114.0,72.3,69.0,65.2,55.5,39.0,39.0,26.0,18.3,-4.6,-4.7$; HRMS (ESI ${ }^{+}$) $[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}: 375.2355$, found: 375.2370; $[\alpha]_{\mathrm{D}}{ }^{20}+33.2(\mathrm{c}=$ $0.375, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of 92% ee. Enantiomeric purity was determined by analysis of HPLC of the corresponding alcohol after removal of the silyl group, in comparison with authentic racemic material.
(2S,4S,6R)-2-Z-(4-Methoxystyryl)-6-vinyltetrahydro-2H-pyran-4-ol. Following the procedure described before, oxabicycle 7b was desilylated. IR (neat): 3427 (br), 3081 (w), 3012 (m), 2921 (m), 1607 (s), 1511 (s), 1303 (m), 1250 (s), 1176 (m), 1091 (m), 1034 (m), 963 (m), 840 (m); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $)_{3}$: $\delta 7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=17.3,10.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=11.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{ddd}, J=$ $17.2,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (ddd, $J=10.6,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.36$ (m, $1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 159.1,139.2,131.8,130.7,130.4,129.7,115.5,114.0,72.1,68.5$, 65.0, 55.5, 38.6, 38.2; HRMS (ESI ${ }^{+}$) $\left.\mathbf{~ M + H}\right]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3}: 261.1490$, found: 261.1490; $[\alpha]_{D}^{20}+73.3\left(\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 96:4 er (92\% ee). Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (OD column, $98 / 2$ hexanes $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major enantiomer) $=26.00$ $\min , \mathrm{t}_{\mathrm{r}}($ minor enantiomer $)=32.34 \mathrm{~min}$.

$\#$	time (min)	area	area \%	$\#$	time (min)	area	area \%
1	26.07	2750359	50.155	1	26.00	24555790	96.095
2	32.26	2733389	49.845	2	32.34	997822	3.905

tert-Butyldimethyl((2S,4S,6R)-2-Z-(4-(trifluoromethyl)styryl)-6-vinyltetrahydro-2H-pyran-4-yloxy)silane (7c) (Table 3, entry 3). Following the general procedure B, oxabicycle 7 (10.0 $\mathrm{mg}, 41.6 \mu \mathrm{~mol})$ was treated with in situ-generated complex $\mathbf{5 b}(40.0 \mu \mathrm{~L}, 0.02 \mathrm{M}, 0.80 \mu \mathrm{~mol}$, neat) and p-trifluoromethylstyrene ($61.0 \mu \mathrm{~L}, 416 \mu \mathrm{~mol}, 10.0$ equiv); the mixture was allowed to stir for 1.0 hour. The resulting oil was purified by silica gel chromatography (50:1 hexanes:diethyl ether) to afford $7 \mathbf{c}(14.0 \mathrm{mg}, 34.0 \mu \mathrm{~mol}, 81.0 \%$ yield) as a colorless oil. IR (neat): 2952 (s), 2928 (s), 2857 (s), 1463 (m), 1361 (m), 1165 (s$), 1126$ (s$), 1064$ (s$), 853$ (m); ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=17.2,10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=11.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (ddd, J $=17.3,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{ddd}, J=10.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.31(\mathrm{~m}$, $1 \mathrm{H}), 4.26-4.22(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.036(\mathrm{~s}, 3 \mathrm{H}), 0.034$ (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 140.6,139.3,135.2,129.4$ ($\mathrm{q}, J_{\text {CF }}=32.73 \mathrm{~Hz}$), 129.2 , $129.1,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=271.9 \mathrm{~Hz}\right), 125.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.60 \mathrm{~Hz}\right), 115.2,72.3,69.0,65.0,39.0,38.8$, $26.0,18.1,-4.6,-4.8 .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-63.01$; HRMS (ESI ${ }^{+}$) $[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Si}: 413.2123$, found: 413.2120; $[\alpha]_{\mathrm{D}}{ }^{20}+23.6\left(\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of $98: 2$ er (96% ee). Enantiomeric purity was determined by analysis of HPLC of the corresponding alcohol after removal of the silyl group, in comparison with authentic racemic material.
(2S,4S,6R)-2-Z-(4-(Trifluoromethyl)styryl)-6-vinyltetrahydro-2H-pyran-4-ol. Following the procedure C, pyran 7c was desilylated. IR (neat): 3385 (br), 2953 (m), 2923 (m), 1616 (m),

