Supporting Information for:

Excited-State Proton Transfer to Solvent from Phenol and Cyanophenols in Water

Shigeo Kaneko, Shigeyoshi Yotoriyama, Hitoshi Koda, and Seiji Tobita*
Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma 376-8515, Japan

Corresponding Author's Email: tobita@chem-bio.gunma-u.ac.jp

Deconvolution analyses of PA waveform

The PA signal $S(t)$ of sample solutions is expressed as convolution integral between impulse response function $R(t)$ and time-dependent sample decay function $h(t)$.

$$
\begin{equation*}
S(t)=R(t) \otimes h(t) \tag{S1}
\end{equation*}
$$

where $R(t)$ is given by the PA signal of photocalorimetric reference. In a sequential reaction model, $h(t)$ is given by

$$
\begin{equation*}
h(t)=\sum_{\mathrm{i}} \varphi_{\mathrm{i}} h_{\mathrm{i}}(t)=\frac{\varphi_{1}}{\tau_{1}} \exp \left(-\frac{t}{\tau_{1}}\right)+\frac{\varphi_{2}}{\tau_{1}-\tau_{2}}\left[\exp \left(-\frac{t}{\tau_{1}}\right)-\exp \left(-\frac{t}{\tau_{2}}\right)\right] \tag{S2}
\end{equation*}
$$

where $h_{\mathrm{i}}(t)$ is the sample decay function of the transient i with the lifetime of τ_{i} and φ_{i} is the fractional amplitude.

The ESPT cycle of hydroxyaromatic molecules can be analyzed according to a sequential reaction scheme:

$$
\begin{equation*}
\mathrm{ROH}^{*}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\varphi_{1}]{\tau_{1}} \mathrm{RO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \xrightarrow[\varphi_{2}]{\tau_{2}} \mathrm{ROH}+\mathrm{H}_{2} \mathrm{O} \tag{S3}
\end{equation*}
$$

where φ_{1} is the PA signal amplitude for the proton transfer step with the time constant of τ_{1}, φ_{2} is that for the proton recombination process with the time constant of τ_{2}. The parameters $\varphi_{1}, \tau_{1}, \varphi_{2}, \tau_{2}$ can be calculated from the sample and reference PA waveforms by means of the deconvolution method. The
deconvolution analyses of the waveform were performed using the Sound Analysis 3000 software (Quantum Northwest). Figure S 1 (a) shows the PA signal of photocalorimetric reference $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH} 4.0)$ at $10^{\circ} \mathrm{C}$, which corresponds to the impulse response function $R(t)$, and the PA signal $S(t)$ of $o-\mathrm{CNOH}$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH} 4.0)$ at $3.9^{\circ} \mathrm{C}\left(T_{\beta=0}\right)$. Figure $\mathrm{S} 1(\mathrm{~b})$ shows the deconvoluted sample signals:

$$
\begin{equation*}
S(t)=S_{1}(t)+S_{2}(t) \tag{S4}
\end{equation*}
$$

where $S_{1}(t)$ is the negative volume change signal ($\varphi_{1}=-0.476$ and $\tau_{1}<1 \mathrm{~ns}$) due to the photo-induced proton transfer reaction, and $S_{2}(t)$ is the positive volume change signal ($\varphi_{2}=0.471$ and $\tau_{2}=217 \mathrm{~ns}$) arising from the proton recombination reaction.

By applying the deconvolution analysis to eq 9 in the text, the following equation is derived:

$$
\begin{equation*}
\varphi_{1} E_{\lambda}=\Delta V_{\mathrm{r}}\left(\frac{C_{p} \rho}{\beta}\right) \tag{S5}
\end{equation*}
$$

In the two-temperature method using deconvolution analyses, the structural volume change per absorbed Einstein $\left(\Delta V_{\mathrm{r}}\right)$ can be determined from the plot of $\varphi_{1} E_{\lambda}$ versus the thermodynamic parameters term $\left(C_{\mathrm{p}} \rho / \beta\right)$. In Figure S 2 the values of $\varphi_{1} E_{\lambda}$ obtained for the proton dissociation step of $o-\mathrm{CNOH}$ and 1-naphthol $(1-\mathrm{NpOH})$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH} 4.0)$ are plotted following eq S5. From the slopes of the straight lines, ΔV_{r} were obtained as -5.0 and $-11.1 \mathrm{~mL}^{\text {Enstein }}{ }^{-1}$ for $o-\mathrm{CNOH}$ and 1-naphthol, respectively. By using the reaction quantum yield $\left(\Phi_{\mathrm{R}}=0.68\right)$ for $1-\mathrm{NpOH}$, which was estimated by transient absorption measurements, the structural volume change per photoconverted mole ΔV_{R} of $1-\mathrm{NpOH}$ was obtained to be $-16.4 \mathrm{~mL} \mathrm{~mol}^{-1}$.

Figure Captions

Fig. S1: (a) PA signal amplitudes of photocalorimetric reference $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH} 4.0)$ at $10^{\circ} \mathrm{C}$
(solid line) and $o-\mathrm{CNOH}$ in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH} 4.0)$ at $3.9^{\circ} \mathrm{C}$ (broken line), and (b) the deconvoluted sample signals $S_{1}(t)$ and $S_{2}(t)$. PA signal amplitude of $o-\mathrm{CNOH}$ in $\mathrm{H}_{2} \mathrm{O}$ is shown both in (a) and (b) as broken line.

Fig. S2: $\varphi_{1} E_{\lambda}$ value vs $\left(C_{\mathrm{p}} \rho / \beta\right)$ for the PA signals obtained by excitation of $o-\mathrm{CNOH}$ (open circle) and 1-NpOH (open triangle) in $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH} 4.0)$.

Figure S1 S. Kaneko et al.

Figure S2 S. Kaneko et al.

