Supporting Information ## 1,4-Fullerenols C₆₀ArOH: Synthesis and Functionalization Guan-Wu Wang,* Yong-Ming Lu, and Zhong-Xiu Chen, Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China gwang@ustc.edu.cn | Experimental procedures for the synthesis and spectral data of 2a-d | S2-S4 | |----------------------------------------------------------------------------|---------| | Experimental procedure for the synthesis and spectral data of 3a | S4 | | Experimental procedure for the synthesis of 2a from 3a | S4 | | Experimental procedures for the synthesis of 6a-d | S4-S5 | | Experimental procedures for the synthesis and spectral data of 7a-d | S5-S7 | | Experimental procedures for the synthesis and spectral data of 8a-d | S7-S9 | | ¹ H NMR spectrum of compound 2a | S10 | | ¹³ C NMR spectrum of compound 2a | S11 | | ¹ H NMR spectrum of compound 2b | S12 | | ¹³ C NMR spectrum of compound 2b | S13 | | ¹ H NMR spectrum of compound 2c | S14-S15 | | ¹³ C NMR spectrum of compound 2c | S16 | | ¹ H NMR spectrum of compound 2d | S17 | | ¹³ C NMR spectrum of compound 2d | S18 | | ¹ H NMR spectrum of compound 3a | S19 | | ¹³ C NMR spectrum of compound 3a | S20 | | ¹ H NMR spectrum of compound 7a | S21 | | ¹³ C NMR spectrum of compound 7a | S22 | | ¹ H NMR spectrum of compound 7b | S23 | | ¹³ C NMR spectrum of compound 7b | S24 | | ¹ H NMR spectrum of compound 7c | S25 | | ¹³ C NMR spectrum of compound 7c | S26 | | ¹ H NMR spectrum of compound 7d | S27 | | ¹³ C NMR spectrum of compound 7d | S28 | | ¹ H NMR spectrum of compound 8a | S29 | | ¹³ C NMR spectrum of compound 8a | S30 | | ¹ H NMR spectrum of compound 8b | S31 | | ¹³ C NMR spectrum of compound 8b | S32 | | ¹ H NMR spectrum of compound 8c | S33 | | ¹³ C NMR spectrum of compound 8c | S34 | | ¹ H NMR spectrum of compound 8d | S35 | | ¹³ C NMR spectrum of compound 8d | S36 | Synthesis of Fullerenols 2a-d from the Reactions of C_{60} with Phenylhydrazine Hydrochlorides 1a-d and Sodium Nitrite in the Presence of H_2O . A 50-mL round-bottomed flask containing a mixture of C_{60} (36.0 mg, 0.05 mmol), 1a (1b, 1c or 1d, 0.1 mmol), and sodium nitrite (6.9 mg, 0.1 mmol) in toluene (25 mL) was ultrasonically treated to dissolve the reagents, and then 1 mL of H_2O was added. The resulting solution was stirred vigorously in an oil bath preset at 50 °C. The reaction was monitored by thin-layer chromatography (TLC) and stopped at the desired time. After the solvent was evaporated *in vacuo*, the residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C_{60} , then with toluene/carbon disulfide as the eluent to afford fullerenol 2a (2b, 2c or 2d). The spectral data of fullerenols **2a-d** are listed below. 