1402 (m), 1324 (s), 1164 (s), 1123 (s$), 1064$ (s$), 989$ (m), 862 (m); ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=$ $17.2,10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=11.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{ddd}, J=17.3,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.14 (ddd, $J=10.5,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.30(\mathrm{~m}, 1 \mathrm{H})$, 1.80-1.72 (m, 2H), 1.70-162 (m, 2H); ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 140.4,139.0,134.3$, $131.0,129.6\left(\mathrm{q}, J_{\mathrm{CF}}=32.30 \mathrm{~Hz}\right), 129.2,125.8\left(\mathrm{q}, J_{\mathrm{CF}}=271.9 \mathrm{~Hz}\right), 125.5\left(\mathrm{q}, J_{\mathrm{CF}}=3.6 \mathrm{~Hz}\right), 116.0$, 72.1, 68.2, 64.6, 38.4, 38.2; HRMS (ESI') $[\mathbf{M}+\mathbf{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{2}: 299.1258$, found: 299.1245; $[\alpha]_{\mathrm{D}}{ }^{20}+96.2\left(\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 98:2 er (96% ee). Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (OD column, 99.5/0.5 hexanes $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}$ (major enantiomer $)=40.87 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor enantiomer $)=49.27 \mathrm{~min}$.

$\#$	time (h)	area	area \%	$\#$	time (h)	area	area \%
1	41.58	5815648	50.116	1	40.87	24201800	98.368
2	47.61	5788734	49.884	2	49.27	401629	1.632

(2S,4R,6R)-4-(Benzyloxy)-2-Z-styryl-6-vinyltetrahydro-2H-pyran (8) (Table 3, entry 4). Following the general procedure described above, oxabicycle 10 ($10.0 \mathrm{mg}, 46.0 \mu \mathrm{~mol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}$ $(360 \mu \mathrm{~L})$ was treated with in situ-generated complex 5 b ($100.0 \mu \mathrm{~L}, 0.02 \mathrm{M}, 2.10 \mu \mathrm{~mol}$, final substrate concentration $=0.1 \mathrm{M})$ and styrene ($53.0 \mu \mathrm{~L}, 0.460 \mathrm{mmol}, 10.0$ equiv), the mixture was allowed to stir for 1.0 hour at $60^{\circ} \mathrm{C}$. The resulting oil was purified by silica gel chromatography ($30: 1$ hexanes:diethyl ether) to afford $\mathbf{8 a}(11.2 \mathrm{mg}, 34.4 \mu \mathrm{~mol}, 75.0 \%$ yield) as colorless oil. IR (neat): 2944 (m), 2855 (m), 1494 (w), 1452 (w), 1358 (m), 1066 (s), 986 (m), 736(s), 697 (s); ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.37-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.60(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddd}, J=17.2$, $10.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=11.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{ddd}, J=17.2,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$
(ddd, $J=10.6,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.28-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.48$ $(\mathrm{m}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 138.7,138.6$, $137.0,132.2,131.9,129.0,128.7,128.5,127.8,127.5,127.2,115.7,76.2,74.2,72.3,69.8,38.2$, 37.8; HRMS (ESI') $[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2}: 321.1854$, found: $321.1847 ;[\alpha]_{\mathrm{D}}{ }^{20}+12.1(\mathrm{c}=$ $0.5, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample of $92: 8$ er (84% ee). Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (OJ-H column, 99.8/0.2 hexanes $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major enantiomer $)=99.57 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ (minor enantiomer) $=80.51 \mathrm{~min}$.

$\#$	time (min)	area	area \%	$\#$	time (min)	area	area \%
1	77.93	19191690	49.926	1	80.51	1050521	7.695
2	101.38	19248600	50.074	2	99.57	12601580	92.305

