Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents

Elton P Hudson¹, Ross K Eppler¹, Julianne M Beaudoin¹, Jonathan S Dordick², Jeffrey A Reimer¹, Douglas S Clark¹*

Enzyme Structure in Tetrahydrofuran

Active-site structure was assessed through the steady state $^1\text{H-}^{19}\text{F}$ Nuclear Overhauser Effect (NOE) enhancement factor. The NOE in THF was -0.73 at a_w =0, indicative of a folded but not tightly packed active-site, and increased sharply at between a_w = 0.1-0.3 (Figure S1A). This evinces a loss of proton contact around the fluorine nucleus and is typical of an unstructured environment. Interestingly, at the hydration level where the enzyme exhibited maximum catalytic activity, a_w =0.2, an NOE of -0.6 was recorded, suggesting that the active-site was at least partially unfolded. The NOE in isooctane at a_w =0 was -0.82, close to the aqueous enzyme NOE of -0.85, and did not change at full hydration.

Figure S1. Global and active-site stability of 4FBS-subtilisin in tetrahydrofuran. (A) ${}^{1}\text{H}-{}^{19}\text{F}$ NOE (\Box) and molar ellipticity (\blacksquare) were calculated as described in *Experimental*.

Empirical Relation Between ¹⁹F Chemical Shift and Solvent Dielectric Constant

Values for the chemical shift were taken at infinite dilution for acetone, isooctane, and 1-propanol.

¹Department of Chemical Engineering, University of California, Berkeley, California 94720, ²Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180

Figure S2. Calibration of 19 F chemical shift with solvent dielectric constant. The aromatic 19 F resonance of 4FBSF (10-500 μ M) is referenced to CFCl₃ at 376MHz. Solvents used were 1-PrOH (ϵ =20.1), acetone (20.6), THF (7.8), methylene chloride (8.9), t-butanol (12.5), hexane (1.9), isooctane (2.0)

References

(1) Kairi, M.; Gerig, J. T. Mag Res Chem **1990**, 28, 47-55.