Supporting Information

Total Synthesis of (-)-Lycorine and (-)-2-epi-Lycorine by Asymmetric Conjugate Addition Cascade

Ken-ichi Yamada, Mitsuaki Yamashita, Takaaki Sumiyoshi, Katsumi Nishimura, and Kiyoshi Tomioka*

Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
tomioka@pharm.kyoto-u.ac.jp

Contents

Experimental Procedures... S2
NMR Charts of the Products ... S19
HPLC Traces of $\mathbf{7}$ and 9 .. S51

Supporting Information

General.

All melting points are uncorrected. Silica gel was used for column chromatography. NMR (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$) was measured in CDCl_{3} unless otherwise mentioned. Chemical shifts and coupling constants are presented in $\mathrm{ppm} \delta$ relative to tetramethylsilane and Hz , respectively. Abbreviations are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. ${ }^{13} \mathrm{C}$ peak multiplicity assignments were made based on DEPT data. The wave numbers of maximum absorption peaks of IR spectroscopy are presented in $\mathrm{cm}^{-1} . \mathrm{POCl}_{3}$ and m - CPBA were purified by standard protocols prior to use. ${ }^{1}$ Other reagents were purchased from chemical companies and used as received. Except for MeOH and MeCN , dehydrated solvents were purchased for the reactions and used without further desiccation.

Total Synthesis of Lycorine.

tert-Butyl (2E,2'E)-4,4'-(1,3-dioxolane-2,2-diyl)dibut-2-enoate (5):

To a solution of dimethyl 1,3-dioxolane-2,2-diacetate ${ }^{2}(21.8 \mathrm{~g}, 100 \mathrm{mmol})$ in toluene (500 mL) was added DIBAL (1.0 M in hexane, $200 \mathrm{~mL}, 200 \mathrm{mmol}$) over 1 h at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for $1 \mathrm{~h} . \mathrm{MeOH}(8.1 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for additional $15 \mathrm{~min} . \mathrm{H}_{2} \mathrm{O}(11 \mathrm{~mL})$ in $\mathrm{MeOH}(16 \mathrm{~mL})$ was added at $-78{ }^{\circ} \mathrm{C}$, and the mixture was allowed to warm up to room temperature. The mixture was filtered through Celite, and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave brown oil (16.0 g), which was then dissolved in toluene (400 mL). To the solution, was added (t-butoxycarbonylmethylene)triphenylphosphorane (82.7

[^0]
Supporting Information

$\mathrm{g}, 220 \mathrm{mmol}$), and the mixture was stirred for 3 h at room temperature. After addition of hexane (200 mL), the reaction mixture was filtered through Celite, and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O}=4 / 1$) gave the titled dialkenoate $(18.2 \mathrm{~g}, 51 \%$ yield in 2 steps) as colorless gum. ${ }^{1} \mathrm{H}$ NMR: $1.48(\mathrm{~s}, 18 \mathrm{H}), 2.50(\mathrm{dd}, J=1.3,7.6,4 \mathrm{H}), 3.97(\mathrm{~s}, 4 \mathrm{H}), 5.82$ $(\mathrm{dd}, J=1.3,15.2,2 \mathrm{H}), 6.82(\mathrm{dt}, J=7.6,15.2,2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $28.1\left(\mathrm{CH}_{3}\right), 40.5\left(\mathrm{CH}_{2}\right), 65.4\left(\mathrm{CH}_{2}\right), 80.2$ (C), 109.4 (C), 126.6 (CH), 141.1 (CH), 165.4 (C). IR (neat): 2978, 2936, 2889, 1710, 1477, 1458, 1393, 1366, 1655, 1157, 984. FABMS $m / z: 355(M H), 243,213,157$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6}: \mathrm{C}, 64.38 ; \mathrm{H}$, 8.53. Found: C, 64.31; H, 8.44.
tert-Butyl (1R,2R,3R)- and (1S,2R,3R)-2-tert-butoxycarbonyl-3-(4-trimethylsilyl-1,3-benzodioxol-5-yl)-5,5-ethylenedioxycyclohexaneacetate (7 and its isomer):

To a solution of $\mathbf{3}(1.02 \mathrm{~g}, 4.21 \mathrm{mmol})$ and 5-bromo-4-(trimethylsilyl)-1,3-benzodioxole ${ }^{3}$ (819 mg , $3.00 \mathrm{mmol})$ in toluene (27 mL) was added $t-\mathrm{BuLi}(1.66 \mathrm{~mL}, 1.7 \mathrm{M}$ pentane solution, 2.8 mmol$)$ over 10 min at $-78{ }^{\circ} \mathrm{C}$, the mixture was stirred for 1 h . A solution of dialkenoate $5(354 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{TMSCl}(0.63 \mathrm{~mL}, 5.0 \mathrm{mmol})$ in toluene $(3.0 \mathrm{~mL})$ was added over 10 min at $-78{ }^{\circ} \mathrm{C}$. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were washed with sat. NaHCO_{3} and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}=4 / 1$) gave a $9: 1$ mixture of 7 and its isomer $(532 \mathrm{mg}, 97 \%$ yield $)$ as colorless gum: $[\alpha]_{\mathrm{D}}{ }^{25}-17.3\left(c \quad 1.02, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess of 7 was determined to be 92% ee by HPLC (Daicel Chiralcel AD, hexane $/ i-\operatorname{PrOH}=100 / 1,1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 11.0 min and minor 15.4 min$).{ }^{1} \mathrm{H}$ NMR, 7: $0.40(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.51(\mathrm{dd}, J=$