(2S,4S,6R)-4-(Benzyloxy)-2-Z-styryl-6-vinyltetrahydro-2H-pyran (9) (Table 3, entry 9). Following the general procedure described before, oxabicycle ($10.0 \mathrm{mg}, 46.0 \mu \mathrm{~mol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(420$ $\mu \mathrm{L})$ was treated with in situ-generated $\mathbf{5 b}(40.0 \mu \mathrm{~L}, 0.02 \mathrm{M}, 0.80 \mu \mathrm{~mol}$, final substrate concentration $=0.1 \mathrm{M})$ and styrene ($53.0 \mu \mathrm{~L}, 0.460 \mathrm{mmol}, 10.0$ equiv); the mixture was allowed to stir for 1.0 hour. The resulting oil was purified by silica gel chromatography ($30: 1$ hexanes:diethyl ether) to afford $9 \mathbf{9 a}(12.0 \mathrm{mg}, 37.5 \mu \mathrm{~mol}, 80.0 \%$ yield) as colorless oil. IR (neat): 3061 (w), 3025 (w), 2919 (w), 2855 (w), 1494 (w), 1452 (w), 1337 (m), 1052(s), 989 (m), 695 (s); ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}$): $\delta 7.36-7.23(\mathrm{~m}, 10 \mathrm{H}), 6.52(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86$ (ddd, J $=17.0,10.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=11.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{ddd}, J=17.4,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.10 (ddd, $J=10.7,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.53$ (dd, $J=15.5,11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-$ $4.32(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 139.3,139.0,137.1,132.8,131.3,129.1,128.6,128.5,127.7,127.4,126.4,115.4$, $72.7,71.5,70.3,69.1,35.5,35.3$; HRMS (ESI ${ }^{+}$) $[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{2}: 321.1854$, found: 321.1863; $[\alpha]_{\mathrm{D}}{ }^{20}+52.8\left(\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of $86 \% \mathrm{ee}$. Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (OJ-H column, 99.8/0.2 hexanes $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major enantiomer $)=$ $51.69 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor enantiomer $)=82.77 \mathrm{~min}$.

$\#$	time (min)	area	area \%	$\#$	time (min)	area	area \%
1	53.90	15189940	49.649	1	51.69	31343360	94.147
2	81.78	15404440	50.351	2	82.77	1948478	5.853

((Z)-3-((2S,4R,6R)-4-(Benzyloxy)-6-vinyltetrahydro-2H-pyran-2-Z-yl)allyloxy)(tert-
butyl)dimethylsilane (11) (eq 2). Following the previously described procedure, oxabicycle 10 $(10.0 \mathrm{mg}, 46.0 \mu \mathrm{~mol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(360 \mu \mathrm{~L})$ was treated with in situ-generated complex $\mathbf{5 b}(100.0 \mu \mathrm{~L}$, $0.02 \mathrm{M}, 2.10 \mu \mathrm{~mol}$, final substrate concentration $=0.1 \mathrm{M}$) and allylsilyl ether ($80.0 \mathrm{mg}, 460$ $\mu \mathrm{mol}, 10.0$ equiv.), the mixture was allowed to stir for 1.0 hour. The resulting oil was purified by silica gel chromatography ($50: 1$ hexanes:diethyl ether) to afford 11 ($8.1 \mathrm{mg}, 21.0 \mu \mathrm{~mol}, 45.0 \%$ yield) as colorless oil. IR (neat): 2951 (m), 2928 (m), 2883 (m), 2856 (m), 1496 (w), 1462 (w), 1408 (w), 1356 (m), 1254 (m), 1072 (s), 986 (m), 735 (s), 697 (s$) ;{ }^{1} \mathbf{H}$ NMR ($\left.400 \mathbf{~ M H z , ~ C D C l}\right)_{3}$): $\delta 7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.86(\mathrm{ddd}, J=18.8,10.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.45(\mathrm{~m}$, $1 \mathrm{H}), 5.24$ (ddd, $J=17.3,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{ddd}, J=10.6,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H})$, 4.25 (ddd, $J=5.9,1.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H})$, 2.12-2.06 (m, 1H), 2.04-1.97 (m, 1H), 1.42-1.29 (m, 2H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 139.1,138.5,132.0,131.0,128.7,127.8,127.6,115.6,76.4,74.5,72.5$, 69.8, 60.1, 38.3, 37.7, 26.2, 18.3, -4.90, -4.97; HRMS (ESI ${ }^{+}$) $[\mathbf{M + H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si}$: 389.2512, found: 389.2506; $[\alpha]_{\mathrm{D}}{ }^{20}-3.2\left(\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of $88: 12$ er (76% ee). Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material of the corresponding alcohol.
(Z)-3-((2S,4R,6R)-4-(Benzyloxy)-6-vinyltetrahydro-2H-pyran-2-yl)prop-2-en-1-ol. Following the procedure described before, pyran 10 was desilylated. IR (neat): 3405 (br), 3026 (m), 2920 (m), 2851 (m), 1454 (m), 1356 (m), 1302 (m), 1069 (m), 1009 (m), 926 (m), 737 (m); ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.37-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.86(\mathrm{ddd}, J=20.8,10.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.73(\mathrm{~m}$, $1 \mathrm{H}), 5.61-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.25$ (ddd, $J=17.3,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (ddd, $J=10.6,1.3,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.27-4.11(\mathrm{~m}, 3 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{ddd}, J=20.0,11.1,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.14-2.10 (m, 1 H$), 2.07-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 138.6,138.2,132.4,132.0,128.7,128.0,127.8,116.0,76.7,74.3,72.5,70.0$, 59.3, 38.3, 37.7; HRMS (ESI ${ }^{+}$) $\left.\mathbf{M + H}\right]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3}: 275.1647$, found: 275.1654; $[\alpha]_{\mathrm{D}}{ }^{20}$ $+7.5\left(\mathrm{c}=0.375, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample of 88:12 er ($76 \% \mathrm{ee}$). Enantiomeric purity was determined by chiral HPLC analysis in comparison with authentic racemic material (OD column, 98.0/2.0 hexanes $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}$ (major enantiomer $)=36.66 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor enantiomer $)=31.03 \mathrm{~min}$
Proof of Z-selectivity: The stereochemistry of the product olefin was established through NOESY experiments, as summarized below. For the complete spectrum, see page 42-43 of Supporting Information Part B.