1-Hydroxyl-4-(4-methylphenyl)-1,4-dihydro[60]fullerene (**2a**): 1 H NMR (300 MHz, CS₂/CDCl₃) δ 2.50 (s, 3H), 3.77 (s, 1H), 7.40 (d, J = 8.1 Hz, 2H), 8.15 (d, J = 8.1 Hz, 2H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation agent, all 1C unless indicated) δ 20.44 (*C*H₃), 60.03 (sp^3 -*C* of C₆₀), 74.31 (sp^3 -*C* of C₆₀), 126.96 (2C, aryl *C*), 129.10 (2C, aryl *C*), 136.19, 136.50, 136.58, 137.31, 137.36, 138.07, 139.42, 139.85, 140.88, 141.02, 141.06, 141.23, 141.56 (4C), 141.63, 141.76, 141.79 (2C), 141.82, 142.04, 142.12 (2C), 142.57 (3C), 142.70 (2C), 142.76, 142.89 (2C), 143.05, 143.08 (2C), 143.21, 143.28, 143.37, 143.70, 143.83, 144.09, 144.18, 144.31, 145.13, 145.19, 145.28, 145.55, 145.64, 145.67, 145.89, 146.26, 146.37, 146.46, 147.48, 148.39, 149.54, 151.96, 152.62, 153.01; FT-IR v/cm⁻¹ (KBr) 2951, 2921, 1559, 1510, 1462, 1431, 1377, 1189, 1083, 1023, 934, 900, 820, 775, 764, 590, 565, 529; UV-vis (CHCl₃) λ_{max} /nm (log ε) 260 (5.08), 328 (4.56), 440 (3.84); HRMS (+ESI): calcd. for C₆₇H₈NaO [M+Na]⁺ 851.0473, found 851.0467. 1-Hydroxy-4-(4-methoxylphenyl)-1,4-dihydro[60]fullerene (**2b**): 1 H NMR (300 MHz, CS₂/CDCl₃) δ 3.89 (s, 4H), 7.10 (d, J = 8.7 Hz, 2H), 8.17 (d, J = 8.7 Hz, 2H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation agent, all 1C unless indicated) δ 54.32 (OCH₃), 59.70 (sp^3 -C of C₆₀), 74.28 (sp^3 -C of C₆₀), 113.83 (2C, aryl C), 128.22 (2C, aryl C), 131.15 (aryl C), 136.58, 137.40, 137.42, 138.07, 139.47, 139.90, 140.92, 141.06, 141.11, 141.27, 141.57 (2C), 141.60, 141.62, 141.69 (2C), 141.78, 141.81, 141.86, 142.09, 142.16 (2C), 142.59, 142.60, 142.61, 142.74, 142.75, 142.80, 142.93, 142.94, 143.09, 143.11 (2C), 143.23, 143.32, 143.42, 143.72, 143.88, 144.14, 144.22, 144.36, 145.19, 145.22, 145.32, 145.59, 145.67, 145.71, 145.92, 146.19, 146.41, 146.50, 147.19, 147.51, 148.34, 149.66, 151.91, 152.81, 152.97, 158.30 (aryl *C*); FT-IR ν /cm⁻¹ (KBr) 2949, 2921, 1604, 1507, 1460, 1429, 1300, 1251, 1180, 1081, 1026, 934, 899, 840, 825, 776, 644, 588, 545, 526; UV-vis (CHCl₃) λ _{max}/nm (log ε) 257 (5.12), 328 (4.56), 441 (3.85); HRMS (+ESI): calcd. for $C_{67}H_8NaO_2$ [M+Na]⁺ 867.0422, found 867.0412. 1-Hydroxyl-4-phenyl-1,4-dihydro[60] fullerene (**2c**): 1 H NMR (300 MHz, CS₂/CDCl₃) δ 3.88 (s, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.64 (t, J = 7.5 Hz, 2H), 8.32 (d, J = 7.5 Hz, 2H); 1 H NMR (300 MHz, CS₂/DMSO- d_6) δ 7.44 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 8.05 (s, 1H), 8.29 (d, J = 7.6 Hz, 2H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation agent, all 1C unless indicated) δ 60.36 (sp^3 -C of C₆₀), 74.46 (sp^3 -C of C₆₀), 127.20 (2C, aryl C), 127.30 (aryl C), 128.56 (2C, aryl C), 136.78, 137.46, 137.64, 138.17, 139.14, 139.61, 140.01, 141.03, 141.19, 141.20, 141.39, 141.70, 141.71 (2C), 141.75 (2C), 141.94 (2C), 141.98, 142.04, 142.21, 142.27 (2C), 142.71 (3C), 142.83 (2C), 142.90, 142.99, 143.04, 143.19, 143.23 (2C), 143.37, 143.42, 143.49, 143.84, 144.03, 144.25, 144.35, 144.47, 145.27, 145.36, 145.44, 145.71, 145.79, 145.84, 146.03, 146.38, 146.51, 146.59, 147.33, 147.63, 148.52, 149.47, 152.03, 152.51, 152.81; FT-IR ν /cm⁻¹ (KBr) 2950, 2920, 2850, 1598, 1492, 1461, 1446, 1429, 1187, 1154, 1102, 1091, 1080, 1021, 933, 898, 762, 734, 692, 579, 559, 545, 527; UV-vis (CHCl₃) λ _{max}/nm (log ε) 259 (5.08), 328 (4.56), 440 (3.83); HRMS (+ESI): calcd. for C₆₆H₆NaO [M+Na]⁺ 837.0316, found 837.0305. 