Supporting Information

$13.1,13.1,1 \mathrm{H}), 1.60(\mathrm{dd}, J=13.3,13.3,1 \mathrm{H}), 1.89(\mathrm{ddd}, J=2.8,2.8,13.3,1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{dd}$, $J=8.9,15.3,1 \mathrm{H}), 2.33(\mathrm{dd}, J=2.5,15.3,1 \mathrm{H}), 2.37-2.50(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{ddd}, J=3.4,10.7,12.8,1 \mathrm{H})$, $3.89-4.00(\mathrm{~m}, 4 \mathrm{H}), 5.84(\mathrm{~d}, J=11.3,1 \mathrm{H}), 5.85(\mathrm{~d}, J=11.3,1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2$, $1 \mathrm{H})$; its isomer: $0.44(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.55-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.07-$ $2.14(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.88(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.83-4.00(\mathrm{~m}, 4 \mathrm{H}), 5.84-8.85$ $(\mathrm{m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9,1 \mathrm{H}), 3.73(\mathrm{~d}, J=7.9,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR, 7: $1.3\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right)$, $34.8(\mathrm{CH}), 39.2\left(\mathrm{CH}_{2}\right), 39.3\left(\mathrm{CH}_{2}\right), 42.4(\mathrm{CH}), 43.8\left(\mathrm{CH}_{2}\right), 54.8(\mathrm{CH}), 64.2\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{CH}_{2}\right), 79.8(\mathrm{C})$, $80.2(\mathrm{C}), 99.5\left(\mathrm{CH}_{2}\right), 107.8(\mathrm{CH}), 108.6(\mathrm{C}), 119.4(\mathrm{C}), 120.5(\mathrm{CH}), 141.0(\mathrm{C}), 144.1(\mathrm{C}), 152.2(\mathrm{C})$, 170.8 (C), 173.0 (C). IR: 2978, 2878, 1728, 1620, 1580, 1450, 1416, 1396, 1369, 1153, 1076, 1053. EIMS m/z: $548\left(\mathrm{M}^{+}\right), 421,329,243$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{Si}: \mathrm{C}, 63.47 ; \mathrm{H}, 8.08$. Found: C, 63.77; H, 8.28. The diasteromeric ratio was determined based on the ratio of the integration aria of the ${ }^{1} \mathrm{H}$ NMR signals at 0.40 and 0.44 ppm where the methyl protons of the TMS of the each isomer appear. The relative configuration of $\mathbf{7}$ was confirmed after conversion to $\mathbf{8}$.

Ethyl (1R,2R,3R)-3-(1,3-benzodioxol-5-yl)-2-carboxy-5,5-ethylenedioxycyclohexaneacetate (8):

To a solution of the 9:1 mixture of dialkanoates 7 and its isomer ($20.8 \mathrm{~g}, 379 \mathrm{mmol}$) in EtOH (6 mL) was added $40 \% \mathrm{HCl}$ in $\mathrm{EtOH}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was heated under reflux for 1 h . After addition of cold $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave brown oil (25.7 g), which was then dissolved in benzene $(100 \mathrm{~mL})$. To a solution was added and ethylene glycol $(8.5 \mathrm{~mL}, 150$ mmol) p-toluenesulfonic acid monohydrate ($217 \mathrm{mg}, 1.14 \mathrm{mmol}$), and the mixture was heated under reflux for 2 h . After cooled to room temperature, the mixture was washed with brine and then dried over

Supporting Information

$\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt $=1 / 1$) gave the titled carboxylic acid ($11.5 \mathrm{~g}, 77 \%$ yield) as colorless gum.

8: $[\alpha]_{\mathrm{D}}{ }^{25}-12.4\left(c 0.95, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR: $1.24(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.46(\mathrm{dd}, J=12.8$, $12.8,1 \mathrm{H}), 1.71(\mathrm{dd}, J=12.8,12.8,1 \mathrm{H}), 1.86(\mathrm{dd}, J=3.4,12.8,1 \mathrm{H}), 1.94(\mathrm{dd}, J=3.4,12.8,1 \mathrm{H}), 2.18$ (dd, $J=8.9,15.6,1 \mathrm{H}), 2.31(\mathrm{dd}, J=12.8,12.8,1 \mathrm{H}), 2.39(\mathrm{dd}, J=3.4,15.6,1 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 3.08$ (ddd, $J=3.4,12.8,12.8,1 \mathrm{H}), 3.96(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{q}, J=7.1,2 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0,1 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $14.1\left(\mathrm{CH}_{3}\right), 34.5(\mathrm{CH}), 38.5\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{2}\right), 43.8(\mathrm{CH})$, $54.6\left(\mathrm{CH}_{2}\right), 60.4\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{CH}_{2}\right), 100.8\left(\mathrm{CH}_{2}\right), 107.5(\mathrm{C}), 107.5\left(\mathrm{CH}_{2}\right), 108.2(\mathrm{CH}), 120.6$ $(\mathrm{CH}), 128.3(\mathrm{C}), 135.9(\mathrm{C}), 146.4\left(\mathrm{CH}_{2}\right), 147.7$ (C), 171.6 (C), 179.0 (C). IR: 3300, 2955, 2893, 1732, 1713, 1609, 1489, 1443, 1377, 1072, 1042. EIMS m/z: $392\left(\mathrm{M}^{+}\right), 346,259,219,185,148,115,99$. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}:$ 392.1471. Found: 392.1479. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}$: C, 61.22; H, 6.16. Found: C, $61.33 ; H, 5.95$. The relative configuration of $\mathbf{8}$ was assigned based on the coupling constants shown below.

Ethyl (1R,2R,3R)-3-(1,3-benzodioxol-5-yl)-2-carboxy-5,5-ethylenedioxycyclohexaneacetate (8), and ethyl $(1 R, 2 R, 3 R)$ - and $(1 S, 2 R, 3 R)$-3-(1,3-benzodioxol-5-yl)-2-ethoxycarbonyl-5,5-ethylenedioxycyclohexaneacetate (S1 and S2):

The same procedure as above, except that the first reaction was conducted for 3 h , gave $\mathbf{8}$ in 50% yield as well as a 1:1 diastereomeric mixture of diethyl esters $\mathbf{S 1}$ and $\mathbf{S 2}$ in 25% yield as colorless oil.

