Total Synthesis of (–)-Lycorine and (–)-2-*epi*-Lycorine by Asymmetric Conjugate Addition Cascade

Ken-ichi Yamada, Mitsuaki Yamashita, Takaaki Sumiyoshi, Katsumi Nishimura, and Kiyoshi Tomioka*

Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.

tomioka@pharm.kyoto-u.ac.jp

Contents

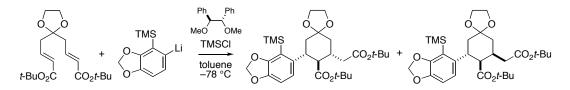
Experimental Procedures	
NMR Charts of the Products	S19
HPLC Traces of 7 and 9	S51

General.

All melting points are uncorrected. Silica gel was used for column chromatography. NMR (500 MHz for ¹H and 125 MHz for ¹³C) was measured in CDCl₃ unless otherwise mentioned. Chemical shifts and coupling constants are presented in ppm δ relative to tetramethylsilane and Hz, respectively. Abbreviations are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. ¹³C peak multiplicity assignments were made based on DEPT data. The wave numbers of maximum absorption peaks of IR spectroscopy are presented in cm⁻¹. POCl₃ and *m*-CPBA were purified by standard protocols prior to use.¹ Other reagents were purchased from chemical companies and used as received. Except for MeOH and MeCN, dehydrated solvents were purchased for the reactions and used without further desiccation.

Total Synthesis of Lycorine.

tert-Butyl (2*E*,2'*E*)-4,4'-(1,3-dioxolane-2,2-diyl)dibut-2-enoate (5):

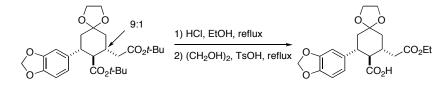

To a solution of dimethyl 1,3-dioxolane-2,2-diacetate² (21.8 g, 100 mmol) in toluene (500 mL) was added DIBAL (1.0 M in hexane, 200 mL, 200 mmol) over 1 h at -78 °C, and the mixture was stirred at the same temperature for 1 h. MeOH (8.1 mL) was added at -78 °C, and the mixture was stirred at the same temperature for additional 15 min. H₂O (11 mL) in MeOH (16 mL) was added at -78 °C, and the mixture was allowed to warm up to room temperature. The mixture was filtered through Celite, and the filtrate was dried over Na₂SO₄. Concentration gave brown oil (16.0 g), which was then dissolved in toluene (400 mL). To the solution, was added (*t*-butoxycarbonylmethylene)triphenylphosphorane (82.7

¹ D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press, Oxford, UK, 1988.

² R. J. Davenport. A. C. Regan, Tetrahedron Lett. 2000, 41, 7619–7622.

g, 220 mmol), and the mixture was stirred for 3 h at room temperature. After addition of hexane (200 mL), the reaction mixture was filtered through Celite, and the filtrate was dried over Na₂SO₄. Concentration and column chromatography (hexane/Et₂O = 4/1) gave the titled dialkenoate (18.2 g, 51% yield in 2 steps) as colorless gum. ¹H NMR: 1.48 (s, 18H), 2.50 (dd, J = 1.3, 7.6, 4H), 3.97 (s, 4H), 5.82 (dd, J = 1.3, 15.2, 2H), 6.82 (dt, J = 7.6, 15.2, 2H). ¹³C NMR: 28.1 (CH₃), 40.5 (CH₂), 65.4 (CH₂), 80.2 (C), 109.4 (C), 126.6 (CH), 141.1 (CH), 165.4 (C). IR (neat): 2978, 2936, 2889, 1710, 1477, 1458, 1393, 1366, 1655, 1157, 984. FABMS *m/z*: 355 (MH), 243, 213, 157. Anal. Calcd. for C₁₉H₃₀O₆: C, 64.38; H, 8.53. Found: C, 64.31; H, 8.44.

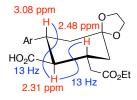
tert-Butyl (1*R*,2*R*,3*R*)- and (1*S*,2*R*,3*R*)-2-*tert*-butoxycarbonyl-3-(4-trimethylsilyl-1,3-benzodioxol-5yl)-5,5-ethylenedioxycyclohexaneacetate (7 and its isomer):



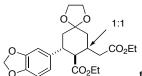
To a solution of **3** (1.02 g, 4.21 mmol) and 5-bromo-4-(trimethylsilyl)-1,3-benzodioxole³ (819 mg, 3.00 mmol) in toluene (27 mL) was added *t*-BuLi (1.66 mL, 1.7 M pentane solution, 2.8 mmol) over 10 min at -78 °C, the mixture was stirred for 1 h. A solution of dialkenoate **5** (354 mg, 1.00 mmol) and TMSC1 (0.63 mL, 5.0 mmol) in toluene (3.0 mL) was added over 10 min at -78 °C. The resulting solution was stirred at -78 °C for 10 min and then quenched with sat. NH₄Cl. The mixture was extracted with Et₂O. The organic extracts were washed with sat. NaHCO₃ and brine, and then dried over Na₂SO₄. Concentration and column chromatography (hexane/Et₂O = 4/1) gave a 9:1 mixture of **7** and its isomer (532 mg, 97% yield) as colorless gum: $[\alpha]_D^{25}$ –17.3 (*c* 1.02, CHCl₃). The enantiomeric excess of **7** was determined to be 92% ee by HPLC (Daicel Chiralcel AD, hexane/*i*-PrOH = 100/1, 1 mL/min, 254 nm, major 11.0 min and minor 15.4 min). ¹H NMR, **7**: 0.40 (s, 9H), 1.10 (s, 9H), 1.46 (s, 9H), 1.51 (dd, *J* =

³ R.J. Mattson, C. P. Sloan, C. C. Lockhart, J. D. Catt, Q. Gao, S. Huang, J. Org. Chem. 1999, 64, 8004–8007.

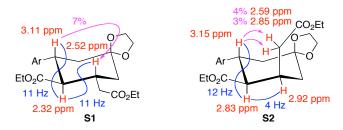
13.1, 13.1, 11), 1.60 (dd, J = 13.3, 13.3, 11), 1.89 (ddd, J = 2.8, 2.8, 13.3, 11), 1.95 (m, 11), 2.10 (dd, J = 8.9, 15.3, 11), 2.33 (dd, J = 2.5, 15.3, 11), 2.37–2.50 (m, 2H), 3.39 (ddd, J = 3.4, 10.7, 12.8, 11H), 3.89–4.00 (m, 4H), 5.84 (d, J = 11.3, 1H), 5.85 (d, J = 11.3, 1H), 6.78 (d, J = 8.2, 1H), 6.80 (d, J = 8.2, 1H); its isomer: 0.44 (s, 9H), 1.21 (s, 9H), 1.45 (s, 9H), 1.55–1.63 (m, 1H), 1.87–1.97 (m, 2H), 2.07–2.14 (m, 1H), 2.28–2.50 (m, 2H), 2.78–2.88 (m, 2H), 3.34–3.42 (m, 1H), 3.83–4.00 (m, 4H), 5.84–8.85 (m, 2H), 6.70 (d, J = 7.9, 1H), 3.73 (d, J = 7.9, 1H). ¹³C NMR, 7: 1.3 (CH₃), 27.6 (CH₃), 28.0 (CH₃), 34.8 (CH), 39.2 (CH₂), 39.3 (CH₂), 42.4 (CH), 43.8 (CH₂), 54.8 (CH), 64.2 (CH₂), 64.3 (CH₂), 79.8 (C), 80.2 (C), 99.5 (CH₂), 107.8 (CH), 108.6 (C), 119.4 (C), 120.5 (CH), 141.0 (C), 144.1 (C), 152.2 (C), 170.8 (C), 173.0 (C). IR: 2978, 2878, 1728, 1620, 1580, 1450, 1416, 1396, 1369, 1153, 1076, 1053. EIMS m/z: 548 (M⁺), 421, 329, 243. Anal. Calcd. for C₂₉H₄₄O₈Si: C, 63.47; H, 8.08. Found: C, 63.77; H, 8.28. The diasteromeric ratio was determined based on the ratio of the integration aria of the ¹H NMR signals at 0.40 and 0.44 ppm where the methyl protons of the TMS of the each isomer appear. The relative configuration of **7** was confirmed after conversion to **8**.


Ethyl (1R,2R,3R)-3-(1,3-benzodioxol-5-yl)-2-carboxy-5,5-ethylenedioxycyclohexaneacetate (8):

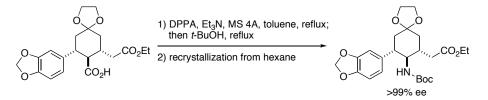
To a solution of the 9:1 mixture of dialkanoates 7 and its isomer (20.8 g, 379 mmol) in EtOH (6 mL) was added 40% HCl in EtOH (60 mL) at 0 °C. The mixture was heated under reflux for 1 h. After addition of cold H₂O (100 mL), the mixture was extracted with Et₂O three times. The combined organic extracts were washed with brine and dried over Na₂SO₄. Concentration gave brown oil (25.7 g), which was then dissolved in benzene (100 mL). To a solution was added and ethylene glycol (8.5 mL, 150 mmol) *p*-toluenesulfonic acid monohydrate (217 mg, 1.14 mmol), and the mixture was heated under reflux for 2 h. After cooled to room temperature, the mixture was washed with brine and then dried over


 Na_2SO_4 . Concentration and column chromatography (hexane/AcOEt = 1/1) gave the titled carboxylic acid (11.5 g, 77% yield) as colorless gum.

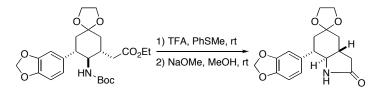
$$\begin{array}{c} & & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & &$$



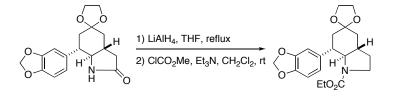
Ethyl (1R,2R,3R)-3-(1,3-benzodioxol-5-yl)-2-carboxy-5,5-ethylenedioxycyclohexaneacetate (8), and ethyl (1R,2R,3R)- and (1S,2R,3R)-3-(1,3-benzodioxol-5-yl)-2-ethoxycarbonyl-5,5-ethylenedioxycyclohexaneacetate (S1 and S2):


The same procedure as above, except that the first reaction was conducted for 3 h, gave 8 in 50% yield as well as a 1:1 diastereomeric mixture of diethyl esters S1 and S2 in 25% yield as colorless oil.

the 1:1 mixture of **S1** and **S2**: ¹H NMR, **S1**: 0.98 (t, J = 7.0, 3H), 1.25 (t, J = 7.0, 3H) 3H), 1.49 (dd, *J* = 13.0, 13.0, 1H), 1.73 (dd, *J* = 13.1, 13.1, 1H), 1.89 (m, 1H), 1.98 (ddd, *J* = 3.1, 3.1, 13.0, 1H), 2.18 (dd, J = 9.2, 15.6, 1H), 2.32 (dd, J = 11.3, 11.3, 1H), 2.36 (dd, J = 4.0, 15.6, 1H), 2.52 (m, 1H), 3.11 (ddd, J = 3.7, 11.3, 13.1, 1H), 3.85-4.01 (m, 6H), 4.10-4.16 (m, 2H), 5.904 (s, 2H), 6.63-6.71 (m, 3H); S2: 1.04 (t, J = 7.2, 3H), 1.26 (t, J = 7.2, 3H), 1.65 (dd, J = 13.1, 13.1, 1H), 1.84 (dd, J = 13.1, 13.1, 14.1, 14.1, 14.1, 14.1, 14.1, 14.1, 14.1, 14.1, 14.1, 14.1, 14.1, 14.1, 14.1, 14.1, 14 5.2, 14.4, 1H), 1.87–1.94 (m, 2H), 2.59 (dd, *J* = 5.8, 16.5, 1H), 2.83 (dd, *J* = 4.3, 12.2, 1H), 2.85 (dd, *J* = 8.6, 16.5, 1H), 2.92 (m, 1H), 3.15 (ddd, J = 3.1, 12.2, 13.1, 1H), 3.85–4.01 (m, 6H), 4.10–4.16 (m, 2H), 5.902 (s, 2H), 6.63–6.71 (m, 3H). ¹³C NMR, S1: 13.93 (CH₃), 14.1 (CH₃), 34.6 (CH), 38.6 (CH₂), 39.3(CH₂), 41.9(CH₂), 44.2 (CH), 55.1 (CH), 60.1 (CH₂), 60.3 (CH₂), 64.4 (CH₂), 64.6 (CH₂), 100.84 (CH₂), 107.7 (C), 107.78 (CH), 108.12 (CH), 120.7 (CH), 136.3 (C), 146.3 (C), 147.62 (C), 171.9 (C), 173.5 (C); **S2**: 13.86 (CH₃), 14.2 (CH₃), 32.4 (CH), 34.0 (CH₂), 37.4 (CH₂), 38.8 (CH), 43.3 (CH₂), 51.4 (CH), 60.15 (CH₂), 60.17(CH₂), 63.8(CH₂), 64.7(CH₂), 100.82 (CH₂), 107.81 (CH), 108.08 (CH), 108.2 (C), 120.4 (CH), 137.3 (C), 146.1 (C), 147.57 (C), 172.9 (C), 173.3 (C). IR (neat): 2978, 2893, 1728, 1612, 1489, 1443, 1381, 1250, 1173, 1080, 1034, 984, 864, 810, 733, 640. FABMS m/z: 421 (MH), 420 (M^{+}) , 419 (M-1), 375 (M - OEt), 347 $(M - CO_2Et)$. HRMS-FAB (m/z): $[M]^{+}$ Calcd. for $C_{22}H_{28}O_8$: 420.1784. Found: 420.1783. The relative configurations of S1 and S2 were assigned based on the coupling constants (blue) and the NOE (magenta) shown below.

