Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents

Elton P Hudson ${ }^{1}$, Ross K Eppler ${ }^{1}$, Julianne M Beaudoin ${ }^{1}$, Jonathan S Dordick ${ }^{2}$, Jeffrey A Reimer ${ }^{1}$, Douglas S Clark ${ }^{1 *}$
${ }^{1}$ Department of Chemical Engineering, University of California, Berkeley, California 94720,
${ }^{2}$ Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180

Enzyme Structure in Tetrahydrofuran

Active-site structure was assessed through the steady state ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ Nuclear Overhauser Effect (NOE) enhancement factor. The NOE in THF was -0.73 at $a_{w}=0$, indicative of a folded but not tightly packed active-site, and increased sharply at between $\mathrm{a}_{\mathrm{w}}=0.1-0.3$ (Figure S1A). This evinces a loss of proton contact around the fluorine nucleus and is typical of an unstructured environment. ${ }^{1}$ Interestingly, at the hydration level where the enzyme exhibited maximum catalytic activity, $\mathrm{a}_{\mathrm{w}}=0.2$, an NOE of -0.6 was recorded, suggesting that the active-site was at least partially unfolded. The NOE in isooctane at $\mathrm{a}_{\mathrm{w}}=0$ was -0.82 , close to the aqueous enzyme NOE of -0.85 , and did not change at full hydration.

Figure S1. Global and active-site stability of 4FBS-subtilisin in tetrahydrofuran. (A) ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ NOE (ㅁ) and molar ellipticity () were calculated as described in Experimental.

Empirical Relation Between ${ }^{19}$ F Chemical Shift and Solvent Dielectric Constant
Values for the chemical shift were taken at infinite dilution for acetone, isooctane, and 1propanol.

Figure S2. Calibration of ${ }^{19} \mathrm{~F}$ chemical shift with solvent dielectric constant. The aromatic ${ }^{19} \mathrm{~F}$ resonance of $4 \mathrm{FBSF}(10-500 \mu \mathrm{M})$ is referenced to CFCl_{3} at 376 MHz . Solvents used were $1-$ $\operatorname{PrOH}(\varepsilon=20.1)$, acetone (20.6), THF (7.8), methylene chloride (8.9), t-butanol (12.5), hexane (1.9), isooctane (2.0)

References

(1) Kairi, M.; Gerig, J. T. Mag Res Chem 1990, 28, 47-55.