Supporting Information

the $1: 1$ mixture of $\mathbf{S} 1$ and $\mathbf{S 2}:{ }^{1} \mathrm{H}$ NMR, S1: $0.98(\mathrm{t}, J=7.0,3 \mathrm{H}), 1.25(\mathrm{t}, J=7.0$, $3 \mathrm{H}), 1.49(\mathrm{dd}, J=13.0,13.0,1 \mathrm{H}), 1.73(\mathrm{dd}, J=13.1,13.1,1 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{ddd}, J=3.1,3.1$, $13.0,1 \mathrm{H}), 2.18(\mathrm{dd}, J=9.2,15.6,1 \mathrm{H}), 2.32(\mathrm{dd}, J=11.3,11.3,1 \mathrm{H}), 2.36(\mathrm{dd}, J=4.0,15.6,1 \mathrm{H}), 2.52$ $(\mathrm{m}, 1 \mathrm{H}), 3.11(\mathrm{ddd}, J=3.7,11.3,13.1,1 \mathrm{H}), 3.85-4.01(\mathrm{~m}, 6 \mathrm{H}), 4.10-4.16(\mathrm{~m}, 2 \mathrm{H}), 5.904(\mathrm{~s}, 2 \mathrm{H}), 6.63-$ $6.71(\mathrm{~m}, 3 \mathrm{H}) ; \mathbf{S 2}: 1.04(\mathrm{t}, J=7.2,3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2,3 \mathrm{H}), 1.65(\mathrm{dd}, J=13.1,13.1,1 \mathrm{H}), 1.84(\mathrm{dd}, J=$ $5.2,14.4,1 \mathrm{H}), 1.87-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=5.8,16.5,1 \mathrm{H}), 2.83(\mathrm{dd}, J=4.3,12.2,1 \mathrm{H}), 2.85(\mathrm{dd}, J=$ $8.6,16.5,1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=3.1,12.2,13.1,1 \mathrm{H}), 3.85-4.01(\mathrm{~m}, 6 \mathrm{H}), 4.10-4.16(\mathrm{~m}, 2 \mathrm{H})$, $5.902(\mathrm{~s}, 2 \mathrm{H}), 6.63-6.71(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR, S1: $13.93\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right), 34.6(\mathrm{CH}), 38.6\left(\mathrm{CH}_{2}\right)$, 39.3($\left.\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{2}\right), 44.2(\mathrm{CH}), 55.1(\mathrm{CH}), 60.1\left(\mathrm{CH}_{2}\right), 60.3\left(\mathrm{CH}_{2}\right), 64.4\left(\mathrm{CH}_{2}\right), 64.6\left(\mathrm{CH}_{2}\right), 100.84$ $\left(\mathrm{CH}_{2}\right), 107.7(\mathrm{C}), 107.78(\mathrm{CH}), 108.12(\mathrm{CH}), 120.7(\mathrm{CH}), 136.3(\mathrm{C}), 146.3(\mathrm{C}), 147.62(\mathrm{C}), 171.9(\mathrm{C})$, $173.5(\mathrm{C})$; S2: $13.86\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right), 32.4(\mathrm{CH}), 34.0\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 38.8(\mathrm{CH}), 43.3\left(\mathrm{CH}_{2}\right), 51.4$ $(\mathrm{CH}), 60.15\left(\mathrm{CH}_{2}\right), 60.17\left(\mathrm{CH}_{2}\right), 63.8\left(\mathrm{CH}_{2}\right), 64.7\left(\mathrm{CH}_{2}\right), 100.82\left(\mathrm{CH}_{2}\right), 107.81(\mathrm{CH}), 108.08(\mathrm{CH}), 108.2$ (C), 120.4 (CH), 137.3 (C), 146.1 (C), 147.57 (C), 172.9 (C), 173.3 (C). IR (neat): 2978, 2893, 1728, 1612, 1489, 1443, 1381, 1250, 1173, 1080, 1034, 984, 864, 810, 733, 640. FABMS m/z: $421(\mathrm{MH}), 420$ $\left(\mathrm{M}^{+}\right), 419(\mathrm{M}-1), 375(\mathrm{M}-\mathrm{OEt}), 347\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right)$. HRMS-FAB $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{8}$: 420.1784. Found: 420.1783. The relative configurations of S1 and S2 were assigned based on the coupling constants (blue) and the NOE (magenta) shown below.

Ethyl (1R,2R,3S)-3-(1,3-benzodioxol-5-yl)-2-(tert-butoxycarbonylamino)-5,5-ethylenedioxycyclohexaneacetate (9):

Supporting Information

Carboxylic acid $\mathbf{8}(4.31 \mathrm{~g}, 11.0 \mathrm{mmol})$ was dried by azeotropic distillation with toluene ($3 \times 50 \mathrm{~mL}$) and dissolved in toluene $(50 \mathrm{~mL})$. To the solution were added crushed molecular sieves $4 \AA(20 \mathrm{~g})$, and the mixture was stirred for 30 min under argon atmosphere at room temperature. To the mixture were added $\mathrm{Et}_{3} \mathrm{~N}(6.1 \mathrm{~mL}, 44 \mathrm{mmol})$ and DPPA $(4.8 \mathrm{~mL}, 22 \mathrm{mmol})$, and the mixture was heated under reflux for 1.5 h . After addition of $t-\mathrm{BuOH}(40 \mathrm{~mL})$, the mixture was further heated under reflux for 4 days. The mixture was filtered through Celite, and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and silica gel column chromatography (hexane/acetone $=4 / 1$) gave the titled carbamate ($4.70 \mathrm{~g}, 80 \%$ yield) as colorless needles. Recrystallization from hexane gave almost enantiomerically pure colorless needles (4.12 g, 88% yield) of mp $155-157^{\circ} \mathrm{C}(>99 \%$ ee; HPLC, Daicel Chiralcel OD-H, hexane $/ i-\operatorname{PrOH}=9 / 1$, $1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, major 10.1 min and minor 8.2 min$):[\alpha]_{\mathrm{D}}{ }^{25}-8.0\left(c 2.28, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: 1.21 (s, $9 \mathrm{H}), 1.25(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.57(\mathrm{dd}, J=12.8,12.8,1 \mathrm{H}), 1.86(\mathrm{dd}, J=12.8,12.8,1 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.18$ (dd, $J=8.0,15.6,1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=4.7,15.6,1 \mathrm{H}), 2.75(\mathrm{ddd}, J=3.7,12.8,12.8,1 \mathrm{H})$, $3.48(\mathrm{dd}, J=12.8,12.8,1 \mathrm{H}), 3.94(\mathrm{~m}, 4 \mathrm{H}), 4.09(\mathrm{brs}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J=9.2,2 \mathrm{H}), 6.67(\mathrm{~d}, J$ $=8.0,1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $14.2\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 37.6(\mathrm{CH}), 38.0\left(\mathrm{CH}_{2}\right)$, $40.0\left(\mathrm{CH}_{2}\right), 42.4\left(\mathrm{CH}_{2}\right), 47.6(\mathrm{CH}), 57.4(\mathrm{CH}), 60.3\left(\mathrm{CH}_{2}\right), 64.4\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{CH}_{2}\right), 79.0(\mathrm{C}), 100.8$ $\left(\mathrm{CH}_{2}\right), 107.5(\mathrm{C}), 108.0(\mathrm{CH}), 108.3(\mathrm{CH}), 121.0(\mathrm{CH}), 135.9(\mathrm{C}), 146.2(\mathrm{C}), 147.5(\mathrm{C}), 155.5(\mathrm{C})$, 173.1 (C). IR: $3360,2978,2932,2885,1720,1710,1609,1504,1443,1366,1246,1169,1038$. EIMS $m / z: 463\left(\mathrm{M}^{+}\right), 346,259,221,148,135$. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{8}: \mathrm{C}, 62.19 ; \mathrm{H}, 7.18 ; \mathrm{N}, 3.02$. Found: C, 62.11; H, 7.19; N, 3.17.