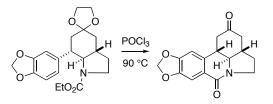


Ethyl (1*R*,2*R*,3*S*)-3-(1,3-benzodioxol-5-yl)-2-(*tert*-butoxycarbonylamino)-5,5-ethylenedioxycyclohexaneacetate (9):


Carboxylic acid 8 (4.31 g, 11.0 mmol) was dried by azeotropic distillation with toluene (3×50 mL) and dissolved in toluene (50 mL). To the solution were added crushed molecular sieves 4Å (20 g), and the mixture was stirred for 30 min under argon atmosphere at room temperature. To the mixture were added Et₃N (6.1 mL, 44 mmol) and DPPA (4.8 mL, 22 mmol), and the mixture was heated under reflux for 1.5 h. After addition of t-BuOH (40 mL), the mixture was further heated under reflux for 4 days. The mixture was filtered through Celite, and the filtrate was dried over Na₂SO₄. Concentration and silica gel column chromatography (hexane/acetone = 4/1) gave the titled carbamate (4.70 g, 80% yield) as colorless needles. Recrystallization from hexane gave almost enantiomerically pure colorless needles (4.12 g, 88% yield) of mp 155–157 °C (>99% ee; HPLC, Daicel Chiralcel OD-H, hexane/*i*-PrOH = 9/1, 1 mL/min, 254 nm, major 10.1 min and minor 8.2 min): $[\alpha]_{D}^{25}$ -8.0 (c 2.28, CHCl₃). ¹H NMR: 1.21 (s, 9H), 1.25 (t, J = 7.1, 3H), 1.57 (dd, J = 12.8, 12.8, 1H), 1.86 (dd, J = 12.8, 12.8, 1H), 1.92 (m, 2H), 2.18 (dd, J = 8.0, 15.6, 1H), 2.25 (m, 1H), 2.61 (dd, J = 4.7, 15.6, 1H), 2.75 (ddd, J = 3.7, 12.8, 12.8, 1H),3.48 (dd, J = 12.8, 12.8, 1H), 3.94 (m, 4H), 4.09 (brs, 1H), 4.10 (m, 2H), 5.89 (d, J = 9.2, 2H), 6.67 (d, J = 0.2, 2H), 5.89 (d, J = 0= 8.0, 1H, 6.71(s, 1H), 6.72 (d, J = 8.0, 1H). ¹³C NMR: 14.2 (CH₃), 28.0 (CH₃), 37.6 (CH), 38.0 (CH₂), 40.0 (CH₂), 42.4 (CH₂), 47.6 (CH), 57.4 (CH), 60.3 (CH₂), 64.4 (CH₂), 64.5 (CH₂), 79.0 (C), 100.8 (CH₂), 107.5 (C), 108.0 (CH), 108.3 (CH), 121.0 (CH), 135.9 (C), 146.2 (C), 147.5 (C), 155.5 (C), 173.1 (C). IR: 3360, 2978, 2932, 2885, 1720, 1710, 1609, 1504, 1443, 1366, 1246, 1169, 1038. EIMS m/z: 463 (M⁺), 346, 259, 221, 148, 135. Anal. Calcd. for C₂₄H₃₃NO₈: C, 62.19; H, 7.18; N, 3.02. Found: C, 62.11; H, 7.19; N, 3.17.

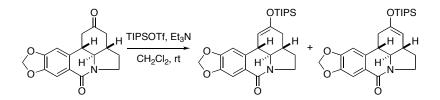
(3aR,7S,7aR)-7-(1,3-Benzodioxol-5-yl)-5,5-ethylenedioxyhexahydro-1*H*-indol-2(3*H*)-one (S3):

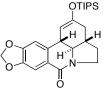
A mixture of carbamate 9 (2.32 g, 5.00 mmol), TFA (7.70 mL, 100 mmol) and thioanisole (1.17 mL, 10.0 mmol) was stirred at room temperature for 1 h. The mixture was poured into sat. NaHCO₃ (50 mL) at 0 °C and extracted with CH₂Cl₂. The organic extracts were washed with brine, dried over Na₂SO₄, and then concentrated to give brown oil (3.56 g). To a solution of the oil in MeOH (25 mL) was added NaOMe (1.35 g, 25.0 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 2 days. The reaction mixture was diluted with AcOEt, washed with brine, and then dried over Na₂SO₄. Concentration and column chromatography (AcOEt) gave the titled lactam (1.28 g, 81% yield) as colorless needles of mp 192.5–193.5 °C: $[\alpha]_D^{25}$ –51.3 (*c* 1.01, CHCl₃). ¹H NMR: 1.69 (dd, *J* = 12.8, 12.8, 1H), 1.82 (dd, J = 12.8, 12.8, 1H), 1.95–2.05 (m, 2H), 2.12 (dd, J = 12.8, 15.0, 1H), 2.30 (m, 1H), 2.38 (dd, J = 6.8, 15.0, 1H), 2.81 (dd, J = 3.2, 11.6, 11.6, 1H), 3.20 (dd, J = 11.6, 11.6, 1H), 3.93-4.00 (m)4H), 5.33 (brs, 1H), 5.95 (s, 2H), 6.65 (d, J = 8.0, 1H), 6.68 (s, 1H), 6.76 (d, J = 8.0, 1H). ¹³C NMR: 37.5 (CH₂), 37.7 (CH₂), 40.9 (CH), 41.5 (CH₂), 45.3 (CH), 64.5 (CH₂), 64.6 (CH₂), 64.6 (CH), 101.1 (CH₂), 107.0 (CH), 108.6 (CH), 120.1 (CH), 134.7 (C), 146.8 (C), 148.2 (C), 177.6 (C). IR (nujol): 3300, 1720, 1693, 1609, 1099, 1069, 1038. EIMS m/z: 317 (M⁺), 221, 135. Anal. Calcd. for C₁₇H₁₉NO₅: C, 64.34; H, 6.03; N, 4.41. Found: C, 64.32; H, 5.90; N, 4.37.


Ethyl (3aS,7S,7aR)-7-(1,3-benzodioxol-5-yl)-5,5-ethylenedioxyoctahydroindole-1-carboxylate (10):

A suspension of lactam **S3** (317 mg, 1.00 mmol) and LiAlH₄ (190 mg, 5.00 mmol) in THF (10 mL) was heated under reflux for 3 h and then quenched by sequential dropwise addition of H₂O (0.2 mL),

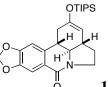
15% NaOH (0.2 mL), and H₂O (0.6 mL). The mixture was filtered through Celite, and the filtrate was dried over Na₂SO₄ and concentrated to give pale brown oil (710 mg). To a solution of the oil and Et₃N (152 mg, 1.50 mmol) in CH₂Cl₂ (5 mL) was added ethyl chloroformate (162 mg, 1.50 mmol) at 0 °C. The mixture was stirred at room temperature for 8 h and diluted with AcOEt. The mixture was washed with sat. NaHCO₃ and brine, and then dried over Na₂SO₄. Concentration and column chromatography (hexane/AcOEt = 2/1) gave the titled carbamate (258 mg, 69% yield in 2 steps) as a colorless gum: $[\alpha]_{D}^{25}$ +4.7 (c 3.26, CHCl₃). ¹H NMR: 0.90 (t, J = 7.0, 3H), 1.45 (m, 1H), 1.69 (dd, J = 12.8, 12.8, 1H), 1.79 (m, 1H), 1.9-2.0 (m, 3H), 2.20 (m, 1H), 2.87 (ddd, J = 4.0, 12.8, 12.8, 1H), 3.19 (dd, J = 12.8, 121H), 3.32-3.39 (m, 2H), 3.77-3.83 (m, 2H), 3.94-4.00 (m, 4H), 5.90 (d, J = 9.0, 2H), 6.62 (d, J = 8.0, 1H), 6.69 (s, 1H), 6.70 (d, J = 8.0, 1H). ¹³C NMR: 14.2 (CH₃), 29.8 (CH₂), 38.9 (CH₂), 42.0 (CH₂), 45.5 (CH), 47.5 (CH), 50.3 (CH₂), 60.7 (CH₂), 64.4 (CH₂), 64.6 (CH₂), 67.8 (CH), 100.6 (CH₂), 107.6 (CH), 108.2 (CH), 109.1 (C), 120.7 (CH), 137.9 (C), 145.7 (C), 147.3 (C), 157.6 (C). IR (nujol): 1693, 1065, 1038. EIMS m/z: 375 (M⁺), 330, 221, 147, 135. HRMS-EI (m/z): [M]⁺ Calcd. for C₂₀H₂₅O₆N: 375.1682. Found: 375.1689. Anal. Calcd. for C₂₀H₂₅NO₆: C, 63.99; H, 6.71; N, 3.73. Found: C, 63.88; H, 6.71; N, 3.73.


(12S,15S,16S)-9,10-Methylenedioxygalanthan-2,7-dione (11):

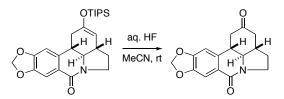

A mixture of carbamate **10** (29 mg, 0.077 mmol) and freshly distilled POCl₃ (1.0 mL) was heated at 90 °C for 8 h. The mixture was slowly poured into ice-water being stirred. The aqueous layer was basified (pH 11) with 8% NaOH and extracted with CHCl₃. The organic extracts were washed with brine and dried over Na₂SO₄. Concentration followed by column chromatography (hexane/AcOEt = 1/2) gave the titled product (21 mg, 95% yield) as colorless needles of mp 270–273 °C: $[\alpha]_D^{25}$ –4.9 (*c* 1.03,

CHCl₃). ¹H NMR: 1.71 (m, 1H), 2.18 (m, 1H), 2.27 (m, 1H), 2.35 (dd, J = 13.2, 13.2, 1H), 2.44 (dd, J = 13.2, 13.2, 1H), 2.83 (dd, J = 4.0, 13.2, 1H), 3.10 (m, 1H), 3.39 (dd, J = 13.2, 13.2, 1H), 3.73 (m 1H), 3.94 (m, 1H), 6.02 (d, J = 3.0, 2H), 6.55 (s, 1H), 7.60 (s, 1H). ¹³C NMR: 29.0 (CH₂), 38.1 (CH), 42.5 (CH₂), 43.0 (CH), 45.0 (CH₂), 45.3 (CH₂), 64.5 (CH), 101.8 (CH₂), 103.6 (CH), 108.8 (CH), 125.0 (C), 134.7 (C), 147.2 (C), 150.9 (C), 162.3 (C), 206.8 (C). IR (nujol): 1705, 1651, 1605, 1258, 1038. EIMS *m/z*: 285 (M⁺). HRMS-EI (*m/z*): [M]⁺ Calcd. for C₁₆H₁₅O₄N: 285.1001. Found: 285.0995. Anal. Calcd. for C₁₆H₁₅NO₄•1/4H₂O: C, 66.31; H, 5.39; N, 4.83. Found: C, 66.60; H, 5.33; N, 4.78.

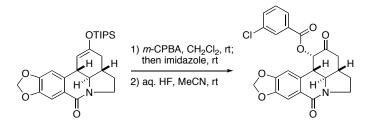
(12*S*,15*S*,16*S*)-9,10-Methylenedoxy-2-triisopropylsiloxy-1,2-didehydrogalanthan-7-one (12) and (12*S*,15*S*,16*S*)-9,10-Methylenedioxy-2-triisopropylsiloxy-2,3-didehydrogalanthan-7-one (13):



To a solution of ketone **11** (140 mg, 0.490 mmol) and Et_3N (0.40 mL, 2.9 mmol) in CH_2Cl_2 (4.0 mL) was added TIPSOTF (0.66 mL, 2.5 mmol) at 0 °C, and the mixture was stirred at room temperature. After 24 h, the reaction was quenched with sat. NaHCO₃, and the whole was extracted with Et_2O . The organic extracts were washed with brine and dried over Na₂SO₄. Concentration and column chromatography (hexane/AcOEt = 3/1) gave silyl enol ether **12** (125 mg, 58%) and regioisomer **13** (90 mg, 41%).


^{II} **12**: colorless oil. $[\alpha]_D^{25}$ –33.0 (*c* 0.67, CHCl₃). ¹H NMR: 1.11 (d, *J* = 3.4, 9H), 1.12 (d, *J* = 3.4, 9H), 1.22 (dd, *J* = 3.4, 3.4, 3H), 1.64 (m, 1H), 2.13–2.29 (m, 3H), 2.49 (m, 1H), 3.10 (dd, *J* = 10.7, 11.9, 1H), 3.44 (d, *J* = 11.9, 1H), 3.67 (m, 1H), 3.91 (m, 1H), 5.34 (s, 1H), 6.01 (s, 2H), 6.67 (s, 1H), 7.59 (s, 1H). ¹³C NMR: 12.6, 17.9, 29.4, 35.4, 38.7, 41.1, 45.5, 63.7, 100.6, 101.5, 103.2, 109.0,

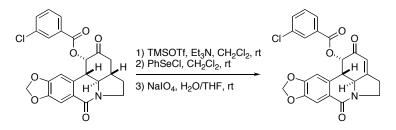
125.7, 136.0, 146.4, 150.4, 153.7, 162.8. IR (neat): 2943, 2866, 1651, 1504, 1454, 1385, 1350, 1265, 1196, 1038, 880, 680. EIMS *m*/*z*: 442 (M⁺), 398, 268, 275, 241, 171, 103, 75. HRMS–EI (*m*/*z*): [M]⁺ calcd for C₂₅H₃₅NO₄Si, 441.2336; found, 441.2333.