1-(4-Chlorophenyl)-4-hydroxyl-1,4-dihydro[60]fullerene (**2d**): 1 H NMR (300 MHz, CS₂/CDCl₃) δ 3.91 (s, 1H), 7.57 (d, J = 8.4 Hz, 2H), 8.25 (d, J = 8.4 Hz, 2H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation agent, all 1C unless indicated) δ 59.14 (sp^3 -C of C₆₀), 73.99 (sp^3 -C of C₆₀), 128.27 (2C, aryl C), 128.42 (2C, aryl C), 136.47 (aryl C), 137.06, 137.35, 137.42, 137.58, 139.27, 139.60, 140.59, 140.76 (2C), 140.97, 141.22, 141.32 (4C), 141.41, 141.51, 141.56 (2C), 141.81 (2C), 141.87 (2C), 142.19, 142.30 (2C), 142.38 (2C), 142.47 (2C), 142.61, 142.72 (2C), 142.84, 142.93, 142.98 (2C), 143.39, 143.68, 143.84, 143.96, 144.08, 144.81, 144.97, 145.04, 145.31, 145.38, 145.45, 145.61, 145.78, 145.97, 146.09, 146.95, 147.22, 148.08, 148.50, 151.44, 151.62, 151.65; FT-IR ν /cm⁻¹ (KBr) 2951, 2920, 2851, 1488, 1461, 1429, 1400, 1186, 1093, 1015, 897, 840, 822, 769, 622, 588, 561, 527; UV-vis (CHCl₃) λ _{max}/nm (log ε) 257 (4.96), 328 (4.43), 440 (3.66); HRMS (+ESI): calcd. for C₆₆H₅NaClO [M+Na]⁺ 870.9927, found 870.9911. of 3a **Synthesis Intermediate** from the Reactions of C_{60} with 4-Methylphenylhydrazine Hydrochloride 1a and Sodium Nitrite in the Presence of H₂O. To a 50-mL round-bottomed flask was charged with C₆₀ (36.0 mg, 0.05 mmol), 4-methylphenylhydrazine hydrochloride (31.7 mg, 0.1 mmol) and sodium nitrite (6.9 mg, 0.1 mmol). After they were dissolved in toluene (25 mL) by sonication, 1 mL of H₂O was added. The mixture was heated with slow stirring in an oil bath preset at 50 °C for 2 h. After the solvent was evaporated in vacuo, the residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C_{60} and intermediate **3a**. 1-(4-Methylphenyl)-2-nitro-1,2-dihydro[60] fullerene (**3a**): ¹H NMR (300 MHz, CS₂/CDCl₃) δ 2.52 (s, 3H), 7.46 (d, J = 8.1 Hz, 2H), 8.30 (d, J = 8.1 Hz, 2H); ¹³C NMR (75 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 21.06 (1C, CH₃), 69.29 (1C, sp^3 -C of C₆₀), 106.46 (1C, sp^3 -C of C₆₀), 129.25 (aryl C), 129.92 (aryl C), 134.68, 135.83 (1C, aryl C), 137.67, 138.84 (1C, aryl C), 138.97, 140.04, 140.92, 141.02, 141.20, 141.80 (4C), 141.94, 142.20, 142.42, 142.64, 143.63, 143.94, 144.06, 144.16, 144.30, 144.93 (6C), 145.13, 145.87 (4C), 146.11 (4C), 146.28, 147.42 (1C), 147.91 (1C), 152.33; FT-IR v/cm⁻¹ (KBr) 2917, 1556, 1507, 1431, 1341, 1187, 1021, 805, 780, 720, 577, 527, 476; UV-vis (CHCl₃) λ _{max}/nm (log ε) 255 (5.08), 320 (4.64), 420 (3.67), 688 (2.48); HRMS (+ESI): calcd. for C₆₇H₇NaNO₂ [M+Na]⁺ 880.0374, found 880.0387. Synthesis of Fullerenol 2a from the Reaction of Intermediate 3a with H_2O . Into a 25-mL round-bottomed flask was added intermediate 3a (5.0 mg), H_2O (1 mL), and toluene (5 mL). The mixture was heated and stirred in an oil bath preset at 50 °C for 36 h. After the solvent was evaporated *in vacuo*, the residue was separated on a silica gel column with toluene/carbon disulfide as the eluent to afford fullerenol 2a (2.1 mg, 43%). Acetylation of Fullerenols 2a-d in the Presence of p-Toluenesulfonic Acid. A mixture of fullerenol 2a (2b, 2c or 2d, 10.0 mg), acetic anhydride (2 equiv.), and p-toluenesulfonic acid (2 equiv.) was dissolved in CS_2 (10 mL) and heated with stirring in an oil bath preset at 80 °C. The reaction was monitored by TLC and stopped at the desired time. After the solvent was evaporated *in vacuo*, the residue was separated on a silica gel column with carbon disulfide as the eluent to afford compound **6a** (**6b**, **6c** or **6d**, then with carbon disulfide/toluene as the eluent to afford unreacted fullerenol **2a** (**2b**, **2c** or **2d**). The spectral data were consistent with those previously reported by us.¹ Methoxylation of Fullerenols 2a-d in the Presence of *p*-Toluenesulfonic Acid. To a 25-mL round-bottomed flask equipped with a reflux condenser were added fullerenol 2a (2b, 2c or 2d, 10.0 mg), *p*-toluenesulfonic acid (5 equiv.), and a mixture of 1,4-dioxane-CS₂-MeOH (16 mL : 8 mL : 8 mL). The resulted solution was ultrasonically treated and stirred in an oil bath preset at 100 °C. The reaction was monitored by TLC and stopped at the desired time. After the solvent was evaporated *in vacuo*, the residue was separated on a silica gel column with carbon disulfide as the eluent to afford compound 7a (7b, 7c or 7d), then with carbon disulfide/toluene as the eluent to afford unreacted fullerenol 2a (2b, 2c or 2d). **Synthesis of Methoxylated Fullerene 7a from the Reaction of Intermediate 3a with Methanol.** Into a 25-mL round-bottomed flask was added intermediate **3a** (5.0 mg), MeOH (1 mL), and anhydrous toluene (5 mL). The mixture was heated and stirred in an oil bath preset at 50 °C for 36 h. After the solvent was evaporated *in vacuo*, the residue was separated on a silica gel column with carbon disulfide as the eluent to afford methoxylated fullerene **7a** (3.5 mg, 71%). The spectral data of compounds **7a-d** are listed below. 1-Methoxy-4-(4-methylphenyl)-1,4-dihydro[60]fullerene (**7a**): 1 H NMR (300 MHz, CS₂/DMSO- d_6) δ 2.58 (s, 3H), 4.23 (s, 3H), 7.47 (d, J = 8.0 Hz, 2H), 8.18 (d, J = 8.0 Hz, 2H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 , all 1C unless indicated) δ 20.80 (*C*H₃), 53.81 (O*C*H₃), 60.54 (sp^3 -*C* of C₆₀), 80.38 (sp^3 -*C* of C₆₀), 127.04 (2C, aryl *C*), 129.60 (2C, aryl *C*), 136.33 (aryl *C*), 136.78, 137.21 (aryl *C*), 137.29, 138.89, 139.33, 139.50, 140.08, 140.27, 141.39, 141.52, 141.63, 141.72, 141.90 (2C), 142.07, 142.08, 142.14, 142.30, 142.34, 142.49 (3C), 142.57, 142.62, 142.67, 143.15, 143.29, 143.31, 143.35, 143.38, 143.40, 143.46, 143.47, 143.51, 143.64, 143.70, 143.89, 144.04, 144.25, 144.76, 144.92 (2C), 145.70, 145.77, 145.88, 145.91, 146.13, 146.16, 146.19, 146.35, 146.39, 146.53, 147.03, 147.63, 148.12, 148.48, 151.97, 153.42, 153.64; FT-IR v/cm^{-1} (KBr) 2921, 1508, 1454, 1431, 1187, 1092, 1061, 984, 763, 582, 562, 527; UV-vis (CHCl₃) λ_{max}/nm (log ε) 255 (5.05), 327 (4.51), 439 (3.81), 690 (2.25); HRMS (MALDI-TOF): calcd. for C₆₇H₇ [M-CH₃O] 811.0548, found 811.0546. 