(3aR,7S,7aR)-7-(1,3-Benzodioxol-5-yl)-5,5-ethylenedioxyhexahydro-1H-indol-2(3H)-one (S3):

Supporting Information

A mixture of carbamate $9(2.32 \mathrm{~g}, 5.00 \mathrm{mmol})$, TFA $(7.70 \mathrm{~mL}, 100 \mathrm{mmol})$ and thioanisole $(1.17 \mathrm{~mL}$, 10.0 mmol) was stirred at room temperature for 1 h . The mixture was poured into sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated to give brown oil (3.56 g). To a solution of the oil in $\mathrm{MeOH}(25 \mathrm{~mL})$ was added $\mathrm{NaOMe}(1.35 \mathrm{~g}, 25.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 2 days. The reaction mixture was diluted with AcOEt , washed with brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (AcOEt) gave the titled lactam ($1.28 \mathrm{~g}, 81 \%$ yield) as colorless needles of $\mathrm{mp} 192.5-193.5^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{25}-51.3\left(c 1.01, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $1.69(\mathrm{dd}, J=12.8,12.8$, $1 \mathrm{H}), 1.82(\mathrm{dd}, J=12.8,12.8,1 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{dd}, J=12.8,15.0,1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.38$ $(\mathrm{dd}, J=6.8,15.0,1 \mathrm{H}), 2.81(\mathrm{dd}, J=3.2,11.6,11.6,1 \mathrm{H}), 3.20(\mathrm{dd}, J=11.6,11.6,1 \mathrm{H}), 3.93-4.00(\mathrm{~m}$, $4 \mathrm{H}), 5.33(\mathrm{brs}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $37.5\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 40.9(\mathrm{CH}), 41.5\left(\mathrm{CH}_{2}\right), 45.3(\mathrm{CH}), 64.5\left(\mathrm{CH}_{2}\right), 64.6\left(\mathrm{CH}_{2}\right), 64.6(\mathrm{CH}), 101.1$ $\left(\mathrm{CH}_{2}\right), 107.0(\mathrm{CH}), 108.6(\mathrm{CH}), 120.1(\mathrm{CH}), 134.7(\mathrm{C}), 146.8(\mathrm{C}), 148.2(\mathrm{C}), 177.6(\mathrm{C})$. IR (nujol): 3300, 1720, 1693, 1609, 1099, 1069, 1038. EIMS m/z: $317\left(\mathrm{M}^{+}\right)$, 221, 135. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}: \mathrm{C}$, 64.34; H, 6.03; N, 4.41. Found: C, 64.32; H, 5.90; N, 4.37.

Ethyl (3aS,7S,7aR)-7-(1,3-benzodioxol-5-yl)-5,5-ethylenedioxyoctahydroindole-1-carboxylate (10):

A suspension of lactam $\mathbf{S 3}(317 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(190 \mathrm{mg}, 5.00 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was heated under reflux for 3 h and then quenched by sequential dropwise addition of $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$,

Supporting Information

$15 \% \mathrm{NaOH}(0.2 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$. The mixture was filtered through Celite, and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give pale brown oil (710 mg). To a solution of the oil and $\mathrm{Et}_{3} \mathrm{~N}$ ($152 \mathrm{mg}, 1.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added ethyl chloroformate $(162 \mathrm{mg}, 1.50 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 8 h and diluted with AcOEt. The mixture was washed with sat. NaHCO_{3} and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt $=2 / 1$) gave the titled carbamate ($258 \mathrm{mg}, 69 \%$ yield in 2 steps) as a colorless gum: $[\alpha]_{\mathrm{D}}{ }^{25}+4.7\left(c 3.26, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $0.90(\mathrm{t}, J=7.0,3 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=12.8,12.8,1 \mathrm{H})$, $1.79(\mathrm{~m}, 1 \mathrm{H}), 1.9-2.0(\mathrm{~m}, 3 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{ddd}, J=4.0,12.8,12.8,1 \mathrm{H}), 3.19(\mathrm{dd}, J=12.8,12.8$, $1 \mathrm{H}), 3.32-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.94-4.00(\mathrm{~m}, 4 \mathrm{H}), 5.90(\mathrm{~d}, J=9.0,2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0$, $1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $14.2\left(\mathrm{CH}_{3}\right), 29.8\left(\mathrm{CH}_{2}\right), 38.9\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 45.5$ $(\mathrm{CH}), 47.5(\mathrm{CH}), 50.3\left(\mathrm{CH}_{2}\right), 60.7\left(\mathrm{CH}_{2}\right), 64.4\left(\mathrm{CH}_{2}\right), 64.6\left(\mathrm{CH}_{2}\right), 67.8(\mathrm{CH}), 100.6\left(\mathrm{CH}_{2}\right), 107.6(\mathrm{CH})$, 108.2 (CH), 109.1 (C), 120.7 (CH), 137.9 (C), 145.7 (C), 147.3 (C), 157.6 (C). IR (nujol): 1693, 1065, 1038. EIMS $m / z: 375\left(\mathrm{M}^{+}\right), 330,221,147,135$. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{~N}: 375.1682$. Found: 375.1689. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 63.99; H, 6.71; N, 3.73. Found: C, 63.88; H, 6.71; N, 3.73.

(12S,15S,16S)-9,10-Methylenedioxygalanthan-2,7-dione (11):

A mixture of carbamate $\mathbf{1 0}(29 \mathrm{mg}, 0.077 \mathrm{mmol})$ and freshly distilled $\mathrm{POCl}_{3}(1.0 \mathrm{~mL})$ was heated at $90^{\circ} \mathrm{C}$ for 8 h . The mixture was slowly poured into ice-water being stirred. The aqueous layer was basified (pH 11) with $8 \% \mathrm{NaOH}$ and extracted with CHCl_{3}. The organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration followed by column chromatography (hexane/ $\mathrm{AcOEt}=1 / 2$) gave the titled product ($21 \mathrm{mg}, 95 \%$ yield) as colorless needles of $\mathrm{mp} 270-273{ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{25}-4.9(c 1.03$,