13: colorless needles of mp 105–108 °C. $[\alpha]_D^{25}$ –108 (*c* 1.00, CHCl₃). ¹H NMR: 1.10 (d, *J* = 3.7, 9H), 1.11 (d, *J* = 4.0, 9H), 1.20 (dd, *J* = 3.7, 4.0, 3H), 1.59 (m, 1H), 2.20 (m, 1H), 2.41 (m, 1H), 2.56 (m, 1H), 2.81 (dd, *J* = 5.8, 16.5, 1H), 3.04–3.15 (m, 2H), 3.70 (m, 1H), 3.87 (m, 1H), 5.12 (s, 1H), 6.01 (s, 2H), 6.64 (s, 1H), 7.61 (s, 1H). ¹³C NMR: 12.5, 17.9, 28.5, 34.6, 36.6, 42.6, 45.8, 63.9, 101.6, 103.2, 104.3, 108.5, 125.3, 136.1, 146.7, 150.6, 151.7, 162.1. IR (KBr): 2943, 3866, 1654, 1504, 1462, 1385, 1350, 1261, 1038, 883, 737. EIMS *m/z*: 442 (M⁺), 398, 268, 275, 241, 171, 75. HRMS–EI (*m/z*): [M]⁺ calcd for C₂₅H₃₅NO₄Si, 441.2335; found, 441.2341.

Conversion of 13 to 11.

Silyl enol ether **13** (90 mg, 0.20 mmol) was dissolved in HF–MeCN (48% HF:MeCN = 5:95, 0.5 mL), and the mixture was stirred at room temperature. After 12 h, the reaction was quenched with sat. NaHCO₃, and the whole was extracted with AcOEt. The organic extracts were washed with brine and dried over Na₂SO₄. Concentration and column chromatography (hexane/AcOEt = 1/9) gave **11** (52 mg, 92%).

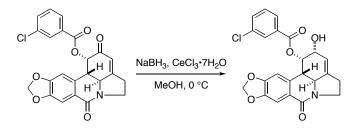
(15,155,16S)-1-(3-Chlorobezoyloxy)-9,10-methylenedioxygalanthan-2,7-dione (14):



To a solution of silyl enol ether **12** (90 mg, 0.20 mmol) in CH₂Cl₂ (1.0 mL) was added purified *m*-CPBA (41 mg, 0.24 mmol) in CH₂Cl₂ (1.0 mL) at 0 °C, and the mixture was stirred for 1 h at room temperature. Imidazole (30 mg, 0.16 mmol) was added to the mixture, which was then stirred for additional 1 h at the same temperature. The reaction was quenched with sat. NaHCO₃, and the whole was extracted with AcOEt. The organic extracts were washed with sat. NH₄Cl and brine, and dried over Na₂SO₄. Concentration and column chromatography (hexane/THF = 2/1) gave benzoyloxy silyl enol ether (80 mg, 67% yield) as colorless needles of mp 192–193 °C: $[\alpha]_D^{25}$ –10.2 (*c* 1.00, CHCl₃). ¹H NMR: 1.12 (d, *J* = 6.8, 9H), 1.15 (d, *J* = 6.7, 9H), 1.53 (dd, *J* = 6.7, 6.8, 1H), 1.70 (m, 1H), 2.16–2.26 (m, 2H), 3.45–3.48 (m, 2H), 3.57 (dd, *J* = 11.0, 13.7, 1H), 3.72 (m, 1H), 3.91 (m, 1H), 5.74 (brs, 1H), 5.93 (s, 1H), 5.95 (s, 1H), 6.54 (s, 1H), 7.34 (dd, *J* = 7.9, 8.0, 1H), 7.53 (dd, *J* = 1.2, 8.0, 1H), 7.61 (s, 1H), 7.75 (d, *J* = 7.9, 1H), 7.83 (d, *J* = 1.2, 1H). ¹³C NMR: 12.9, 18.2, 28.1, 39.1, 41.1, 41.6, 45.4, 60.5, 74.5, 98.8, 101.6, 103.2, 109.0, 126.0, 128.0, 129.9, 130.9, 132.0, 133.8, 134.8, 147.0, 150.8, 162.0, 166.9. IR (KBr): 2924, 2866, 1728, 1643, 1608, 1604, 1462, 1385, 1254, 1126, 1038, 736. EIMS *m*/*z*: 457 (M – ClC₆H₄CO₂), 439 (M – C₉H₂₁Si), 283, 228, 131, 103, 75.

A solution of the above silyl enol ether (60 mg, 0.10 mmol) in HF–MeCN (48% HF:MeCN = 5:95, 0.6 mL) was stirred at room temperature. After 12 h, the reaction was quenched with sat. NaHCO₃, and the whole was extracted with AcOEt. The organic extracts were washed with brine, and dried over Na₂SO₄. Concentration and column chromatography (hexane/AcOEt = 1/9) gave the titled ketone (42 mg, 95% yield) as colorless needles of mp 118–119 °C: $[\alpha]_D^{25}$ –33.6 (*c* 0.830, CHCl₃). ¹H NMR: 1.82 (m, 1H), 2.17–2.25 (m, 1H), 2.31 (m, 1H), 2.75 (dd, *J* = 13.2, 13.4, 1H), 2.83 (m, 1H), 3.37 (dd, *J* = 2.8, 13.4, 1H), 3.76 (m, 1H), 3.96–4.00 (m, 2H), 5.91 (d, *J* = 2.8, 1H), 5.98 (s, 1H), 5.99 (s, 1H), 6.64 (s, 1H),

7.37 (dd, J = 7.9, 8.0, 1H), 7.55 (d, J = 7.9, 1H), 7.63 (s, 1H), 7.79 (d, J = 8.0, 1H), 7.85 (s, 1H). ¹³C NMR: 28.7, 42.1, 44.1, 44.1, 45.2, 59.7, 73.8, 101.9, 103.7, 109.2, 125.7, 128.0, 129.8, 129.8, 130.0, 130.3, 134.0, 134.9, 147.6, 151.0 161.8, 163.9, 202.0. IR (neat): 2924, 1728, 1643, 1601, 1385, 1358, 1258, 1130, 1258, 1130, 1038, 740. EIMS m/z: 441 (M+2), 439 (M⁺), 283, 255, 139, 111, 75. HRMS–EI (m/z): [M]⁺ calcd for C₂₃H₁₈NO₆Cl, 439.0823; found, 439.0828.


(15,155,16S)-1-(3-Chlorobezoyloxy)-9,10-methylenedioxy-3,12-didehydrogalanthan-2,7-dione (15):

To a solution of ketone **14** (80 mg, 0.18 mmol) and Et₃N (0.30 mL, 2.2 mmol) in CH₂Cl₂ (1.0 mL) was added TMSOTf (0.33 mL, 1.8 mmol) at 0 °C, and the mixture was stirred at room temperature for 2 h. The reaction was quenched with sat. NaHCO₃, and the whole was extracted with Et₂O three times. The combined organic layers were washed with brine and dried over Na₂SO₄. Concentration gave the corresponding TMS enol ether, which was used in the next step without further purification. To a solution of the crude enol ether in CH₂Cl₂ (2.0 mL) was added PhSeCl (104 mg, 0.54 mmol) in CH₂Cl₂ (2.0 mL) and stirred at 0 °C for 1 h. The reaction was quenched with sat. NaHCO₃, and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The resulting pale yellow oil (210 mg) was passed through silica gel column with a 1:1 mixture of hexane and AcOEt as an eluent to give white amorphous (75 mg), a part of which (20 mg) was then dissolved in H₂O-THF (1:1, 1.0 mL). NaIO₄ (15 mg, 0.068 mmol) was added to the solution at 0 °C, and the mixture was stirred for 12 h at room temperature. The reaction was quenched with sat. NaHCO₃, and the whole was extracted with AcOEt three times. The combined organic layers were washed with brine and dried over Na₂SO₄. Concentration and column chromatography (hexane/AcOEt = 1/2) gave

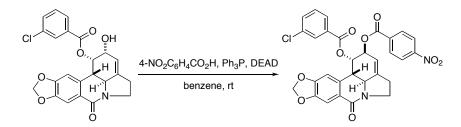
the titled enone (11.0 mg, 52% yield) as colorless needles of mp 130–132 °C: $[\alpha]_D^{25}$ –170 (*c* 0.29, CHCl₃). ¹H NMR: 3.07–3.20 (m, 2H), 3.57 (dd, *J* = 3.1, 11.9, 1H), 3.95 (m, 1H), 4.07 (m, 1H), 4.80 (d, *J* = 11.9, 1H), 5.98 (s, 1H), 6.00 (s, 1H), 6.14 (s, 1H), 6.29 (d, *J* = 3.1, 1H), 6.79 (s, 1H), 7.36 (dd, *J* = 7.6, 8.3, 1H), 7.53 (dd, *J* = 1.2, 8.3, 1H), 7.58 (s, 1H), 7.85 (dd, *J* = 1.3, 7.6, 1H), 7.86 (dd, *J* = 1.2, 1.3, 1H). ¹³C NMR: 29.4, 43.3, 45.8, 56.5, 68.3, 101.9, 103.8, 109.2, 121.3, 125.6, 128.3, 129.9, 130.4, 130.6, 133.8, 134.7, 147.7, 151.3, 162.4, 164.1, 165.5, 191.1. IR (neat): 1728, 1651, 1466, 1420, 1373, 1250, 1119, 1034. EIMS *m*/*z*: 298 (M – CIC₆H₄CO), 281, 253, 240, 225, 156, 139, 111, 75. HRMS–FAB (*m*/*z*): [M+H]⁺ Calcd for C₂₃H₁₇NO₆Cl, 438.0744. Found, 438.0747.

(1*S*,2*R*,15*S*,16*S*)-1-(3-Chlorobezoyloxy)-2-hydroxy-9,10-methylenedioxy-3,12-didehydrogalanthan-7-one (16):

To a solution of enone **15** (6.0 mg, 0.014 mmol) and CeCl₃•7H₂O (5.1 mg, 0.014 mmol) in MeOH (0.5 mL) was added NaBH₄ (1.0 mg, 0.026 mmol) at 0 °C. After stirred for 10 min, the reaction mixture was quenched with water and extracted with AcOEt. The organic extracts were washed with brine and dried over Na₂SO₄. Concentration and column chromatography (hexane/AcOEt = 1/2) gave the titled alcohol (5.5 mg, 90% yield) as colorless needles of mp 150–152 °C: $[\alpha]_D^{21}$ –116 (*c* 1.01, CHCl₃). ¹H NMR: 2.78 (m, 1H), 2.87 (m, 1H), 3.10 (ddd, *J* = 1.2, 1.2, 12.2, 1H), 3.78 (ddd, *J* = 8.6, 8.6, 11.9, 1H), 3.88 (ddd, *J* = 2.9, 10.9, 11.9, 1H), 4.48 (d, *J* = 12.2, 1H), 4.80 (dd, *J* = 2.2, 4.0, 1H), 5.64 (d, *J* = 2.2, 1H), 5.93 (d, *J* = 1.5, 1H), 5.97 (d, *J* = 1.5, 1H), 6.31 (d, *J* = 4.0, 1H), 6.78 (d, *J* = 0.9, 1H), 7.31 (dd, *J* = 7.9, 8.0, 1H), 7.48 (ddd, *J* = 1.3, 1.9, 7.9, 1H), 7.51 (s, 1H), 7.82 (ddd, *J* = 1.3, 1.5, 7.7, 1H), 7.88 (dd, *J* = 1.5, 1.9, 1H). ¹³C NMR: 28.2 (CH₂), 43.7 (CH₂), 44.2 (CH), 55.7 (CH), 67.8 (CH), 69.9 (CH), 101.7

(CH₂), 103.3 (CH), 108.9 (CH), 120.2 (CH), 126.2 (C), 128.0 (CH), 129.7 (CH), 129.8 (CH), 131.1 (C), 131.9 (C), 133.4 (CH), 134.6 (C), 140.8 (C), 147.1 (C), 150.9 (C), 162.6 (C), 165.6 (C). IR (KBr): 3402, 1720, 1651, 1481, 1420, 1373, 1258, 1126, 1034, 926, 748. EIMS *m*/*z*: 441 (M+2), 439 (M⁺), 423 (M+2 – H₂O), 421 (M – H₂O), 283, 266, 241, 226, 139, 111. HRMS–EI (*m*/*z*): [M]⁺ calcd for C₂₃H₁₈NO₆Cl, 439.0823; found, 439.0817.

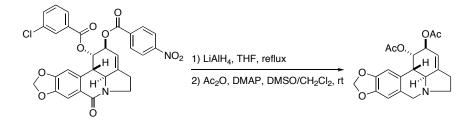
10,20-Diacetyl-2-epi-lycorine (17):



A suspension of lactam **16** (2.0 mg, 4.6 µmol) and LiAlH₄ (13 mg, 0.36 mmol) in THF (1.5 mL) was heated under reflux for 4 h, and then the reaction was quenched by sequential dropwise addition of H₂O (0.02 mL), 15% NaOH (0.02 mL), and H₂O (0.06 mL). The mixture was filtered through Celite, and the filtrate was dried over Na₂SO₄ and concentrated to give white solids (1.8 mg). To a solution of the white solids and DMAP (1.0 mg, 0.010 mmol) in CH₂Cl₂ (0.5 mL) and DMSO (0.5 mL) was added Ac₂O (162 mg, 1.50 mmol) at room temperature. The mixture was stirred at room temperature for 12 h and sat. NaHCO₃ was added. The mixture was stirred for additional 0.5 h at room temperature and extracted with AcOEt. The organic extracts were washed with brine and then dried over Na₂SO₄. Concentration and column chromatography (hexane/AcOEt = 1/4) gave the titled product (0.8 mg, 47% in 2 steps) as colorless needles of mp >192 °C (dec.) and $[\alpha]_D^{25}$ –65 (*c* 0.11, CHCl₃); lit.⁴ 192–194.5 and $[\alpha]_D$ –158.2 (*c* 1.04, CHCl₃). ¹H NMR: 1.99 (s, 3H), 2.05 (s, 3H), 2.41 (m, 1H), 2.61–2.66 (m, 2H), 2.92–3.00 (m, 2H), 3.37 (m, 1H), 3.52 (d, *J* = 14.4, 1H), 4.14 (d, *J* = 14.4, 1H), 5.36 (m, 1H), 5.79 (m, 1H), 5.92 (s,

⁴ Y. Nakagawa, S. Uyeo, J. Chem. Soc. 1959, 3736-3740.

