Supporting Information for:

Oxidative Addition of Iodomethane to Charge-tuned Rh^I Complexes.

Massimiliano Delferro, Matteo Tegoni, Vincenzo Verdolino, Daniele Cauzzi,*

Claudia Graiff and Antonio Tiripicchio

Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100, Parma, Italy.

Tel. +390521905467; Fax +390521905557

E-mail: cauzzi@unipr.it

Table S1. Mulliken populations in gas phase and solution (PCM, CH_2Cl_2) for **1**, **2** and **3**. Only the relevant atoms are reported. For compound **2**, the protonation is on the atom N1 [B3LYP/BS-I//B3LYP/BS-I; BS-I = 6-31g** + DGDZVP (Rh)]

					Gas					
	Rh	S1	S2	N1	N2	N3	P1	P2	С	0
1	-0,217	-0,093	-0,093	-0,382	-0,382	-0,833	0,926	0,926	0,341	-0,289
2	-0,191	0,062	-0,039	-0,413	-0,355	-0,838	0,897	0,925	0,340	-0,249
3	-0,151	0,101	0,101	-0,406	-0,406	-0,846	0,894	0,894	0,335	-0,215
CH ₂ Cl ₂										
	Rh	S1	S2	N1	N2	N3	P1	P2	С	0
1	-0,229	-0,164	-0,165	-0,364	-0,364	-0,858	0,927	0,927	0,347	-0,327
2	-0,193	0,046	-0,112	-0,408	-0,360	-0,861	0,896	0,926	0,343	-0,295
3	-0,158	0,079	0,078	-0,401	-0,406	-0,862	0,896	0,896	0,338	-0,264

CP-MAS ¹³C NMR: δ = 189.8 (d, ¹*J*_{C,Rh} = 80.5 Hz, CO), 178.5 (d, ¹*J*_{C,P} = 151 Hz, C=N), 136.0-123.4 (m, Ph), 50.4 (s, -*CH*₂CH₃), 17.0 (s, -*CH*₂*CH*₃) ppm.

Figure S2. CP-MAS ¹³C NMR of 4.

Figure S3. Superimposed FTIR spectra in CH_2Cl_2 solution of 2·PF₆ + CH_3I . (* = possible isomer of 5·PF₆)

Figure S4. Superimposed FTIR spectra in CH_2Cl_2 solution of 2·NO₃ + CH_3I . (* = possible isomer of 5·NO₃)

Figure S5. Superimposed FTIR spectra in CH_2Cl_2 solution of **2**·OTf + CH_3I at the beginning (1992 cm⁻¹) and at the end (1712 cm⁻¹) of the reaction.

Figure S6. ³¹P{¹H} NMR spectrum of the reaction of $2 \cdot OTf + CH_3I$ in CD_2Cl_2 after 2 hours.

Figure S7. ³¹P{¹H} NMR spectrum of the reaction of $2 \cdot OTf + CH_3I$ in CD_2Cl_2 after 2 days; * corresponds to unidentified decomposition products.

Figure S8. Linearized Eyring plot $[log (k_1/T) vs. 1/T]$ for the reaction of 1 with CH₃I

Table S2. Second-order rate constants for the reaction $2 \cdot PF_6 + CH_3I$ at different temperatures (standard deviations are given in parentheses). The corresponding least-square sample standard deviations (σ) are also reported.

Temperature (K)	$k (M^{-1} s^{-1})$	σ
280.16	$0.64(3) \ge 10^{-5}$	1.02 x 10 ⁻³
291.16	1.71(2) x 10 ⁻⁵	3.07 x 10 ⁻³
298.16	2.56(6) x 10 ⁻⁵	7.66 x 10 ⁻³

^a $\sigma = [\Sigma_i (I_i^o - I_i^c)^2 / (n - m)]^{1/2}$, where I_i^o, I_i^c are the observed and calculated integral values, *i* is the number of the spectrum, *n* is the number of observations and *m* is the number of parameters refined.

Figure S10. Drawings of the highest energy $\sigma\text{-simmetry}$ MOs for 1, 2 and 3.

Figure S11. Drawing of the optimized structure of the $[(EtSNS)Rh(CO)ICH_3]$ complex (**A**) with continous in-phase MO. The MO involves the CH₃ group, the Rh atom, one S atom of the ligand and the C atom of the CO group.