Supporting Information

$\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $1.71(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=13.2,13.2,1 \mathrm{H}), 2.44(\mathrm{dd}, J=$ $13.2,13.2,1 \mathrm{H}), 2.83(\mathrm{dd}, J=4.0,13.2,1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=13.2,13.2,1 \mathrm{H}), 3.73(\mathrm{~m} 1 \mathrm{H})$, $3.94(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=3.0,2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $29.0\left(\mathrm{CH}_{2}\right), 38.1(\mathrm{CH}), 42.5$ $\left(\mathrm{CH}_{2}\right), 43.0(\mathrm{CH}), 45.0\left(\mathrm{CH}_{2}\right), 45.3\left(\mathrm{CH}_{2}\right), 64.5(\mathrm{CH}), 101.8\left(\mathrm{CH}_{2}\right), 103.6(\mathrm{CH}), 108.8(\mathrm{CH}), 125.0(\mathrm{C})$, 134.7 (C), 147.2 (C), 150.9 (C), 162.3 (C), 206.8 (C). IR (nujol): 1705, 1651, 1605, 1258, 1038. EIMS $m / z: 285\left(\mathrm{M}^{+}\right)$. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~N}: 285.1001$. Found: 285.0995. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \bullet 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.31 ; \mathrm{H}, 5.39$; N, 4.83. Found: C, 66.60; H, 5.33; N, 4.78.
(12S,15S,16S)-9,10-Methylenedoxy-2-triisopropylsiloxy-1,2-didehydrogalanthan-7-one (12) and (12S,15S,16S)-9,10-Methylenedioxy-2-triisopropylsiloxy-2,3-didehydrogalanthan-7-one (13):

To a solution of ketone $\mathbf{1 1}(140 \mathrm{mg}, 0.490 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.40 \mathrm{~mL}, 2.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added TIPSOTf $(0.66 \mathrm{~mL}, 2.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature. After 24 h , the reaction was quenched with sat. NaHCO_{3}, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt = 3/1) gave silyl enol ether $\mathbf{1 2}(125 \mathrm{mg}, 58 \%)$ and regioisomer 13 (90 $\mathrm{mg}, 41 \%)$.

12: colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}-33.0\left(c 0.67, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $1.11(\mathrm{~d}, J=3.4,9 \mathrm{H}), 1.12(\mathrm{~d}$, $J=3.4,9 \mathrm{H}), 1.22(\mathrm{dd}, J=3.4,3.4,3 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=$ $10.7,11.9,1 \mathrm{H}), 3.44(\mathrm{~d}, J=11.9,1 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 12.6, 17.9, 29.4, 35.4, 38.7, 41.1, 45.5, 63.7, 100.6, 101.5, 103.2, 109.0,

Supporting Information

125.7, 136.0, 146.4, 150.4, 153.7, 162.8. IR (neat): 2943, 2866, 1651, 1504, 1454, 1385, 1350, 1265, 1196, 1038, 880, 680. EIMS $m / z: 442\left(\mathrm{M}^{+}\right), 398,268,275,241,171,103,75$. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si}, 441.2336$; found, 441.2333.

13: colorless needles of mp $105-108{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}-108\left(c \quad 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: 1.10 $(\mathrm{d}, J=3.7,9 \mathrm{H}), 1.11(\mathrm{~d}, J=4.0,9 \mathrm{H}), 1.20(\mathrm{dd}, J=3.7,4.0,3 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=5.8,16.5,1 \mathrm{H}), 3.04-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}$, $1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 12.5, 17.9, 28.5, 34.6, 36.6, 42.6, 45.8, 63.9, 101.6, 103.2, 104.3, 108.5, 125.3, 136.1, 146.7, 150.6, 151.7, 162.1. IR (KBr): 2943, 3866, 1654, 1504, 1462, 1385, 1350, 1261, 1038, 883, 737. EIMS $m / z: 442\left(\mathrm{M}^{+}\right), 398,268,275,241,171,75$. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si}, 441.2335$; found, 441.2341.

Conversion of 13 to 11.

Silyl enol ether $\mathbf{1 3}$ ($90 \mathrm{mg}, 0.20 \mathrm{mmol}$) was dissolved in $\mathrm{HF}-\mathrm{MeCN}$ ($48 \% \mathrm{HF}: \mathrm{MeCN}=5: 95,0.5 \mathrm{~mL}$), and the mixture was stirred at room temperature. After 12 h , the reaction was quenched with sat. NaHCO_{3}, and the whole was extracted with AcOEt. The organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane $/ \mathrm{AcOEt}=1 / 9$) gave $\mathbf{1 1}(52 \mathrm{mg}$, $92 \%)$.

Supporting Information

To a solution of silyl enol ether $12(90 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added purified m CPBA ($41 \mathrm{mg}, 0.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at room temperature. Imidazole ($30 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added to the mixture, which was then stirred for additional 1 h at the same temperature. The reaction was quenched with sat. NaHCO_{3}, and the whole was extracted with AcOEt. The organic extracts were washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/THF $=2 / 1$) gave benzoyloxy silyl enol ether ($80 \mathrm{mg}, 67 \%$ yield) as colorless needles of $\mathrm{mp} 192-193{ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{25}-10.2\left(c 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $1.12(\mathrm{~d}, J=6.8,9 \mathrm{H}), 1.15(\mathrm{~d}, J=6.7,9 \mathrm{H}), 1.53(\mathrm{dd}, J=6.7,6.8,1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.26$ $(\mathrm{m}, 2 \mathrm{H}), 3.45-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{dd}, J=11.0,13.7,1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{brs}, 1 \mathrm{H})$, $5.93(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.9,8.0,1 \mathrm{H}), 7.53(\mathrm{dd}, J=1.2,8.0,1 \mathrm{H}), 7.61(\mathrm{~s}$, $1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.83(\mathrm{~d}, J=1.2,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 12.9, 18.2, 28.1, 39.1, 41.1, 41.6, 45.4, 60.5, $74.5,98.8,101.6,103.2,109.0,126.0,128.0,129.9,130.9,132.0,133.8,134.8,147.0,150.8,162.0$, 166.9. IR (KBr): 2924, 2866, 1728, 1643, 1608, 1604, 1462, 1385, 1254, 1126, 1038, 736. EIMS m / z : $457\left(\mathrm{M}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right), 439\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{Si}\right), 283,228,131,103,75$.