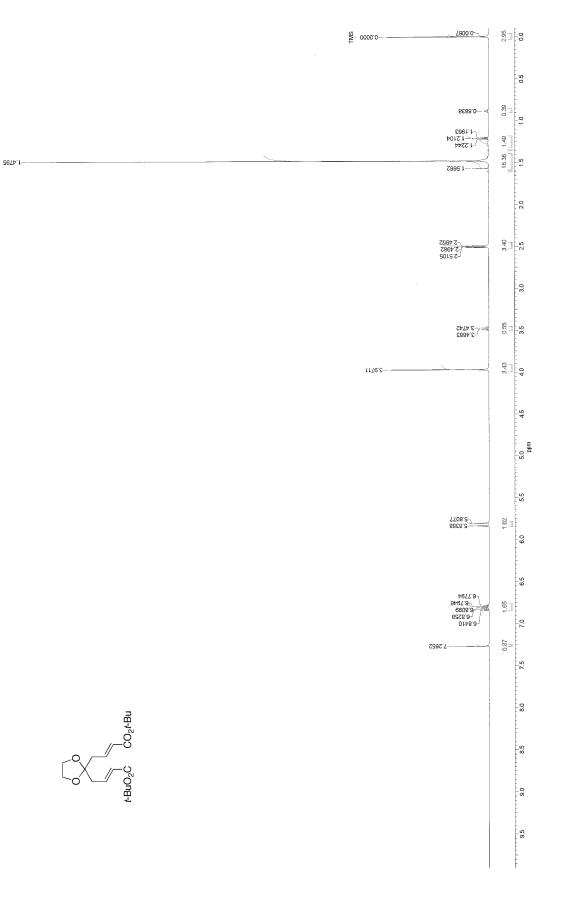
2H), 6.09 (d, *J* = 4.9, 1H), 6.56 (s, 1H), 6.72 (s, 1H). IR (KBr): 2940, 1744, 1660, 1435, 1373, 1240, 1034. EIMS *m/z*: 371 (M⁺), 311 (M – AcOH), 252, 226.


(1*S*,2*S*,15*S*,16*S*)-1-(3-Chlorobezoyloxy)-9,10-methylenedioxy-2-(4-nitrobezoyloxy)-3,12-didehydrogalanthan-7-one (S4):

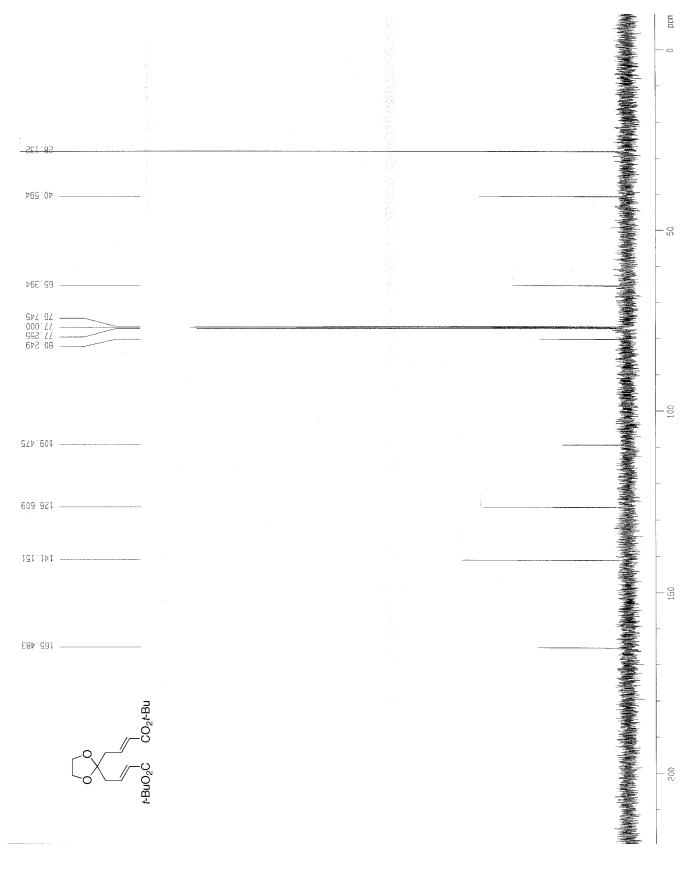
To a solution of alcohol 16 (14.2 mg, 0.032 mmol) in dry benzene (0.6 mL), was added 4nitrobenzoic acid (7 mg, 0.04 mmol) and triphenylphosphine (11 mg, 0.04 mmol). To the resulting pale yellow solution, was dropwise added a 40% solution of diethyl azodicarboxylate in toluene (0.02 mL, 0.4 mmol), and the whole was stirred at room temperature. After 2 h, 4-nitrobenzoic acid (7 mg, 0.04 mmol), triphenylphosphine (11 mg, 0.04 mmol), and a 40% solution of diethyl azodicarboxylate in toluene (0.02 mL, 0.4 mmol) were added again to the mixture. The mixture was stirred for additional 1 h at room temperature and concentrated in vacuo. The resulting pale yellow oil (72.8 mg) was purified by column chromatography (hexane/EtOAc = 35/65) to give the titled 4-nitrobenzoate (15.9 mg, 84%) as pale yellow oil: $[\alpha]_{D}^{21}$ +130 (c 0.610, CHCl₃). ¹H NMR: 2.91 (m, 1H), 2.99 (m, 1H), 3.21 (ddd, J = 0.9, 2.1, 12.5, 1H), 3.88–3.98 (m, 2H), 4.49 (1H, d, J = 12.5 Hz), 5.73 (br, 1H), 5.80 (br, 1H), 5.97 (d, J = 12.5 Hz), 5.73 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.73 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.73 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.73 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.73 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.73 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.73 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.73 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.73 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.73 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.80 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.80 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.80 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.80 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.80 (br, 2H), 5.80 (br, 2H), 5.97 (d, J = 12.5 Hz), 5.80 (br, 2H), 5.80 (1.2, 1H, 5.99 (d, J = 1.2, 1H), 6.19 (br, 1H), 6.76 (br, 1H), 7.38 (dd, J = 7.8, 8.1, 1H), 7.56 (ddd, J = 1.1, 1)2.1, 8.1, 1H, 7.59 (s, 1H), 7.85 (ddd, J = 1.1, 1.5, 7.8, 1H), 7.89 (dd, J = 1.5, 2.1, 1H), 8.24 (d, J = 9.0, 1H2H), 8.31 (d, J = 9.0, 2H). ¹³C NMR: 28.7 (CH₂), 40.9 (CH), 43.6 (CH₂), 55.4 (CH), 68.2 (CH), 71.4 (CH), 101.8 (CH₂), 103.5 (CH), 109.2 (CH), 115.0 (CH), 123.7 (CH), 126.4 (C), 128.1 (CH), 129.9 (CH), 130.0 (CH), 130.7 (C), 131.1 (CH), 131.3 (C), 133.9 (CH), 134.8 (C), 144.9 (C), 147.4 (C), 150.9 (C), 151.0 (C), 162.7 (C), 163.4 (C), 164.3 (C). IR (KBr): 2926, 1730, 1651, 1603, 1526, 1418, 1373,

1265, 1097, 1036, 746, 718. FABMS *m*/*z*: 591 (MH+2), 590 (MH+1), 589 (MH). HRMS–FAB (*m*/*z*): [MH]⁺ calcd for C₃₀H₂₂ClNO₉, 589.1014; found, 589.1015.

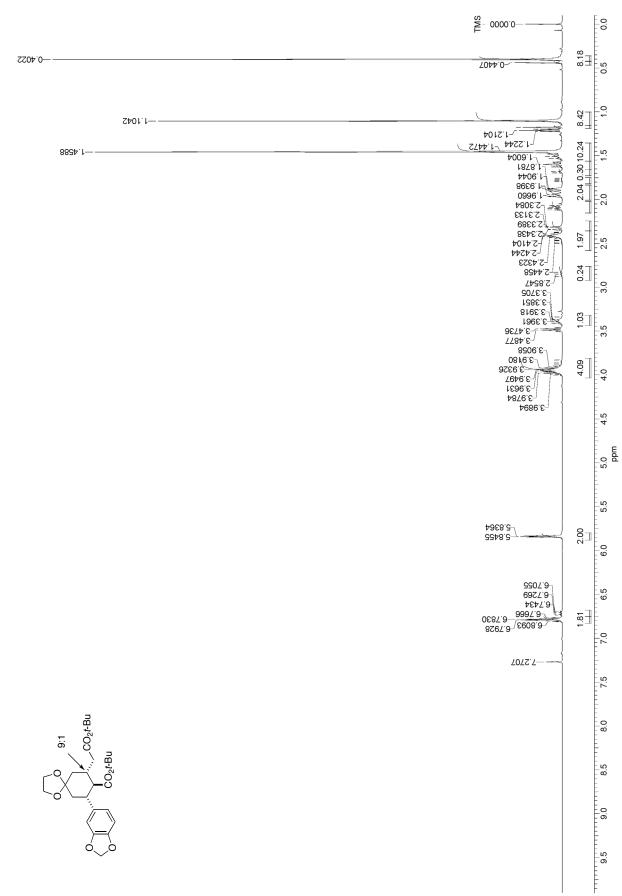
10,20-Diacetyl-lycorine (18):

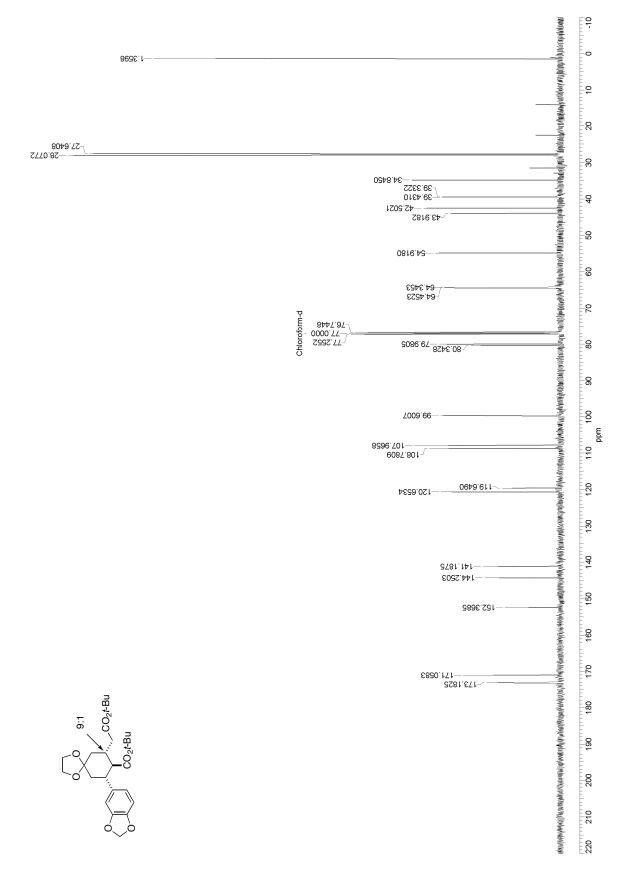


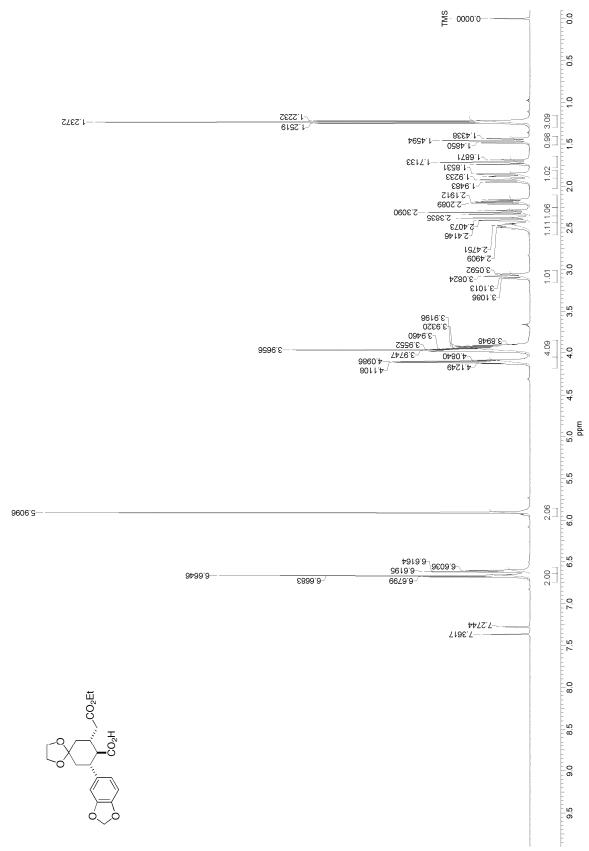
To a solution of dibenzoate S4 (12 mg, 0.021 mmol) in dry THF (4.1 mL), was dropwise added a 1 M solution of LiAlH₄ (2.1 mL, 2.1 mmol) at room temperature. The mixture was heated under reflux for 4 h and then cooled to room temperature. H₂O (0.08 mL), 15% NaOH (0.08 mL), and then another H₂O (0.24 mL) were successively added to the mixture. The mixture was filtered through celite, and the residue was washed with distilled THF. The filtrate was concentrated in vacuo to give pale yellow solids (9.4 mg), whose comparison of TLC, and ¹H and ¹³C NMR with those of an authentic sample indicated the existence of lycorine: $R_f 0.6$ EtOAc/CH₂Cl₂/MeOH (2/2/1). ¹H NMR (DMSO- d_6): 2.19 (m, 1H), 2.42 (m, 1H), 2.45-2.53 (m, 2H), 2.59 (d, J = 10.4, 1H), 3.17 (m, 1H), 3.31 (d, J = 14.0, 1H), 3.96 (m, 1H), 3.96 (m,4.00 (d, J = 14.0, 1H), 4.25 (m, 1H), 4.79 (m, 1H), 4.91 (m, 1H), 5.35 (brs, 1H), 5.90-5.96 (m, 2H),6.66 (s, 1H), 6.79 (s, 1H). ¹³C NMR (DMSO-*d*₆): 28.2 (CH₂), 40.2 (CH), 53.4 (CH₂), 56.8 (CH₂), 60.8 (CH), 70.3 (CH), 71.8 (CH), 100.7 (CH₂), 105.2 (CH), 107.2 (CH), 118.6 (CH), 129.7 (CH), 129.9 (CH), 141.9 (C), 145.4 (C), 145.8 (C). To a solution of the lycorine-containing solids in DMSO- d_6 (0.5 mL), were added CH₂Cl₂ (2 mL), 4-(dimethylamino)pyridine (10 mg, 0.082 mmol), and then Ac₂O (0.5 mL, 5 mmol), and the whole was stirred at room temperature for 3.5 h. To the mixture sat. NaHCO₃ (5 mL) was added, and the whole was stirred for 0.5 h and diluted with EtOAc (10 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc 5 times. The combined organic layers were washed with water 5 times, dried over Na₂SO₄, and concentrated in vacuo. The resulting brown oil (14.9

