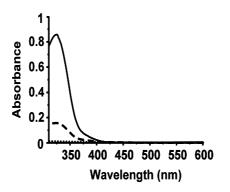
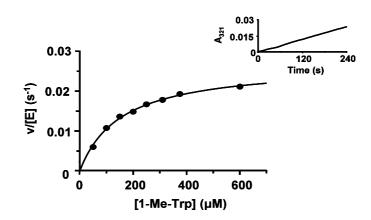
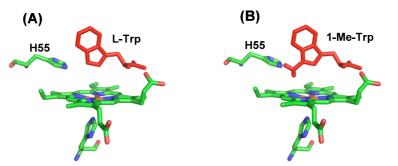

## Reassessment of the Reaction Mechanism for the Heme Dioxygenases


Nishma Chauhan,<sup>†</sup> Sarah J. Thackray,<sup>‡</sup> Sara A. Rafice,<sup>†</sup> Graham Eaton,<sup>†</sup> Michael Lee,<sup>†</sup> Igor Efimov,<sup>†</sup> Jaswir Basran,<sup>§</sup> Paul R. Jenkins,<sup>†</sup> Christopher G Mowat,<sup>‡</sup> Stephen K. Chapman,<sup>\*,‡</sup> and Emma Lloyd Raven<sup>\*,†</sup>

<sup>†</sup> Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, U.K., <sup>‡</sup> EaStCHEM, School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., and <sup>§</sup> Department of Biochemistry, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK.




Supporting information


*Figure S1.* Chromatogram of commercially available 1-Me-L-Trp (A) before and (B) after purification by HPLC. The HPLC retention time for L-Trp (data not shown) was found to be identical to the contaminating species labeled \* in (A). (C) NMR spectrum of purified 1-Me-L-Trp from (B). <sup>1</sup>H NMR (300 MHz,  $D_2O/CD_3CN$ )  $\delta$  3.33-3.65 (m, 2H, H<sub>B</sub> + H<sub>B</sub>), 3.93 (s, 3H, H<sub>G</sub>), 4.12 (dd, 1H, J = 8.2 Hz, 4.7 Hz, H<sub>A</sub>), 7.33 (s + t, 2H, J =7.5 Hz, H<sub>H</sub> + H<sub>D/E</sub>), 7.45 (t, 1H, J =7.5 Hz, H<sub>D/E</sub>), 7.61 (d, 1H, J =8.5 Hz, H<sub>C/F</sub>), 7.85 (d, 1H, J =8.1 Hz, H<sub>C/F</sub>). Inset: <sup>1</sup>H NMR spectra of commercially available L-Trp (red) and purified 1-Me-L-Trp (black) expanded between the 7-8 ppm region. \* indicates the peaks that have shifted significantly in respect to the spectrum of 1-Me-L-Trp and therefore confirm the removal of L-Trp from purified 1-Me-L-Trp. HPLC conditions: wavelength - 280 nm; column - RP C18, 250 x 4.6 mm; eluant - H<sub>2</sub>O:MeCN, 90:10 v/v; flow rate - 1 ml/min. NMR conditions: machine – Bruker DPX300; basic frequency – <sup>1</sup>H = 300.03 MHz; spectral width 16 ppm.



*Figure S2.* UV-visible spectrum of *N*-formyl-kynurenine (solid line) and *N*-formylmethylkynurenine (dashed line) showing absorption bands at 321 nm. Spectra were obtained after isolation of the compounds from steady state assays with hIDO. Parallel experiments carried out with 1-Me-L-Trp in the absence of enzyme show no product formation at 321 nm (dotted line).



*Figure S3.* Steady state oxidation of 1-Me-L-Trp by hIDO. Solid line shows a fit of the data to the Michaelis-Menten equation. Inset: Time-dependence of absorbance changes at 321 nm, which report on *N*-formyl-methylkynurenine formation. Conditions: Tris/HCI buffer, pH 8.0, 25.0 °C. Reactions in the presence and absence of enzyme (Figure S2) confirm that product formation is due to enzymatic oxidation alone.



*Figure S4.* (A) Crystal structure of *Xc*TDO in complex with (A) L-Trp<sup>8</sup>; (B) A model of 1-Me-L-Trp binding to *Xc*TDO generated by overlay of 1-Me-L-Trp on the L-Trp coordinates in (A).

| <i>Table S1.</i> Inhibition data $(K_i)$ for inhibition of L-Trp oxidation by                           |
|---------------------------------------------------------------------------------------------------------|
| 1-Me-L-Trp (dash indicates no measurable activity).                                                     |
| <sup>a</sup> The high $K_{M}$ in this case meant that a reliable measure of $K_{i}$ was not accessible. |

|       | Variant | $K_{i}(\mu M)$ |
|-------|---------|----------------|
| hIDO  | native  | $3.4 \pm 0.4$  |
|       | S167A   | $2.2 \pm 0.2$  |
| hTDO  | native  | -              |
|       | H76S    | а              |
| XcTDO | native  | -              |
|       | H55A    | $150 \pm 10$   |
|       | H55S    | $400 \pm 50$   |