$\#$	time (min)	area	area \%	$\#$	time (min)	area	area \%
1	30.88	1406152	51.407	1	31.03	640265	11.734
2	36.15	1329180	48.593	2	36.66	4816096	88.266

■ For additional examples of previously reported Z-selective olefin metathesis processes, see: (a) Randall, M. L.; Tallarico, J. A.; Snapper, M. L. J. Am. Chem. Soc. 1995, 117, 9610-9611. (b) Tallarico, J. A.; Randall, M. L.; Snapper, M. L. Tetrahedron, 1997, vol. 53, 16511-16520. (c) Kang, B.; Kim, D.; Do, Y.; Chang, S. Organic Letters, 2003, vol. 5, 3041-3043. (d) Kang, B.; Lee, J. M.; Kwak, J.; Lee, Y. S.; Chang, S. J. Org. Chem. 2004, 69, 7661-7664. (e) Sashuk, V.; Samojlowicz, C.; Szadkowska, A.; Grela, K. Chem. Commun., 2008, 2468-2470.
\square Proof of Absolute Stereochemistry. The identity of the major enantiomer from Mocatalyzed enantioselective ROCM was established through X-ray crystallography (see below). The stereochemical assignments for other pyran products obtained in this study are by inference.

Table 1. Crystal data and structure refinement

Identification code	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrO}_{3}$
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrO}_{3}$
Formula weight	413.30
Temperature	100(2) K
Wavelength	$0.71073 \approx$
Crystal system	Monoclinic
Space group	P 21
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=5.916(4) \approx & \alpha=90 \infty . \\ \mathrm{b}=7.695(5) \approx & \beta=92.434(8) \infty . \\ \mathrm{c}=21.225(13) \approx & \gamma=90 \infty . \end{array}$
Volume	$965.4(10) \approx^{3}$
Z	2
Density (calculated)	$1.422 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.147 \mathrm{~mm}^{-1}$
$F(000)$	424
Crystal size	$0.10 \times 0.05 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	2.88 to 28.27∞.
Index ranges	$-7<=\mathrm{h}<=7,-10<=\mathrm{k}<=10,-27<=1<=28$
Reflections collected	11087
Independent reflections	$4556[\mathrm{R}(\mathrm{int})=0.0441]$
Completeness to theta $=28.27 \infty$	98.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9583 and 0.8139
Refinement method	Full-matrix least-squares on F^{2}