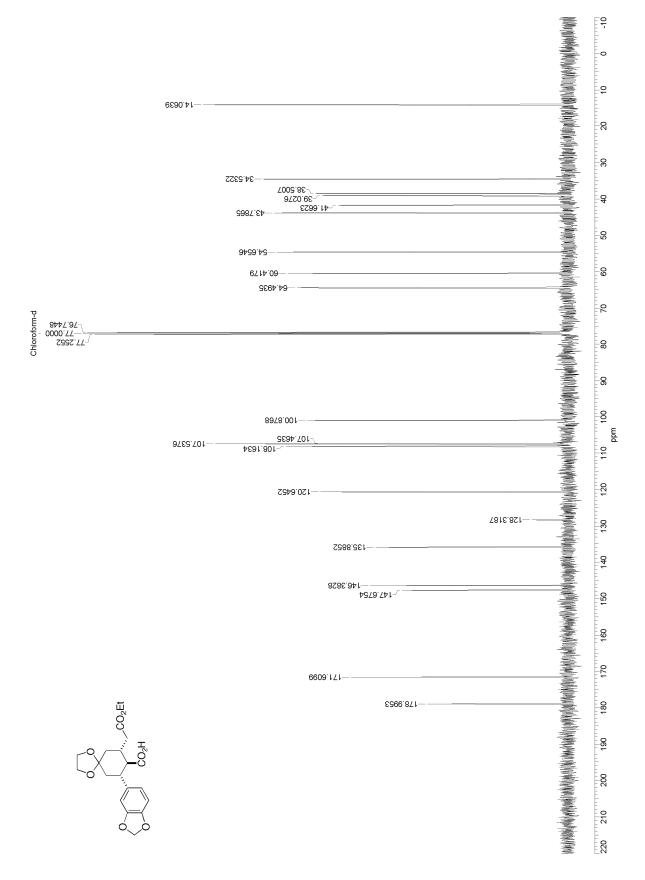

mg) was purified by column chromatography (hexane/EtOAc = 1/1) to give the titled diacetyl lycorine (4.8 mg, 62% over 2 steps) as pale brown solids of mp 207–208 °C (dec) and $[\alpha]_D^{27}$ +22 (*c* 0.48, CHCl₃) (an authentic sample $[\alpha]_D^{26}$ +23 (*c* 0.43, CHCl₃); lit.⁵ mp 207–209 (dec) and $[\alpha]_D^{23}$ +25.6 (*c* 0.39, CHCl₃)). ¹H NMR: 1.95 (s, 3H), 2.08 (s, 3H), 2.42 (m, 1H), 2.63–2.70 (m, 2H), 2.79 (m, 1H), 2.89 (d, *J* = 10.3, 1H), 3.38 (m, 1H), 3.55 (d, *J* = 14, 1H), 4.16 (d, *J* = 14, 1H), 5.25 (m, 1H), 5.53 (m, 1H), 5.74 (m, 1H), 5.92 (s, 2H), 6.58 (s, 1H), 6.74 (s, 1H). ¹³C NMR: 20.9 (CH₃), 21.1 (CH₃), 28.7 (CH₂), 40.5 (CH₂), 53.6 (CH₂), 56.9 (CH₂), 61.2 (CH), 69.3 (CH), 70.9 (CH), 101.0 (CH₂), 105.1 (CH), 107.3 (CH), 113.8 (CH), 126.6 (C), 129.4 (C), 146.1 (C), 146.3 (C), 146.4 (C), 169.7 (C), 170.0 (C). IR (KBr): 2931, 2856, 1745, 1726, 1510, 1489, 1367, 1253, 1240, 1219, 1038, 1018, 966, 932, 901. FABMS *m/z:* 372 (MH), 370, 252 (MH – 2AcOH), 250. HRMS–FAB (*m/z*): MH calcd for C₂₀H₂₂NO₆, 372.1447; found, 372.1446. *R_f* 0.3 hexane/EtOAc (1/1, 3 times) was identical to that of the authentic sample. The spectroscopic data were identical to those of the authentic sample, prepared by reported procedure, and in good agreement with those reported in the literatures.⁵

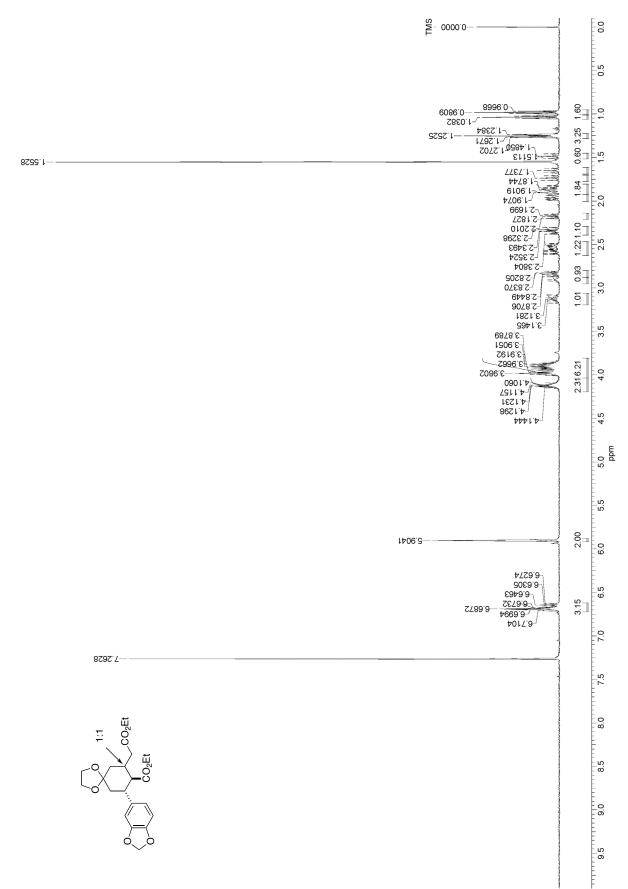
⁵ A. G. Schultz, M. A. Holoboski, M. S. Smyth, J. Am. Chem. Soc. 1996, 118, 6210–3219.