1-Methoxy-4-(4-methoxyphenyl)-1,4-dihydro[60]fullerene (**7b**): 1 H NMR (300 MHz, CS₂/DMSO- d_6) δ 3.97 (s, 3H), 4.24 (s, 3H), 7.17 (d, J = 8.7 Hz, 2H), 8.20 (d, J = 8.7 Hz, 2H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation reagent, all 1C unless indicated) δ 53.27 (OCH₃), 54.19 (OCH₃), 59.31 (sp^3 -C of C₆₀), 79.47 (sp^3 -C of C₆₀), 113.65 (2C, aryl C), 127.45 (2C, aryl C), 130.33 (aryl C), 135.86, 136.39, 137.99, 138.50 (2C), 139.18, 139.38, 140.50, 140.63, 140.75, 140.83, 141.03 (2C), 141.15, 141.18, 141.26, 141.41, 141.43, 141.60 (3C), 141.67, 141.73, 141.79, 142.26, 142.42, 142.44, 142.47, 142.50 (2C), 142.57 (2C), 142.63, 142.74, 142.81, 143.02, 143.14, 143.36, 143.86, 144.04 (2C), 144.80, 144.90, 144.99 (2C), 145.24, 145.26, 145.30, 145.46, 145.50, 145.56, 146.15, 146.74, 147.23, 147.54, 151.16, 152.70, 152.76, 158.02 (aryl C); FT-IR v/cm⁻¹ (KBr) 2921, 1603, 1505, 1457, 1430, 1299, 1250, 1178, 1091, 1059, 1034, 982, 924, 898, 838, 823, 762, 643, 583, 565, 527; UV-vis (CHCl₃) λ_{max} /nm (log ε) 257 (5.08), 327 (4.55), 439 (3.83), 688 (2.44); HRMS (MALDI-TOF): calcd. for C₆₇H₇O [M-CH₃O] 827.0497, found 827.0496. 1-Methoxy-4-phenyl-1,4-dihydro[60]fullerene (7c): 1 H NMR (300 MHz, CS₂/DMSO- d_6) δ 4.25 (s, 3H), 7.56 (t, J = 7.5 Hz, 1H), 7.69 (t, J = 7.5 Hz, 2H), 8.32 (d, J = 7.5 Hz, 2H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 , all 1C unless indicated) δ 53.84 (OCH₃), 60.79 (sp^3 -C of C₆₀), 80.43 (sp^3 -C of C₆₀), 127.12 (2C, aryl C), 127.83 (aryl C), 129.00 (2C, aryl C), 136.86, 137.45, 138.90, 139.15, 139.38, 139.68, 140.14, 140.30, 141.43, 141.56, 141.65, 141.76, 141.90, 141.91, 142.13, 142.14, 142.18, 142.34, 142.39, 142.53 (3C), 142.60, 142.65, 142.71, 143.17, 143.32, 143.33, 143.38, 143.41, 143.44, 143.49, 143.50 (2C), 143.69, 143.72, 143.90, 144.07, 144.32, 144.80, 144.96 (2C), 145.75, 145.79, 145.92, 145.97, 146.16, 146.21, 146.23, 146.39, 146.43, 146.54, 147.04, 147.68, 148.16, 148.46, 151.80, 153.24, 153.40; FT-IR v/cm⁻¹ (KBr) 2919, 1491, 1429, 1186, 1152, 1096, 1060, 983, 924, 897, 763, 734, 692, 584, 527; UV-vis (CHCl₃) λ max/nm (log ε) 256 (5.05), 327 (4.52), 438 (3.81), 690 (2.20); HRMS (MALDI-TOF): calcd. for C₆₆H₅ [M-CH₃O] 797.0391, found 797.0395. 