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

4556 / 22 / 298
1.011
$\mathrm{R} 1=0.0378, \mathrm{wR} 2=0.0899$
$\mathrm{R} 1=0.0438, \mathrm{wR} 2=0.0931$
$0.019(9)$
0
0.940 and -0.453 e. \approx^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\approx^{2} \mathrm{x}\right.$ $10^{\mathbf{3}}$). $\mathbf{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\operatorname{Br}(1)$	718(1)	4254(1)	9901(1)	33(1)
$\mathrm{O}(1)$	-1394(3)	1162(3)	6940(1)	22(1)
$\mathrm{O}(2)$	-4850(4)	740(4)	7317(1)	36(1)
$\mathrm{O}(3)$	2232(3)	-861(4)	5917(1)	20(1)
C(1)	-347(5)	3244(4)	9131(1)	22(1)
C(2)	1010(5)	3322(4)	8616(2)	22(1)
C(3)	226(5)	2634(4)	8049(1)	21(1)
C(4)	-1930(5)	1886(4)	7998(1)	18(1)
C(5)	-3269(6)	1826(5)	8520(2)	22(1)
C(6)	-2476(5)	2497(4)	9094(1)	24(1)
C(7)	-2914(5)	1195(4)	7393(1)	21(1)
C(8)	-2048(6)	254(5)	6354(2)	23(1)
C(9)	-889(5)	1196(5)	5831(1)	23(1)
$\mathrm{C}(10)$	1673(5)	942(4)	5874(1)	20(1)
$\mathrm{C}(11)$	1350(5)	-1654(4)	6473(1)	20(1)
C(12)	-1227(6)	-1596(5)	6423(2)	24(1)
C(13)	2742(5)	1610(4)	5296(1)	23(1)
C(14)	4140(5)	2921(5)	5280(2)	27(1)
C(15)	2299(6)	-3451(4)	6504(2)	27(1)
C(16)	3280(6)	-4208(4)	7002(2)	29(1)
C(17)	3576(6)	-3494(4)	7647(2)	26(1)
C(18)	5589(6)	-3791(5)	7998(2)	32(1)
C(19)	5930(7)	-3144(6)	8603(2)	34(1)
C(20)	4220(6)	-2222(5)	8879(2)	33(1)
C(21)	2208(6)	-1928(5)	8541(2)	28(1)
$\mathrm{C}(22)$	1884(5)	-2550(4)	7938(2)	23(1)

Table 3. Bond lengths [\approx] and angles $[\infty]$

$\operatorname{Br}(1)-\mathrm{C}(1)$	1.893(3)
$\mathrm{O}(1)-\mathrm{C}(7)$	1.344(3)
$\mathrm{O}(1)-\mathrm{C}(8)$	1.464(4)
$\mathrm{O}(2)-\mathrm{C}(7)$	1.202(4)
$\mathrm{O}(3)-\mathrm{C}(10)$	$1.428(4)$
$\mathrm{O}(3)-\mathrm{C}(11)$	1.446 (3)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.384(5)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.384(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.377(4)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.916(18)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.399(4)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.944(18)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.391(4)
$\mathrm{C}(4)-\mathrm{C}(7)$	1.485(4)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.385(5)$
$\mathrm{C}(5)-\mathrm{H}(5)$	0.940(19)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.941(18)
$\mathrm{C}(8)-\mathrm{C}(12)$	1.509(5)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.514(5)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.964(18)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.527(4)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.980(19)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.978(18)
$\mathrm{C}(10)-\mathrm{C}(13)$	$1.496(4)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.987(18)
$\mathrm{C}(11)-\mathrm{C}(15)$	1.493 (5)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.525(5)$
$\mathrm{C}(11)-\mathrm{H}(11)$	0.994(18)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.982(18)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.974(18)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.306(5)$
$\mathrm{C}(13)-\mathrm{H}(13)$	0.945(18)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.951(18)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.949(19)

$\mathrm{C}(15)-\mathrm{C}(16)$	1.319 (5)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.925 (18)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.480 (5)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.918(18)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.396(5)$
$\mathrm{C}(17)-\mathrm{C}(22)$	$1.401(5)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.385(6)$
$\mathrm{C}(18)-\mathrm{H}(18)$	0.965 (19)
$\mathrm{C}(19)$-C(20)	1.385(6)
$\mathrm{C}(19)-\mathrm{H}(19)$	0.957(19)
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.382(5)$
$\mathrm{C}(20)-\mathrm{H}(20)$	0.949(19)
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.373(5)$
$\mathrm{C}(21)-\mathrm{H}(21)$	0.969(18)
$\mathrm{C}(22)-\mathrm{H}(22)$	0.959(18)
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(8)$	117.1(2)
$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(11)$	111.8(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	122.0(3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Br}(1)$	119.3(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Br}(1)$	118.7(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	119.2(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	116(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	125(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.9(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	124(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	116(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.0(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	117.5(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	122.5(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	120.3(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	123(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	117(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	118.6(3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	117(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	124(2)