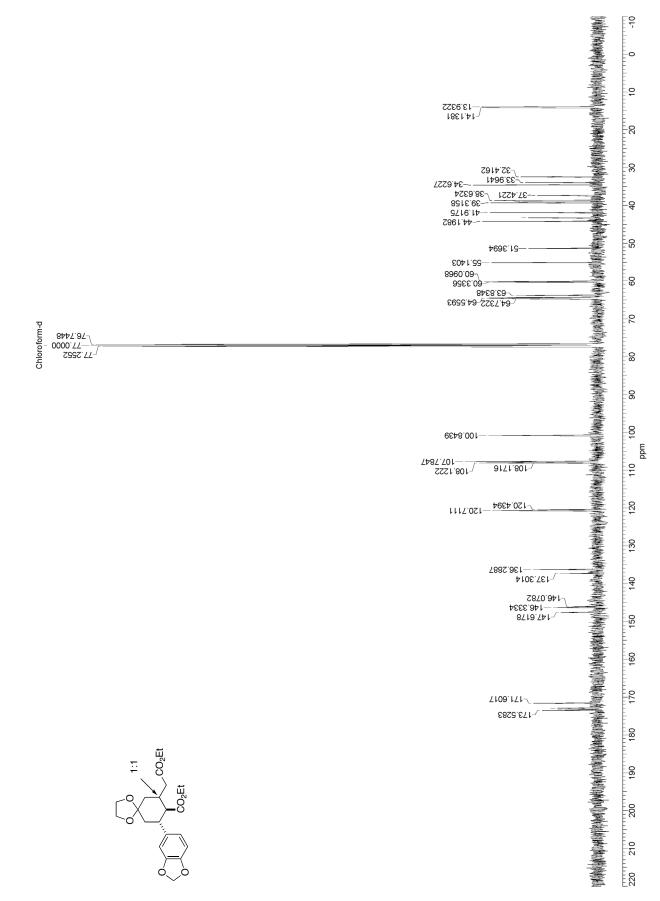


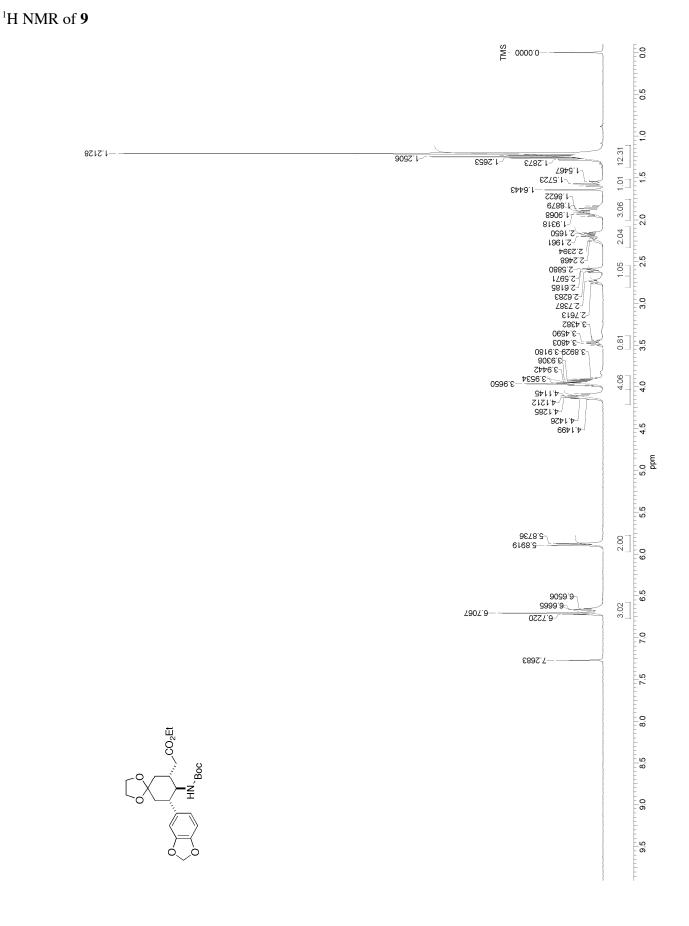

13 C NMR of **5**

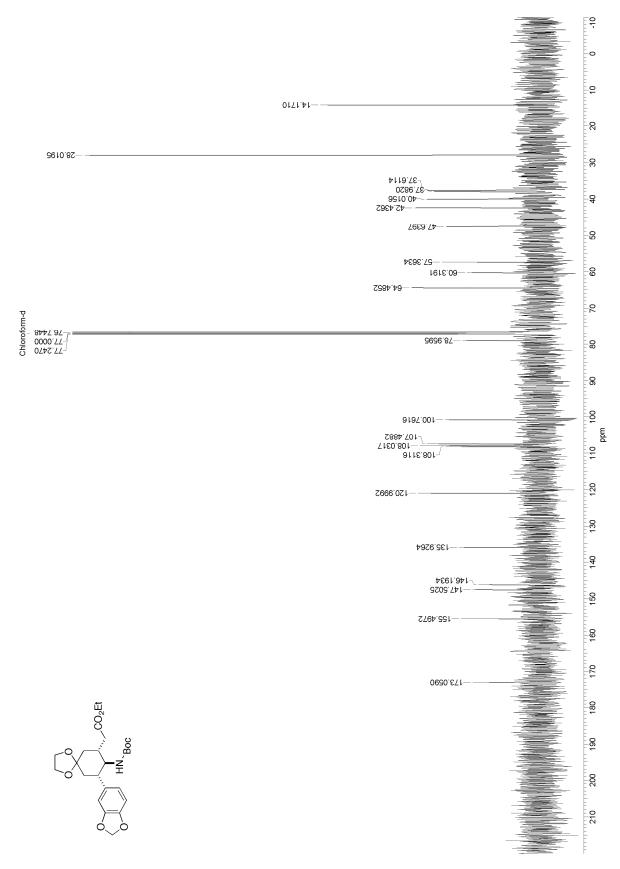


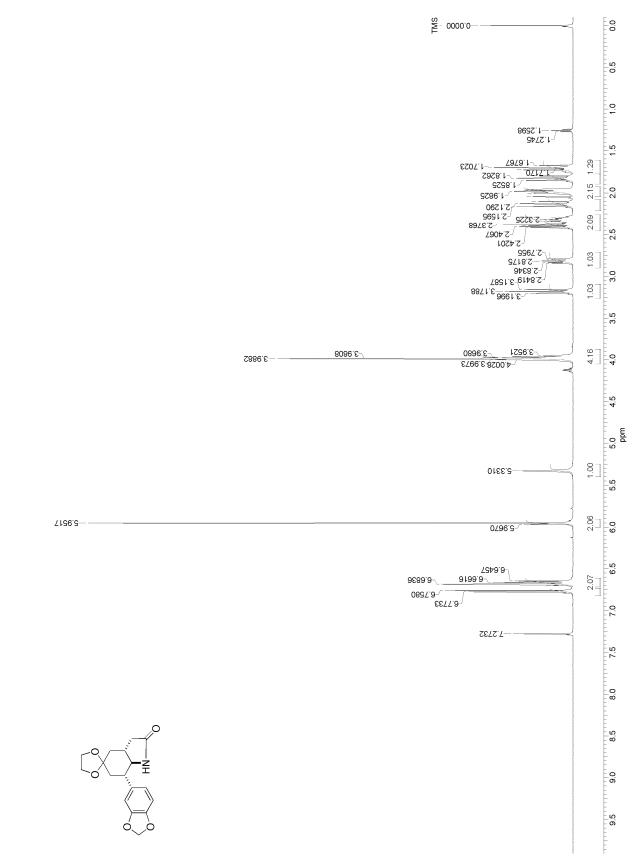

¹³C NMR of **7**



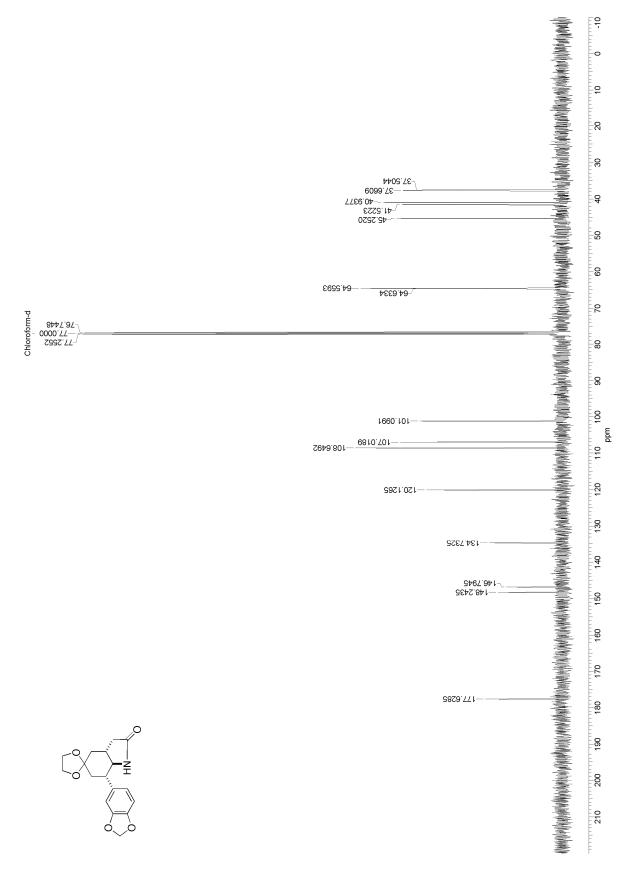

 13 C NMR of 8

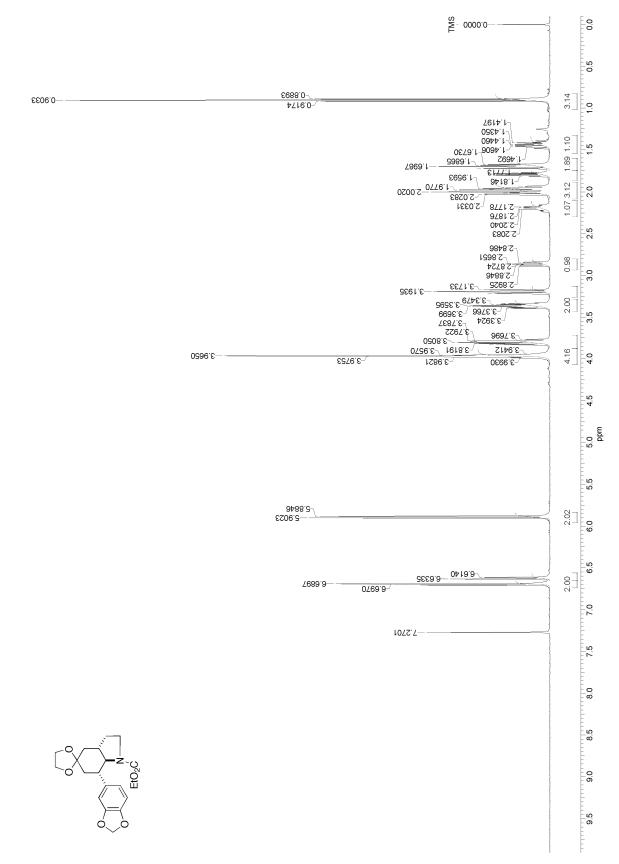


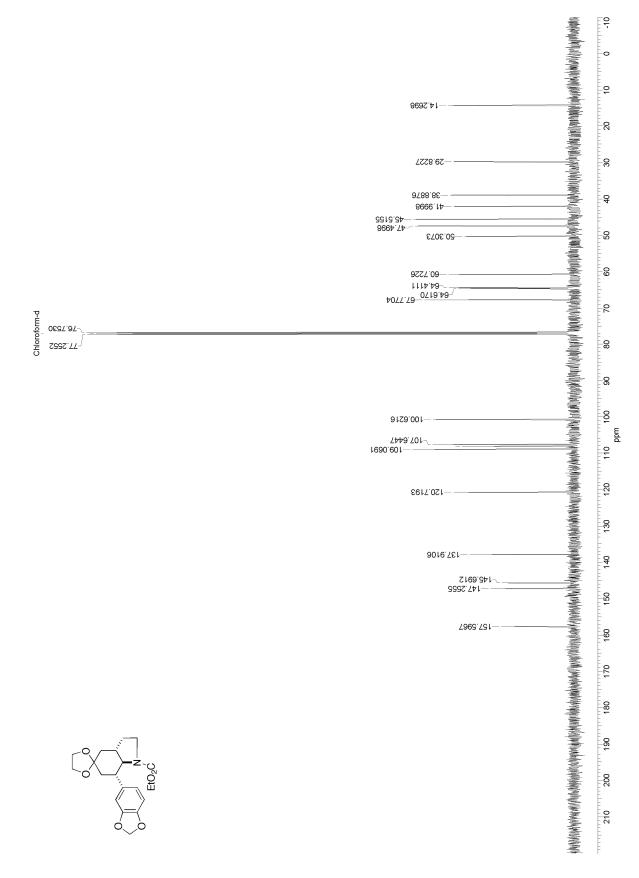

¹H NMR of **S1/S2**



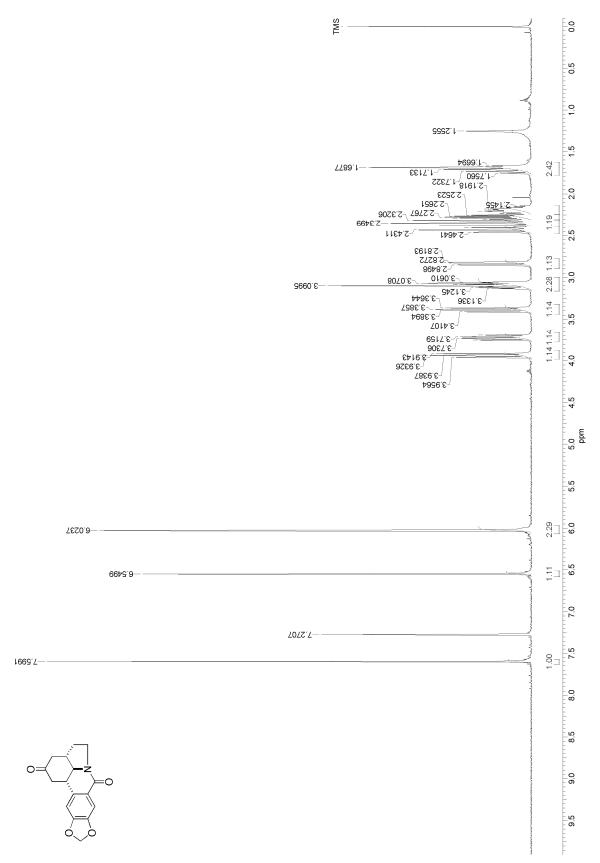
¹³C NMR of **S1/S2**

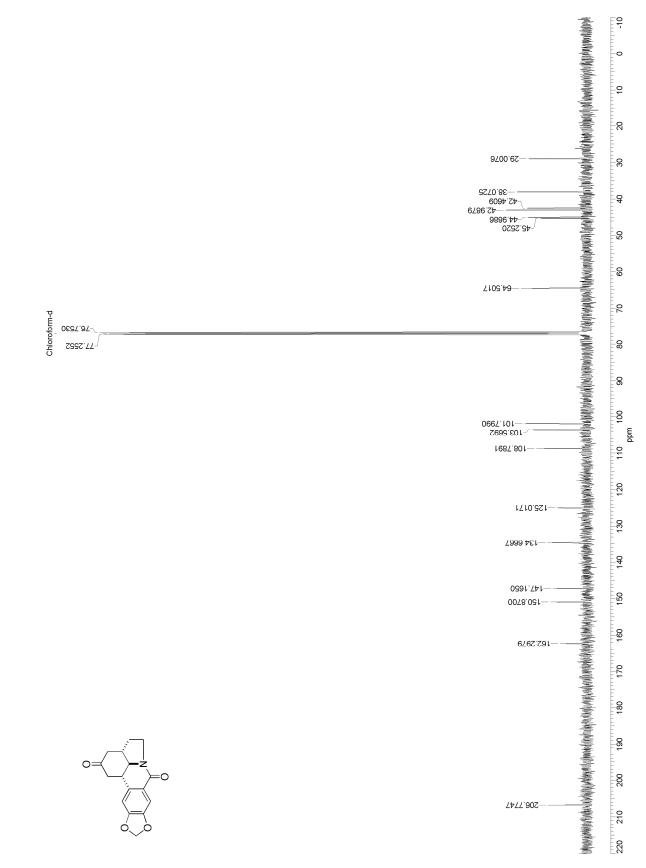


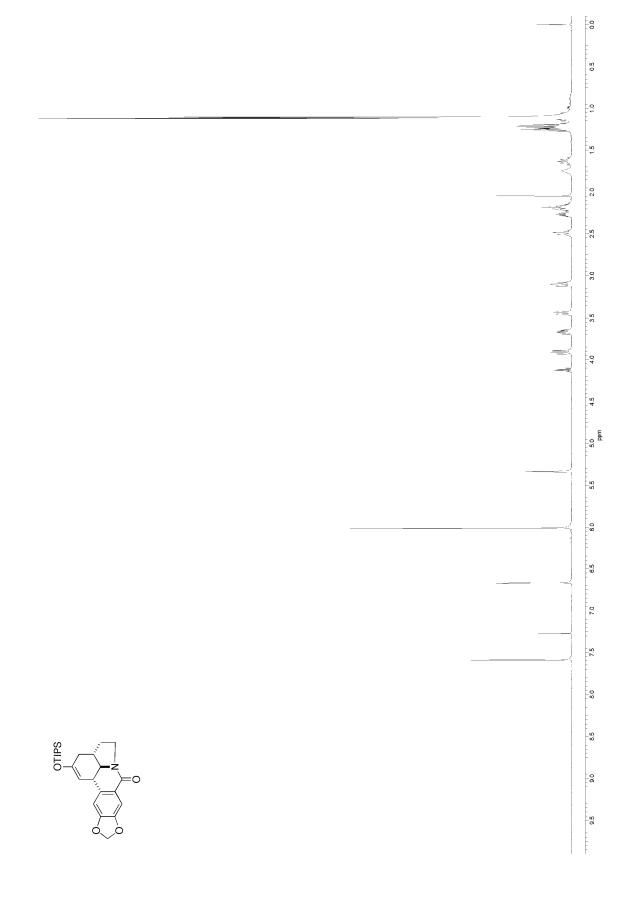