A solution of the above silyl enol ether ($60 \mathrm{mg}, 0.10 \mathrm{mmol}$) in $\mathrm{HF}-\mathrm{MeCN}(48 \% \mathrm{HF}: \mathrm{MeCN}=5: 95$, 0.6 mL) was stirred at room temperature. After 12 h , the reaction was quenched with sat. NaHCO_{3}, and the whole was extracted with AcOEt. The organic extracts were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane $/ \mathrm{AcOEt}=1 / 9$) gave the titled ketone $(42$ $\mathrm{mg}, 95 \%$ yield $)$ as colorless needles of $\mathrm{mp} 118-119{ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{25}-33.6\left(c 0.830, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: 1.82 $(\mathrm{m}, 1 \mathrm{H}), 2.17-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=13.2,13.4,1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=2.8$, $13.4,1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.96-4.00(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=2.8,1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H})$,

Supporting Information

$7.37(\mathrm{dd}, J=7.9,8.0,1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 28.7, 42.1, 44.1, 44.1, 45.2, 59.7, 73.8, 101.9, 103.7, 109.2, 125.7, 128.0, 129.8, 129.8, 130.0, 130.3, 134.0, 134.9, 147.6, 151.0 161.8, 163.9, 202.0. IR (neat): 2924, 1728, 1643, 1601, 1385, 1358, 1258, 1130, 1258, 1130, 1038, 740. EIMS $m / z: 441(\mathrm{M}+2), 439\left(\mathrm{M}^{+}\right), 283,255,139,111,75$. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{Cl}, 439.0823$; found, 439.0828.
(1S,15S,16S)-1-(3-Chlorobezoyloxy)-9,10-methylenedioxy-3,12-didehydrogalanthan-2,7-dione (15):

To a solution of ketone $14(80 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{~mL}, 2.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added TMSOTf $(0.33 \mathrm{~mL}, 1.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 2 h. The reaction was quenched with sat. NaHCO_{3}, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave the corresponding TMS enol ether, which was used in the next step without further purification. To a solution of the crude enol ether in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{PhSeCl}(104 \mathrm{mg}, 0.54 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with sat. NaHCO_{3}, and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resulting pale yellow oil (210 mg) was passed through silica gel column with a $1: 1$ mixture of hexane and AcOEt as an eluent to give white amorphous (75 mg) , a part of which (20 mg) was then dissolved in $\mathrm{H}_{2} \mathrm{O}-\mathrm{THF}(1: 1,1.0 \mathrm{~mL}) . \mathrm{NaIO}_{4}(15 \mathrm{mg}, 0.068 \mathrm{mmol})$ was added to the solution at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 12 h at room temperature. The reaction was quenched with sat. NaHCO_{3}, and the whole was extracted with AcOEt three times. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/ $\mathrm{AcOEt}=1 / 2$) gave

Supporting Information

the titled enone $(11.0 \mathrm{mg}, 52 \%$ yield $)$ as colorless needles of $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{25}-170(c 0.29$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $3.07-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{dd}, J=3.1,11.9,1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~d}$, $J=11.9,1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=3.1,1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=$ $7.6,8.3,1 \mathrm{H}), 7.53(\mathrm{dd}, J=1.2,8.3,1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=1.3,7.6,1 \mathrm{H}), 7.86(\mathrm{dd}, J=1.2,1.3$, 1H). ${ }^{13}$ C NMR: $29.4,43.3,45.8,56.5,68.3,101.9,103.8,109.2,121.3,125.6,128.3,129.9,130.4,130.6$, $133.8,134.7,147.7,151.3,162.4,164.1,165.5,191.1$. IR (neat): $1728,1651,1466,1420,1373,1250$, 1119, 1034. EIMS $m / z: 298\left(\mathrm{M}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}\right), 281,253,240,225,156,139,111,75$. HRMS-FAB $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{Cl}, 438.0744$. Found, 438.0747.
(1S,2R,15S,16S)-1-(3-Chlorobezoyloxy)-2-hydroxy-9,10-methylenedioxy-3,12-didehydrogalanthan-

7-one (16):

To a solution of enone $\mathbf{1 5}(6.0 \mathrm{mg}, 0.014 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \bullet 7 \mathrm{H}_{2} \mathrm{O}(5.1 \mathrm{mg}, 0.014 \mathrm{mmol})$ in MeOH $(0.5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(1.0 \mathrm{mg}, 0.026 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirred for 10 min , the reaction mixture was quenched with water and extracted with AcOEt. The organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/ $\mathrm{AcOEt}=1 / 2$) gave the titled alcohol ($5.5 \mathrm{mg}, 90 \%$ yield $)$ as colorless needles of $\mathrm{mp} 150-152{ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}{ }^{21}-116\left(c 1.01, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $2.78(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{ddd}, J=1.2,1.2,12.2,1 \mathrm{H}), 3.78(\mathrm{ddd}, J=8.6,8.6,11.9,1 \mathrm{H})$, $3.88(\mathrm{ddd}, J=2.9,10.9,11.9,1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.2,1 \mathrm{H}), 4.80(\mathrm{dd}, J=2.2,4.0,1 \mathrm{H}), 5.64(\mathrm{~d}, J=2.2$, $1 \mathrm{H}), 5.93(\mathrm{~d}, J=1.5,1 \mathrm{H}), 5.97(\mathrm{~d}, J=1.5,1 \mathrm{H}), 6.31(\mathrm{~d}, J=4.0,1 \mathrm{H}), 6.78(\mathrm{~d}, J=0.9,1 \mathrm{H}), 7.31(\mathrm{dd}, J=$ $7.9,8.0,1 \mathrm{H}), 7.48(\mathrm{ddd}, J=1.3,1.9,7.9,1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{ddd}, J=1.3,1.5,7.7,1 \mathrm{H}), 7.88(\mathrm{dd}, J$ $=1.5,1.9,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $28.2\left(\mathrm{CH}_{2}\right), 43.7\left(\mathrm{CH}_{2}\right), 44.2(\mathrm{CH}), 55.7(\mathrm{CH}), 67.8(\mathrm{CH}), 69.9(\mathrm{CH}), 101.7$

Supporting Information

$\left(\mathrm{CH}_{2}\right), 103.3(\mathrm{CH}), 108.9(\mathrm{CH}), 120.2(\mathrm{CH}), 126.2(\mathrm{C}), 128.0(\mathrm{CH}), 129.7(\mathrm{CH}), 129.8(\mathrm{CH}), 131.1(\mathrm{C})$, 131.9 (C), 133.4 (CH), 134.6 (C), 140.8 (C), 147.1 (C), 150.9 (C), 162.6 (C), 165.6 (C). IR (KBr): 3402, $1720,1651,1481,1420,1373,1258,1126,1034,926,748$. EIMS m/z: $441(\mathrm{M}+2), 439\left(\mathrm{M}^{+}\right), 423(\mathrm{M}+2$ $\left.-\mathrm{H}_{2} \mathrm{O}\right), 421\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 283,266,241,226,139,111$. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{Cl}$, 439.0823; found, 439.0817.