1-(4-Chlorophenyl)-4-methoxy-1,4-dihydro[60]fullerene (**7d**): 1 H NMR (300 MHz, CS₂/DMSO- d_6) δ 4.27 (s, 3H), 7.67 (d, J = 8.4 Hz, 2H), 8.31 (d, J = 8.4 Hz, 2H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 , all 1C unless indicated) δ 53.88 (O*C*H₃), 60.00 (sp^3 -C of C₆₀), 80.37 (sp^3 -C of C₆₀), 128.64 (2C, aryl C), 129.10 (2C, aryl C), 133.90 (aryl C), 136.97, 137.63, 137.78 (aryl C), 138.76, 139.46, 139.92, 140.24, 140.32, 141.41, 141.58, 141.64, 141.77, 141.86, 141.90, 142.18, 142.22 (2C), 142.34, 142.45, 142.47, 142.51, 142.55 (2C), 142.67, 142.74, 143.15, 143.30, 143.32, 143.39 (2C), 143.44 (3C), 143.47, 143.71, 143.72, 143.77, 144.04, 144.41, 144.85, 144.98, 145.00, 145.75, 145.79, 145.92, 145.95, 146.19, 146.25, 146.27, 146.34 (2C), 146.39, 146.96, 147.74, 148.18, 148.23, 151.21, 152.57, 152.75; FT-IR v/cm⁻¹ (KBr) 2920, 1486, 1456, 1428, 1185, 1094, 1060, 1014, 982, 924, 896, 841, 822, 763, 621, 585, 561, 526; UV-vis (CHCl₃) λ _{max}/nm (log ε) 256 (5.09), 327 (4.55), 443 (3.83), 685 (2.48); HRMS (MALDI-TOF): calcd. for C₆₆H₄Cl [M-CH₃O] 831.0002, found 831.0001. **Arylation of Fullerenols 2a-d in the Presence of** *p***-Toluenesulfonic Acid.** Into a 25-mL round-bottomed flask was added fullerenol **2a** (**2b**, **2c** or **2d**, 10.0 mg), *p*-toluenesulfonic acid (5 equiv.), and 20 mL of toluene. The mixture was heated and stirred in an oil bath preset at 80 °C. The reaction was monitored by TLC and stopped at the desired time. After the solvent was evaporated *in vacuo*, the residue was separated on a silica gel column with carbon disulfide as the eluent to afford compound **8a** (**8b**, **8c** or **8d**), then with carbon disulfide/toluene as the eluent to afford unreacted fullerenol **2a** (**2b**, **2c** or **2d**). The spectral data of compounds **8a-d** are listed below. 1,4-Bis(4-methylphenyl)-1,4-dihydro[60]fullerene (**8a**): 1 H NMR (300 MHz, CS₂/DMSO- d_6) δ 2.61 (s, 6H), 7.42 (d, J = 8.1 Hz, 4H), 8.06 (d, J = 8.1 Hz, 4H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation reagent, all 2C unless indicated) δ 20.28 (*C*H₃), 60.00 (sp^3 -C of C₆₀), 126.13 (4C, aryl C), 128.82 (4C, aryl C), 135.88, 135.94, 136.38, 137.37, 139.54 (aryl C), 140.63 (1C), 140.83, 141.12, 141.18, 141.29 (1C), 141.56 (1C), 141.67, 141.70, 141.75, 142.45, 142.52, 142.56, 142.77, 142.88, 142.91, 143.31, 143.46 (1C), 143.60, 143.74, 144.08, 145.36, 145.48, 145.52, 145.65, 147.06, 147.17, 149.63, 155.42; FT-IR ν /cm⁻¹ (KBr) 2921, 1507, 1428, 1186, 1120, 1020, 810, 772, 761, 587, 563, 527; UV-vis (CHCl₃) λ _{max}/nm (log ε) 261 (5.08), 328 (4.55), 444 (3.84), 686 (2.54); HRMS (MALDI-TOF): calcd. for C₇₄H₁₄ [M] 902.1096, found 902.1071. 1-(4-Methoxyphenyl)-4-(4-methylphenyl)-1,4-dihydro[60]fullerene (**8b**): ¹H NMR (300 MHz, CS₂/DMSO- d_6) δ 2.61 (s, 3H), 4.00 (s, 3H), 7.11 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 7.8 Hz, 2H), 8.04-8.08 (m, 4H); ¹³C NMR (75 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation reagent, all 1C unless indicated) δ 20.48 (CH₃), 54.14 (OCH₃), 59.90 (sp^3 -C of C₆₀), 60.25 (sp^3 -C of C₆₀), 113.74 (2C, aryl C), 126.38 (2C, aryl C), 127.53 (2C, aryl C), 129.06 (2C, aryl C), 131.05 (aryl C), 136.06, 136.17, 136.22, 136.66, 137.61 (2C), 139.79, 140.89, 141.10, 141.11, 141.41 (2C), 141.44 (2C), 141.56, 141.93, 141.94, 141.97 (2C), 142.01 (2C), 142.71, 142.74, 142.77, 142.80, 