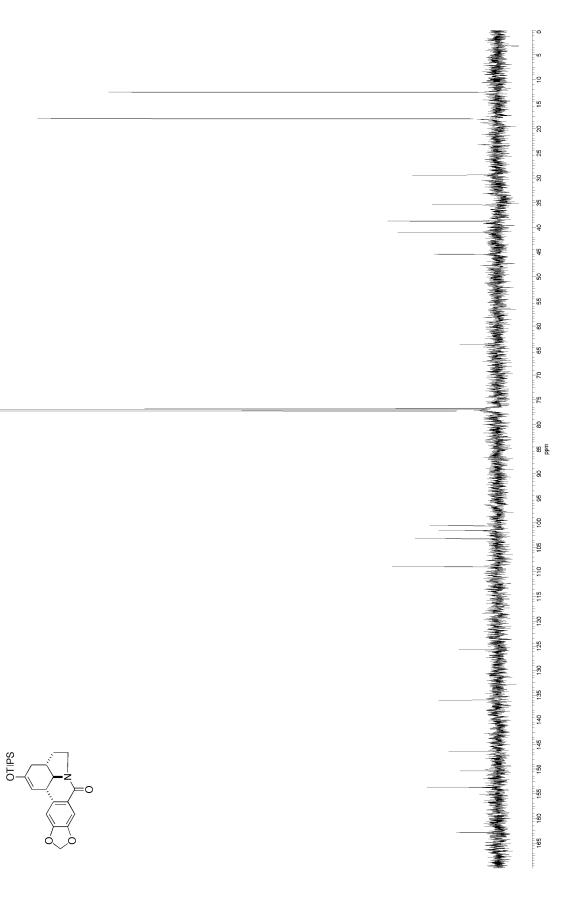
 13 C NMR of S3

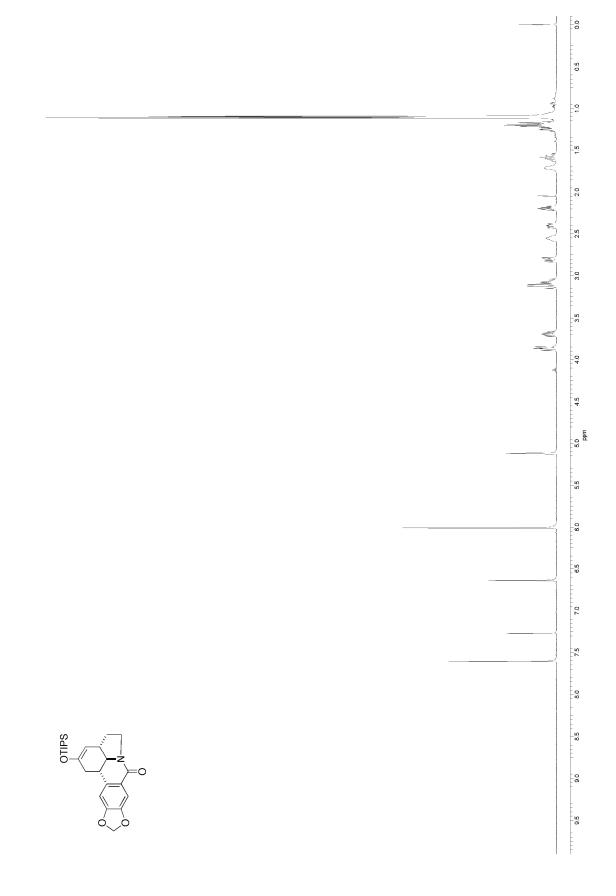


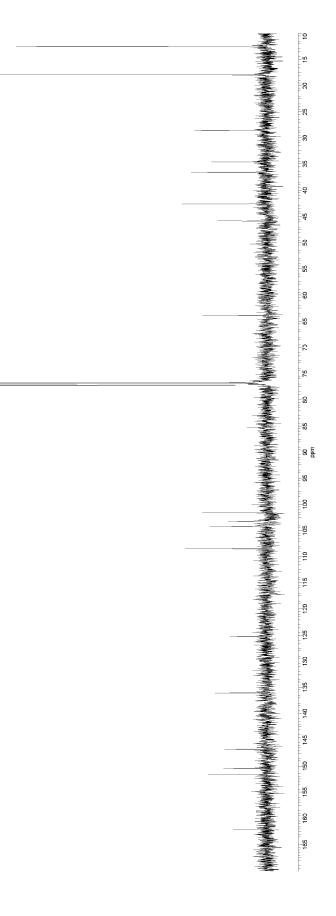

¹³C NMR of **10**

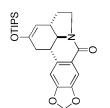


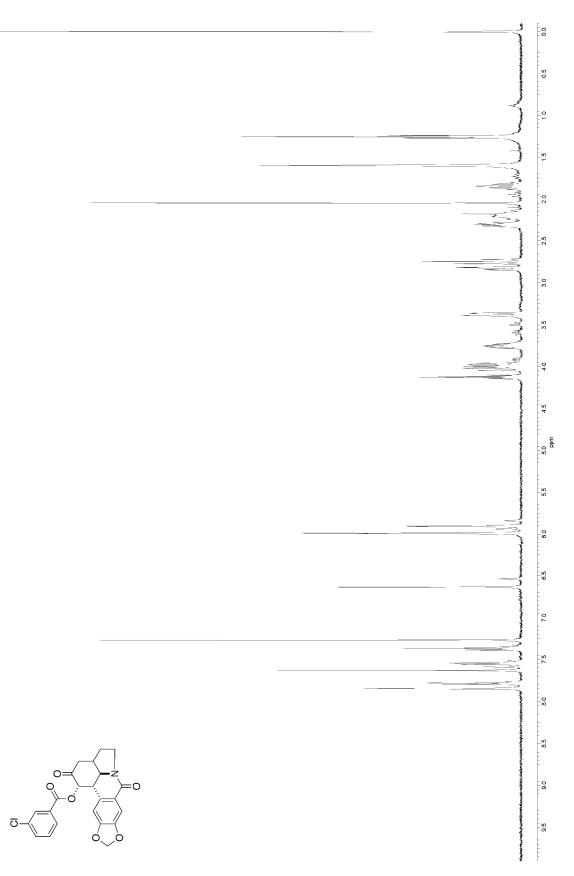
¹H NMR of **11**

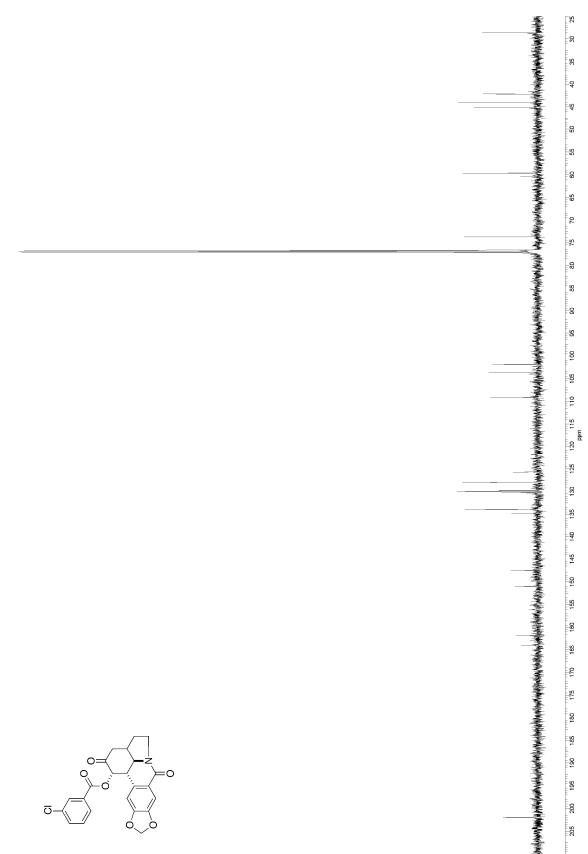


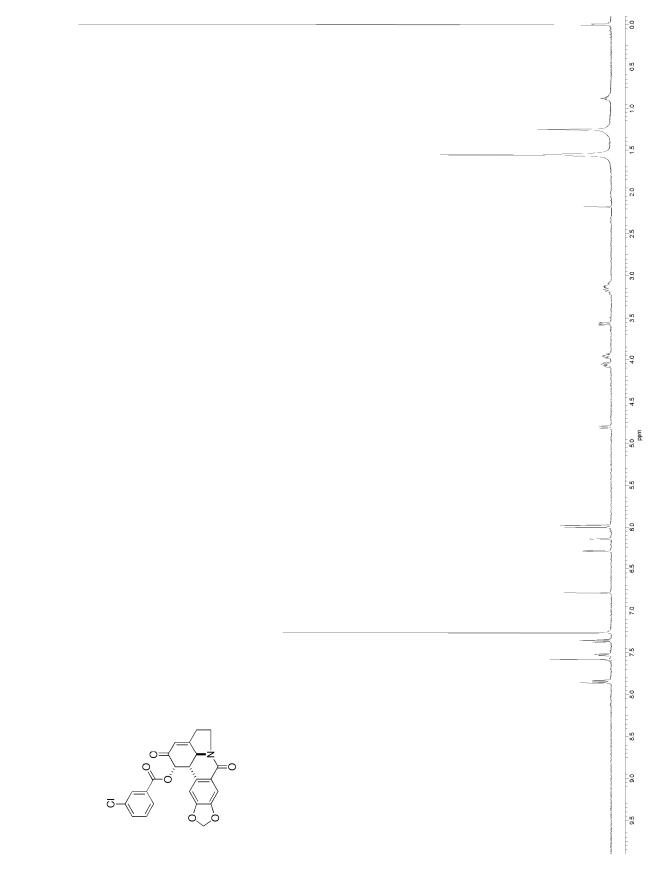

¹³C NMR of **11**

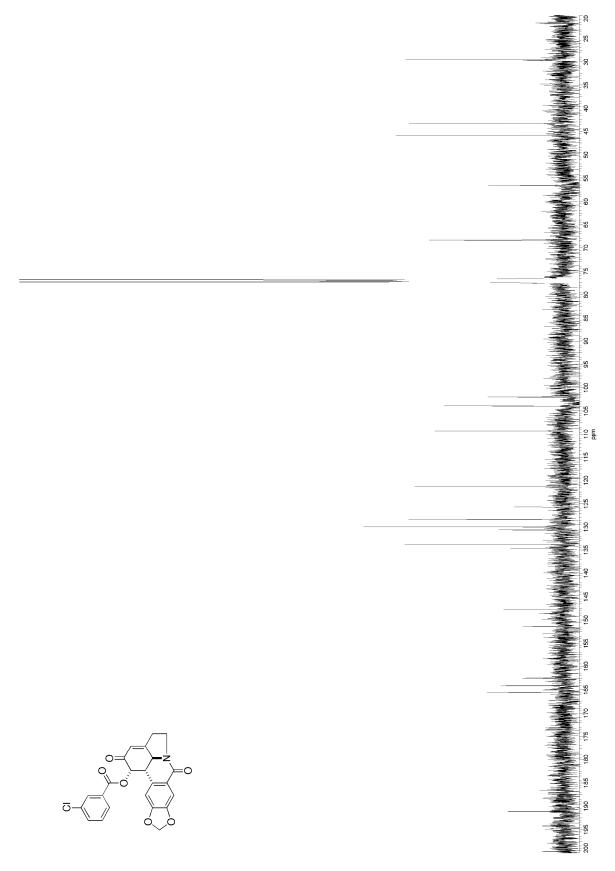


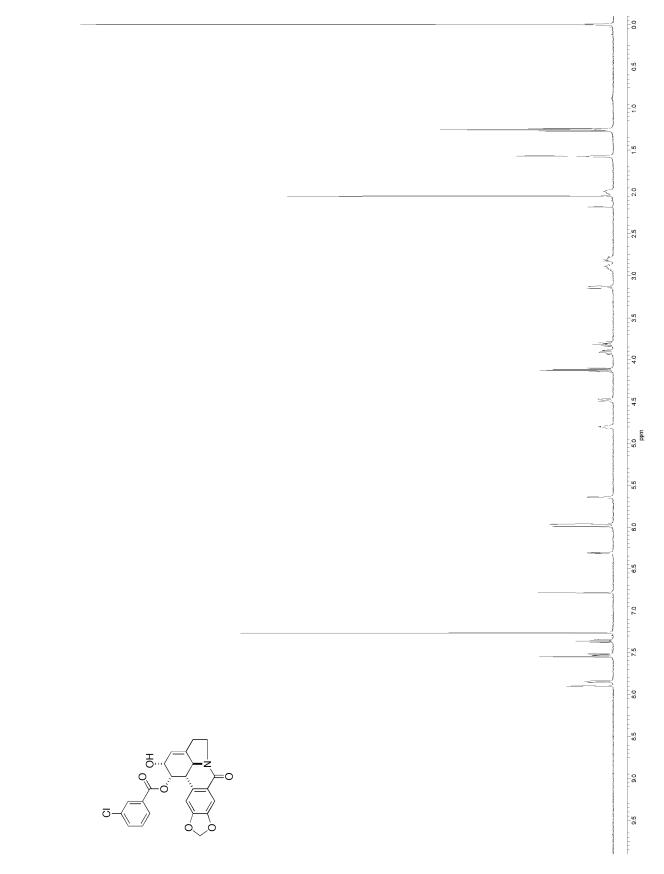


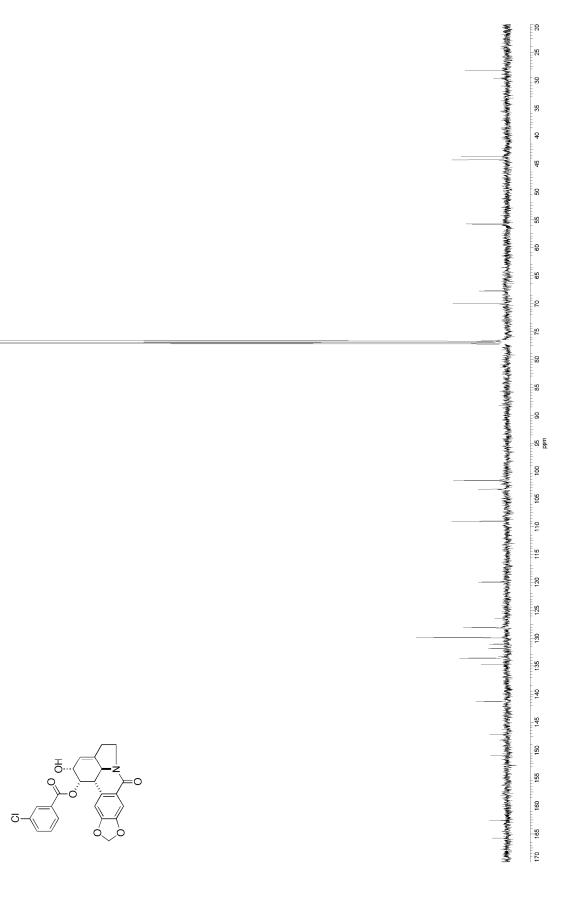

¹³C NMR of **12**

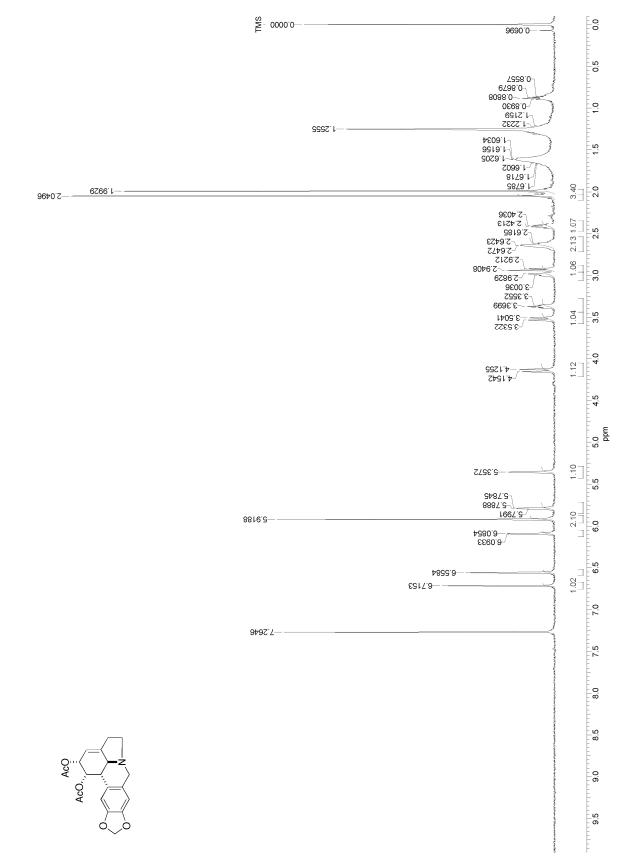