1O,2O-Diacetyl-2-epi-Iycorine (17):

A suspension of lactam $\mathbf{1 6}(2.0 \mathrm{mg}, 4.6 \mu \mathrm{~mol})$ and $\mathrm{LiAlH}_{4}(13 \mathrm{mg}, 0.36 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was heated under reflux for 4 h , and then the reaction was quenched by sequential dropwise addition of $\mathrm{H}_{2} \mathrm{O}$ $(0.02 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.02 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.06 \mathrm{~mL})$. The mixture was filtered through Celite, and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give white solids (1.8 mg). To a solution of the white solids and DMAP $(1.0 \mathrm{mg}, 0.010 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and DMSO $(0.5 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(162$ $\mathrm{mg}, 1.50 \mathrm{mmol}$) at room temperature. The mixture was stirred at room temperature for 12 h and sat. NaHCO_{3} was added. The mixture was stirred for additional 0.5 h at room temperature and extracted with AcOEt. The organic extracts were washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane $/ \mathrm{AcOEt}=1 / 4$) gave the titled product $(0.8 \mathrm{mg}, 47 \%$ in 2 steps $)$ as colorless needles of $\mathrm{mp}>192{ }^{\circ} \mathrm{C}$ (dec.) and $[\alpha]_{\mathrm{D}}{ }^{25}-65\left(c 0.11, \mathrm{CHCl}_{3}\right)$; lit. ${ }^{4} 192-194.5$ and $[\alpha]_{\mathrm{D}}-158.2$ (c 1.04, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $1.99(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.92-3.00(\mathrm{~m}$, $2 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=14.4,1 \mathrm{H}), 4.14(\mathrm{~d}, J=14.4,1 \mathrm{H}), 5.36(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~s}$,

[^1]
Supporting Information

$2 \mathrm{H}), 6.09(\mathrm{~d}, J=4.9,1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{IR}(\mathrm{KBr}): 2940,1744,1660,1435,1373,1240$, 1034. EIMS m/z: $371\left(\mathrm{M}^{+}\right), 311(\mathrm{M}-\mathrm{AcOH}), 252,226$.
(1S,2S,15S,16S)-1-(3-Chlorobezoyloxy)-9,10-methylenedioxy-2-(4-nitrobezoyloxy)-3,12-didehydro-galanthan-7-one (S4):

To a solution of alcohol $16(14.2 \mathrm{mg}, 0.032 \mathrm{mmol})$ in dry benzene (0.6 mL), was added 4 nitrobenzoic acid ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$) and triphenylphosphine ($11 \mathrm{mg}, 0.04 \mathrm{mmol}$). To the resulting pale yellow solution, was dropwise added a 40% solution of diethyl azodicarboxylate in toluene (0.02 mL , $0.4 \mathrm{mmol})$, and the whole was stirred at room temperature. After $2 \mathrm{~h}, 4$-nitrobenzoic acid ($7 \mathrm{mg}, 0.04$ mmol), triphenylphosphine ($11 \mathrm{mg}, 0.04 \mathrm{mmol}$), and a 40% solution of diethyl azodicarboxylate in toluene ($0.02 \mathrm{~mL}, 0.4 \mathrm{mmol}$) were added again to the mixture. The mixture was stirred for additional 1 h at room temperature and concentrated in vacuo. The resulting pale yellow oil (72.8 mg) was purified by column chromatography (hexane/EtOAc $=35 / 65$) to give the titled 4-nitrobenzoate $(15.9 \mathrm{mg}, 84 \%)$ as pale yellow oil: $[\alpha]_{\mathrm{D}}{ }^{21}+130\left(c 0.610, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $2.91(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 3.21$ (ddd, $J=0.9$, $2.1,12.5,1 \mathrm{H}), 3.88-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.49(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 5.73(\mathrm{br}, 1 \mathrm{H}), 5.80(\mathrm{br}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=$ $1.2,1 \mathrm{H}), 5.99(\mathrm{~d}, J=1.2,1 \mathrm{H}), 6.19(\mathrm{br}, 1 \mathrm{H}), 6.76(\mathrm{br}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.8,8.1,1 \mathrm{H}), 7.56(\mathrm{ddd}, J=1.1$, $2.1,8.1,1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{ddd}, J=1.1,1.5,7.8,1 \mathrm{H}), 7.89(\mathrm{dd}, J=1.5,2.1,1 \mathrm{H}), 8.24(\mathrm{~d}, J=9.0$, $2 \mathrm{H}), 8.31(\mathrm{~d}, J=9.0,2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $28.7\left(\mathrm{CH}_{2}\right), 40.9(\mathrm{CH}), 43.6\left(\mathrm{CH}_{2}\right), 55.4(\mathrm{CH}), 68.2(\mathrm{CH}), 71.4$ $(\mathrm{CH}), 101.8\left(\mathrm{CH}_{2}\right), 103.5(\mathrm{CH}), 109.2(\mathrm{CH}), 115.0(\mathrm{CH}), 123.7(\mathrm{CH}), 126.4(\mathrm{C}), 128.1(\mathrm{CH}), 129.9$ (CH), 130.0 (CH), 130.7 (C), 131.1 (CH), 131.3 (C), 133.9 (CH), 134.8 (C), 144.9 (C), 147.4 (C), 150.9 (C), 151.0 (C), 162.7 (C), 163.4 (C), 164.3 (C). IR (KBr): 2926, 1730, 1651, 1603, 1526, 1418, 1373,

Supporting Information

1265, 1097, 1036, 746, 718. FABMS $m / z: 591(\mathrm{MH}+2)$, $590(\mathrm{MH}+1)$, $589(\mathrm{MH})$. HRMS-FAB $(\mathrm{m} / \mathrm{z}):$ $[\mathrm{MH}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{ClNO}_{9}, 589.1014$; found, 589.1015.

1O,2O-Diacetyl-lycorine (18):