142.82 (2C), 143.03, 143.05, 143.15 (2C), 143.18 (4C), 143.57 (2C), 143.71, 143.85, 143.87, 143.96, 144.07, 144.35 (2C), 145.63 (2C), 145.69, 145.76, 145.79 (2C), 145.90, 145.91, 147.27, 147.34, 147.44 (2C), 149.89, 150.03, 155.66, 155.74, 158.35 (aryl C); FT-IR v/cm⁻¹ (KBr) 2922, 1604, 1506, 1458, 1431, 1300, 1251, 1179, 1035, 824, 765, 584, 527; UV-vis (CHCl₃) λ _{max}/nm (log ε) 258 (4.99), 328 (4.46), 444 (3.75), 680 (2.41); HRMS (MALDI-TOF): calcd. for C₇₄H₁₄O [M] 918.1045, found 918.1039. 1-(4-Methylphenyl)-4-phenyl-1,4-dihydro[60]fullerene (**8c**): 1 H NMR (300 MHz, CS₂/DMSO- d_6) δ 2.55 (s, 3H), 7.36 (t, J = 8.1 Hz, 2H), 7.51-7.60 (m, 3H), 8.00 (t, J = 8.1 Hz, 2H), 8.14 (t, J = 8.1 Hz, 2H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation reagent, all 1C unless indicated) δ 20.48 (*C*H₃), 60.33 (sp^3 -*C* of C₆₀), 60.51 (sp^3 -*C* of C₆₀), 126.39 (2C, aryl *C*), 126.46 (2C, aryl *C*), 127.30 (aryl *C*), 128.41 (2C, aryl *C*), 129.07 (2C, aryl *C*), 136.20 (2C), 136.30, 136.71, 137.65, 137.74, 139.11, 139.90, 140.96, 141.15 (2C), 141.42 (2C), 141.50 (2C), 141.62, 141.88 (2C), 142.02, 142.04, 142.07 (2C), 142.73, 142.78, 142.84, 142.88 (3C), 143.08, 143.11, 143.16, 143.18, 143.23 (2C), 143.24, 143.25, 143.62 (2C), 145.78, 143.83, 143.93, 143.97, 144.21, 144.42 (2C), 145.70 (2C), 145.78 (2C), 145.84 (2C), 145.98 (2C), 147.33, 147.37, 147.50, 147.51, 149.75, 149.97, 155.50, 155.69; FT-IR v/cm⁻¹ (KBr) 2919, 1596, 1490, 1427, 1266, 1229, 1186, 1029, 897, 759, 733, 691, 583, 558, 526; UV-vis (CHCl₃) λ_{max} /nm (log ε) 259 (4.97), 329 (4.51), 444 (3.79), 678 (2.52); HRMS (MALDI-TOF): calcd. for $C_{73}H_{12}$ [M] 888.0939, found 888.0934. 1-(4-Chlorophenyl)-4-(4-methylphenyl)-1,4-dihydro[60]fullerene (**8d**): 1 H NMR (300 MHz, CS₂/CDCl₃) δ 2.51 (s, 3H), 7.36 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.99 (d, J = 8.1 Hz, 2H), 8.07 (d, J = 8.4 Hz, 2H); 13 C NMR (75 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation reagent, all 1C unless indicated) δ 20.40 (CH₃), 59.58 (sp^3 -C of C₆₀), 60.16 (sp^3 -C of C₆₀), 126.17 (2C, aryl C), 127.81 (2C, aryl C), 128.41 (2C, aryl C), 129.09 (2C, aryl C), 133.28 (aryl C), 135.86, 135.98, 136.26, 136.81, 137.35, 137.57, 137.73, 139.83, 140.78, 140.98, 141.03, 141.22, 141.26, 141.36 (2C), 141.49, 141.72 (3C), 141.87, 141.91 (1C), 141.93, 142.46, 142.66, 142.70 (3C), 142.80, 142.88 (3C), 142.98, 143.04, 143.06, 143.09, 143.13, 143.44 (3C), 143.56, 143.77, 143.88, 144.30 (2C), 144.34, 145.50, 145.56 (2C), 145.57, 145.68, 145.71, 145.84, 145.86, 147.01, 147.13, 147.35, 147.41, 149.11, 149.78, 154.64, 155.47; FT-IR v/cm⁻¹ (KBr) 2918, 1507, 1486, 1458, 1428, 1400, 1267, 1228, 1185, 1094, 1014, 896, 837, 817, 763, 621, 584, 559, 527; UV-vis (CHCl₃) λ _{max}/nm (log ε) 258 (4.97), 327 (4.51), 444 (3.76), 677 (2.40); HRMS (MALDI-TOF): calcd. for C₇₃H₁₁Cl [M] 922.0549, found 922.0554. ## References: 1. Chen, Z.-X.; Wang, G.-W. J. Org. Chem. 2005, 70, 2380.