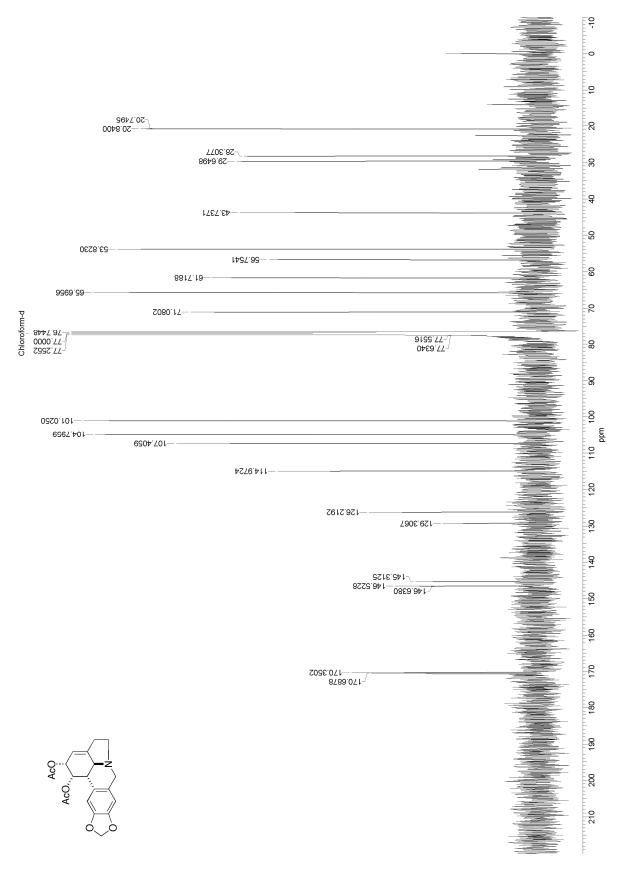


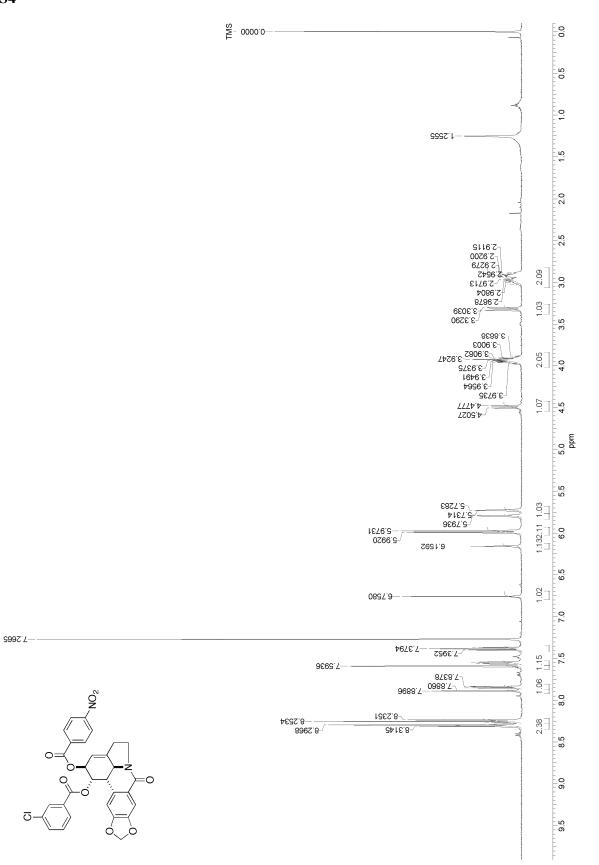


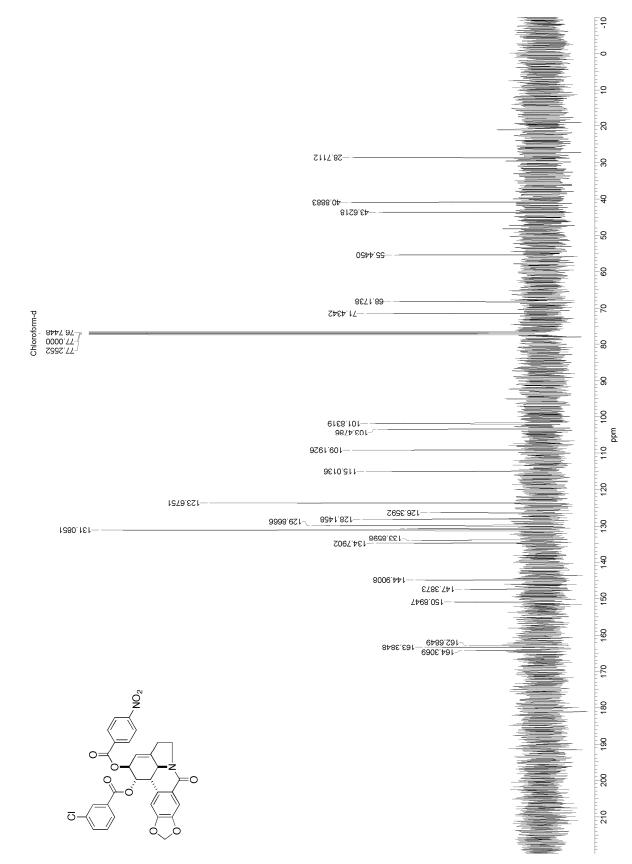


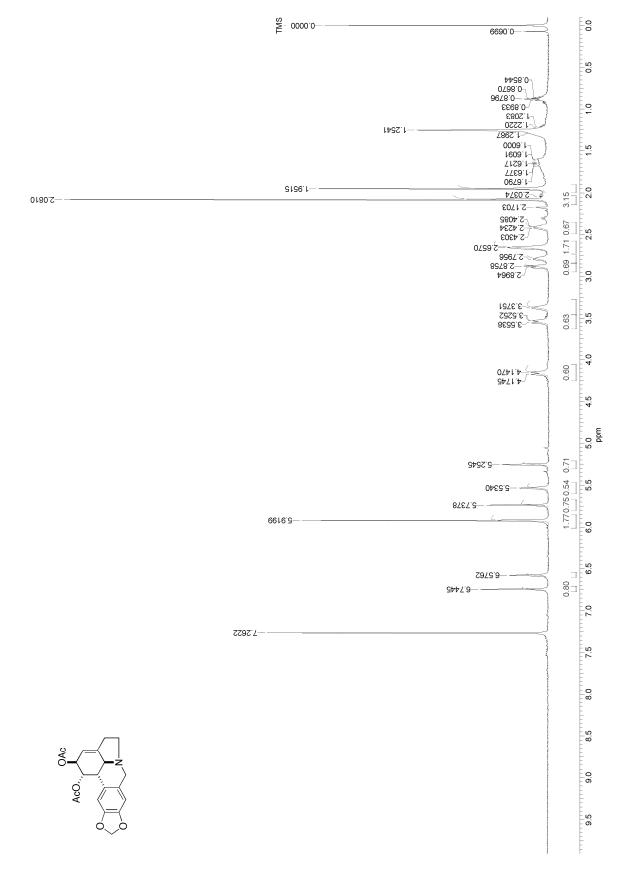


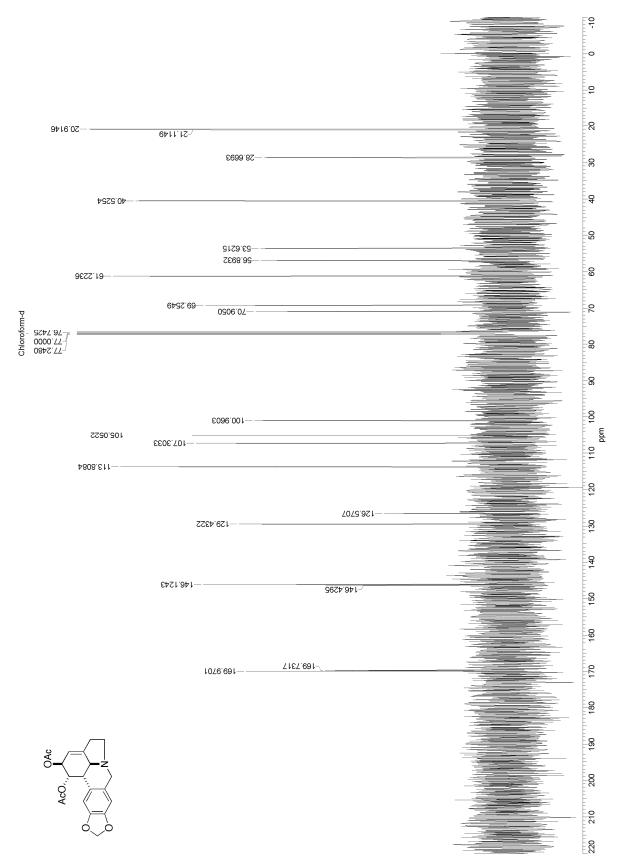


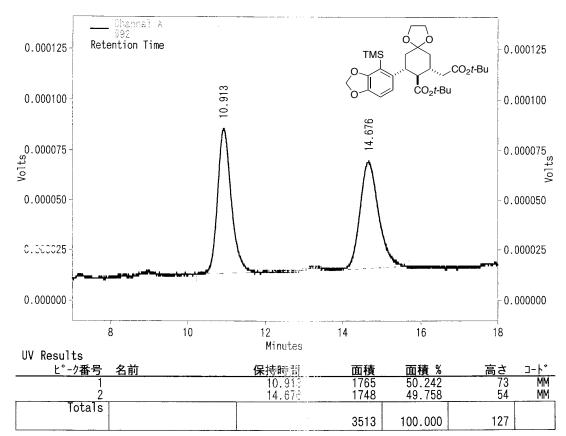


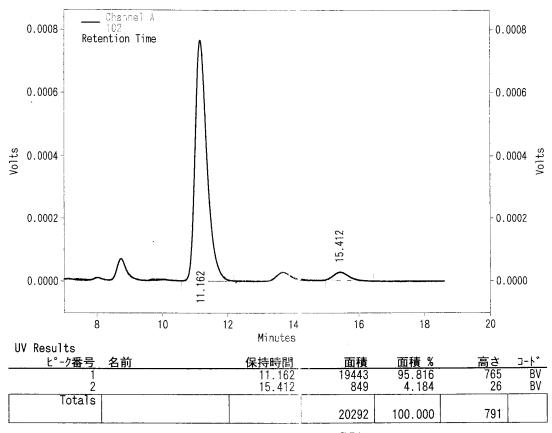


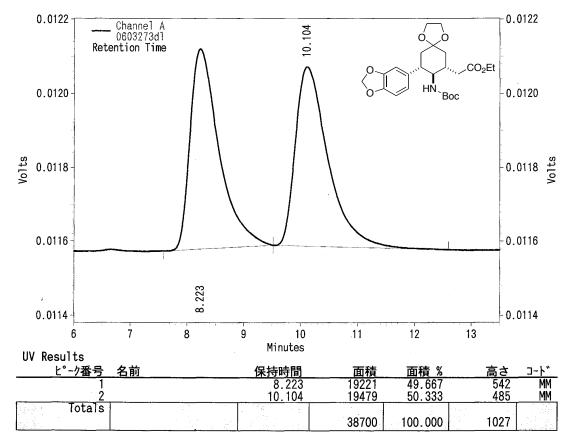


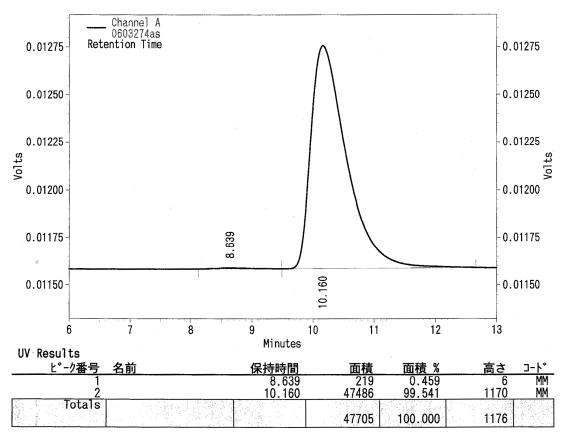



¹H NMR of **S4**


 ^{13}C NMR of S4




HPLC Trace of (±)-7


HPLC Trace of (-)-7 with 92% ee

HPLC Trace of (±)-9

HPLC Trace of (–)-**9** with >99% ee