To a solution of dibenzoate $\mathbf{S 4}(12 \mathrm{mg}, 0.021 \mathrm{mmol})$ in dry THF $(4.1 \mathrm{~mL})$, was dropwise added a 1 M solution of $\mathrm{LiAlH}_{4}(2.1 \mathrm{~mL}, 2.1 \mathrm{mmol})$ at room temperature. The mixture was heated under reflux for 4 h and then cooled to room temperature. $\mathrm{H}_{2} \mathrm{O}(0.08 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.08 \mathrm{~mL})$, and then another $\mathrm{H}_{2} \mathrm{O}$ $(0.24 \mathrm{~mL})$ were successively added to the mixture. The mixture was filtered through celite, and the residue was washed with distilled THF. The filtrate was concentrated in vacuo to give pale yellow solids (9.4 mg), whose comparison of TLC, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR with those of an authentic sample indicated the existence of lycorine: $R_{f} 0.6 \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2 / 2 / 1) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $2.19(\mathrm{~m}, 1 \mathrm{H}), 2.42$ $(\mathrm{m}, 1 \mathrm{H}), 2.45-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~d}, J=10.4,1 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=14.0,1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H})$, $4.00(\mathrm{~d}, J=14.0,1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{brs}, 1 \mathrm{H}), 5.90-5.96(\mathrm{~m}, 2 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): 28.2\left(\mathrm{CH}_{2}\right), 40.2(\mathrm{CH}), 53.4\left(\mathrm{CH}_{2}\right), 56.8\left(\mathrm{CH}_{2}\right), 60.8$ $(\mathrm{CH}), 70.3(\mathrm{CH}), 71.8(\mathrm{CH}), 100.7\left(\mathrm{CH}_{2}\right), 105.2(\mathrm{CH}), 107.2(\mathrm{CH}), 118.6(\mathrm{CH}), 129.7(\mathrm{CH}), 129.9(\mathrm{CH})$, $141.9(\mathrm{C}), 145.4(\mathrm{C}), 145.8(\mathrm{C})$. To a solution of the lycorine-containing solids in DMSO- $d_{6}(0.5 \mathrm{~mL})$, were added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, 4-(dimethylamino)pyridine ($10 \mathrm{mg}, 0.082 \mathrm{mmol}$), and then $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL}, 5$ mmol), and the whole was stirred at room temperature for 3.5 h . To the mixture sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, and the whole was stirred for 0.5 h and diluted with EtOAc (10 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc 5 times. The combined organic layers were washed with water 5 times, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting brown oil (14.9

Supporting Information

mg) was purified by column chromatography (hexane/EtOAc $=1 / 1$) to give the titled diacetyl lycorine ($4.8 \mathrm{mg}, 62 \%$ over 2 steps) as pale brown solids of $\mathrm{mp} 207-208{ }^{\circ} \mathrm{C}(\mathrm{dec})$ and $[\alpha]_{\mathrm{D}}{ }^{27}+22\left(c 0.48, \mathrm{CHCl}_{3}\right)$ (an authentic sample $[\alpha]_{\mathrm{D}}{ }^{26}+23\left(c \quad 0.43, \mathrm{CHCl}_{3}\right) ;$ lit. ${ }^{5} \mathrm{mp}$ 207-209 (dec) and $[\alpha]_{\mathrm{D}}{ }^{23}+25.6(c \quad 0.39$, $\left.\left.\mathrm{CHCl}_{3}\right)\right) .{ }^{1} \mathrm{H}$ NMR: $1.95(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J$ $=10.3,1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=14,1 \mathrm{H}), 4.16(\mathrm{~d}, J=14,1 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~m}, 1 \mathrm{H}), 5.74$ $(\mathrm{m}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $20.9\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 28.7\left(\mathrm{CH}_{2}\right), 40.5$ $\left(\mathrm{CH}_{2}\right), 53.6\left(\mathrm{CH}_{2}\right), 56.9\left(\mathrm{CH}_{2}\right), 61.2(\mathrm{CH}), 69.3(\mathrm{CH}), 70.9(\mathrm{CH}), 101.0\left(\mathrm{CH}_{2}\right), 105.1(\mathrm{CH}), 107.3(\mathrm{CH})$, $113.8(\mathrm{CH}), 126.6$ (C), 129.4 (C), 146.1 (C), 146.3 (C), 146.4 (C), 169.7 (C), 170.0 (C). IR (KBr): 2931, $2856,1745,1726,1510,1489,1367,1253,1240,1219,1038,1018,966,932,901$. FABMS $m / z: 372$ (MH), 370, $252(\mathrm{MH}-2 \mathrm{AcOH}), 250$. HRMS-FAB $(\mathrm{m} / \mathrm{z})$: MH calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{6}, 372.1447$; found, 372.1446. $R_{f} 0.3$ hexane/EtOAc (1/1, 3 times) was identical to that of the authentic sample. The spectroscopic data were identical to those of the authentic sample, prepared by reported procedure, and in good agreement with those reported in the literatures. ${ }^{5}$

[^2]
Supporting Information

${ }^{1} \mathrm{H}$ NMR of 5

Supporting Information

${ }^{13} \mathrm{C}$ NMR of 5

Supporting Information

${ }^{1} \mathrm{H}$ NMR of 7

Supporting Information

${ }^{13} \mathrm{C}$ NMR of 7

Supporting Information

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8}$

Supporting Information

${ }^{13} \mathrm{C}$ NMR of $\mathbf{8}$

Supporting Information

${ }^{1}$ H NMR of $\mathbf{S 1 / S 2}$

Supporting Information

${ }^{13} \mathrm{C}$ NMR of $\mathbf{S 1} / \mathbf{S} 2$

Supporting Information

${ }^{1} \mathrm{H}$ NMR of 9

Supporting Information

${ }^{13} \mathrm{C}$ NMR of 9

Supporting Information

${ }^{1}$ H NMR of S3

Supporting Information

${ }^{13}$ C NMR of $\mathbf{S 3}$

Supporting Information

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 0}$

Supporting Information

${ }^{13}$ C NMR of 10

Supporting Information

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1}$

Supporting Information

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 1}$

Supporting Information

${ }^{1} \mathrm{H}$ NMR of 12

Supporting Information

${ }^{13}$ C NMR of 12

Supporting Information

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3}$

Supporting Information

${ }^{13}$ C NMR of 13

Supporting Information

${ }^{1} \mathrm{H}$ NMR of 14

Supporting Information

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 4}$

Supporting Information

${ }^{1} \mathrm{H}$ NMR of 15

Supporting Information

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 5}$

Supporting Information

${ }^{1} \mathrm{H}$ NMR of 16

Supporting Information

${ }^{13}$ C NMR of 16

Supporting Information

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 7}$

Supporting Information

${ }^{13}$ C NMR of $\mathbf{1 7}$

Supporting Information

${ }^{1} \mathrm{H}$ NMR of $\mathbf{S 4}$

Supporting Information

${ }^{13}$ C NMR of $\mathbf{S 4}$

Supporting Information

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 8}$

Supporting Information

${ }^{13}$ C NMR of $\mathbf{1 8}$

Supporting Information

HPLC Trace of (\pm)-7

HPLC Trace of (-)-7 with 92% ee

Supporting Information

HPLC Trace of (\pm)-9

HPLC Trace of (-)-9 with $>99 \%$ ee

[^0]: 1 D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press, Oxford, UK, 1988.
 2 R. J. Davenport. A. C. Regan, Tetrahedron Lett. 2000, 41, 7619-7622.

[^1]: 4 Y. Nakagawa, S. Uyeo, J. Chem.Soc. 1959, 3736-3740.

[^2]: 5 A. G. Schultz, M. A. Holoboski, M. S. Smyth, J. Am. Chem. Soc. 1996, 118, 6210-3219.