$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{O}(1)$	124.1(3)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(4)$	123.9(3)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(4)$	112.0(2)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(12)$	107.2(3)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	106.5(3)
$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{C}(9)$	111.6(3)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{H}(8)$	109(2)
$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{H}(8)$	109(2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	114(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	112.0(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	107(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	110(2)
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	110(3)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(13)$	106.3(2)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	110.8(3)
$\mathrm{C}(13)-\mathrm{C}(10)-\mathrm{C}(9)$	111.1(2)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{H}(10)$	113(2)
$\mathrm{C}(13)-\mathrm{C}(10)-\mathrm{H}(10)$	109(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	107(2)
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(15)$	106.2(2)
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	109.0(2)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	113.8(3)
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{H}(11)$	107(2)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{H}(11)$	112(2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	108.2(17)
$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{C}(11)$	110.5(3)
$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	113(2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	106(2)
$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	110(2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	111(2)
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	106(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(10)$	125.2(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	121(2)
$\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{H}(13)$	114(2)

$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	124(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	125(2)
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	111(3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(11)$	126.6(3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	116(3)
$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{H}(15)$	117(3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	127.5(3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120(2)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	113(2)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	117.4(3)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	119.8(3)
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{C}(16)$	122.8(3)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	121.5(4)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	119(2)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120(2)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	119.7(4)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	117(3)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	123(3)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	119.6(4)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	117(2)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	123(2)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	120.6(3)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	117(2)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	121(2)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(17)$	121.1(3)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	118(2)
$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{H}(22)$	121(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\approx^{2} \times 10^{3}\right)$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Br}(1)$	$44(1)$	$36(1)$	$18(1)$	$-4(1)$	$-3(1)$	$-9(1)$
$\mathrm{O}(1)$	$15(1)$	$33(1)$	$19(1)$	$-7(1)$	$0(1)$	$-3(1)$
$\mathrm{O}(2)$	$19(1)$	$66(2)$	$24(1)$	$-9(1)$	$2(1)$	$-13(1)$
$\mathrm{O}(3)$	$22(1)$	$23(1)$	$16(1)$	$0(1)$	$4(1)$	$1(1)$
$\mathrm{C}(1)$	$29(2)$	$22(2)$	$15(1)$	$-1(1)$	$-5(1)$	$2(1)$
$\mathrm{C}(2)$	$20(2)$	$20(2)$	$25(2)$	$0(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(3)$	$20(2)$	$23(2)$	$20(2)$	$3(1)$	$3(1)$	$2(1)$
$\mathrm{C}(4)$	$17(1)$	$20(2)$	$19(1)$	$0(1)$	$-1(1)$	$2(1)$
$\mathrm{C}(5)$	$24(2)$	$20(2)$	$22(2)$	$2(1)$	$3(1)$	$0(1)$
$\mathrm{C}(6)$	$26(2)$	$26(2)$	$19(1)$	$4(1)$	$5(1)$	$1(1)$
$\mathrm{C}(7)$	$20(2)$	$24(2)$	$21(2)$	$0(1)$	$0(1)$	$3(1)$
$\mathrm{C}(8)$	$18(2)$	$33(2)$	$16(2)$	$-6(1)$	$-2(1)$	$-2(1)$
$\mathrm{C}(9)$	$19(2)$	$33(2)$	$18(1)$	$1(1)$	$-3(1)$	$4(1)$
$\mathrm{C}(10)$	$19(1)$	$24(2)$	$15(1)$	$0(1)$	$0(1)$	$2(1)$
$\mathrm{C}(11)$	$23(2)$	$24(2)$	$13(1)$	$1(1)$	$2(1)$	$-2(1)$
$\mathrm{C}(12)$	$25(2)$	$31(2)$	$15(2)$	$-3(1)$	$1(1)$	$-8(1)$
$\mathrm{C}(13)$	$22(2)$	$30(2)$	$17(1)$	$2(1)$	$2(1)$	$5(1)$
$\mathrm{C}(14)$	$23(2)$	$31(2)$	$27(2)$	$8(1)$	$2(1)$	$6(1)$
$\mathrm{C}(15)$	$31(2)$	$24(2)$	$26(2)$	$-4(1)$	$7(1)$	$-2(1)$
$\mathrm{C}(16)$	$36(2)$	$18(2)$	$33(2)$	$3(1)$	$12(2)$	$3(1)$
$\mathrm{C}(17)$	$28(2)$	$21(2)$	$30(2)$	$11(1)$	$4(1)$	$-3(1)$
$\mathrm{C}(18)$	$25(2)$	$27(2)$	$46(2)$	$16(2)$	$2(2)$	$2(1)$
$\mathrm{C}(19)$	$31(2)$	$30(2)$	$41(2)$	$15(2)$	$-11(2)$	$-6(2)$
$\mathrm{C}(20)$	$36(2)$	$33(2)$	$28(2)$	$13(2)$	$-7(2)$	$-11(2)$
$\mathrm{C}(21)$	$31(2)$	$30(2)$	$22(2)$	$8(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(22)$	$20(2)$	$26(2)$	$24(2)$	$8(1)$	$0(1)$	$-1(1)$

Table 5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\approx^{2} \times 10{ }^{\mathbf{3}}\right.$)

	x	y	z	U(eq)
H(2)	2410(40)	3840(40)	8618(15)	26
H(3)	1070(50)	2620(50)	7682(12)	25
H(5)	-4630(40)	1200(50)	8474(18)	27
H(6)	-3340(50)	2570(50)	9454(12)	28
H(8)	-3670(30)	240(50)	6305(17)	27
H(9A)	-1240(60)	2440(30)	5853(17)	28
H(9B)	-1510(50)	720(50)	5433(11)	28
H(10)	2250(60)	1610(40)	6243(13)	23
H(11)	1870(50)	-940(50)	6842(11)	24
H(12A)	-1680(60)	-2320(40)	6059(13)	28
H(12B)	-1880(60)	-2140(50)	6786(13)	28
H(13)	2360(60)	960(40)	4928(12)	27
H(14A)	4550(60)	3620(40)	5637(13)	32
H(14B)	4860(60)	3320(50)	4917(13)	32
H(15)	2180(60)	-4110(50)	6139(13)	33
H(16)	3970(50)	-5270(30)	6958(17)	34
H(18)	6790(50)	-4440(50)	7813(18)	39
H(19)	7330 (50)	-3430(60)	8821(18)	41
H(20)	4410(60)	-1640(50)	9272(12)	40
H(21)	1060(50)	-1160(40)	8699(16)	33
H(22)	440(40)	-2340(50)	7728(15)	28

Table 6. Torsion angles [∞]

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-0.1(5)
$\operatorname{Br}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-178.2(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	0.7(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-0.5(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	177.1(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-0.3(5)
$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-178.1(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-0.7(5)
$\operatorname{Br}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	177.4(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	0.9(5)
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	-10.4(5)
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(4)$	170.5(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{O}(2)$	7.0(5)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{O}(2)$	-170.7(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{O}(1)$	-173.8(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{O}(1)$	8.5(4)
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(12)$	-92.4(3)
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	148.0(3)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	68.8(3)
$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-47.8(4)
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(13)$	178.1(2)
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	-61.0(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(3)$	52.1(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(13)$	170.0(3)
$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(15)$	-172.8(2)
$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	64.2(3)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{C}(11)$	-65.2(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{C}(11)$	51.1(3)
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(8)$	-58.3(3)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(8)$	-176.6(3)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{C}(14)$	-124.5(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{C}(14)$	114.9(4)
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(16)$	131.6(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(16)$	-108.5(4)

$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$3.0(6)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-140.7(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(22)$	$40.9(5)$
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-1.6(5)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$180.0(3)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$1.9(5)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$-1.3(5)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$0.4(5)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(17)$	$-0.1(5)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	$0.7(5)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	$179.1(3)$

Symmetry transformations used to generate equivalent atoms:

[^0]: (1) Hoffman, H. M. R.; Kim, H. Eur. J. Org. Chem. 2000, 2195-2201

[^1]: (2) (a) Hock, A. S.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 16373-16375. (b) Singh, R.; Czekelius, C.; Schrock, R. R.; Müller, P. M.; Hoveyda, A. H. Organometallics 2007, 26, 2528-2539.
 (3) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008, 456, 933-937. (b)

 Sattely, S. E.; Meek, S. J.; Malcolmson, S. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc., ASAP.

