Supporting Information 1

Rh(I)-Catalyzed CO Gas-Free Carbonylative Cyclization Reactions of Alkynes with 2-Bromophenylboronic Acids Using Formaldehyde

Tsumoru Morimoto, ${ }^{,{ }^{\dagger}}$ Kae Yamasaki, ${ }^{\dagger}$ Akihisa Hirano, ${ }^{\dagger}$ Ken Tsutsumi, ${ }^{\dagger}$ Natsuko Kagawa, ${ }^{\dagger}$ Kiyomi Kakiuchi, ${ }^{\dagger}$ Yasuyuki Harada, ${ }^{\dagger}$ Yoshiya Fukumoto, ${ }^{\ddagger}$ Naoto Chatani, ${ }^{*}{ }^{\dagger}$ and Takanori Nishioka ${ }^{\S}$
${ }^{\dagger}$ Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
${ }^{\ddagger}$ Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
${ }^{\S}$ Department of Material Science, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan

General Information. ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR were recorded on a JEOL JNM-ECP500 spectrometer in CDCl_{3} using tetramethylsilane (0 ppm) as an internal standard and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with phosphoric acid (0 ppm) as an external standard. ${ }^{103} \mathrm{Rh}$ NMR was recorded on a JEOL Lambda300WB spectrometer using $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with $\left[\mathrm{C}_{5} \mathrm{M}_{5} \mathrm{RhCl}_{2}\right]_{2}(3678 \mathrm{ppm})$ as an external standard. ${ }^{1}$ Data are reported as follows: chemical shift in $\mathrm{ppm}(\delta)$, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and $\mathrm{c}=$ complex $)$, coupling constant (Hz), integration, and interpretation. Analytical GC was carried out on a HITACHI G-3900 gas chromatograph, equipped with a flame ionization detector. Column chromatography was performed using a SiO_{2} (MERCK Silica gel 60).

Materials. $[\mathrm{RhCl}(\operatorname{cod})]_{2}$ was prepared using the reported method. ${ }^{2}$ 1,1'-(Bis(diphenylphosphino)-2,2'-binaphthyl (BINAP), 1,1'-bis(diphenylphosphino)-2,2'-biphenyl
(BIPHEP), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,4bis(diphenylphosphino)butane (dppb), 1,1-bis(diphenylphosphino)ferrocene (dppf), and triphenylphosphine were purchased from Strem Chemicals Inc. Paraformaldehyde, which was purchased from Nacalai Tesque, Inc., was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum, before it was used. 4-octyne (1), 1-phenyl-2-(trimethylsilyl)acetylene, 2-bromophenylboronic acid (2), 2-bromo-4,5difluorophenylboronic acid, 2-bromo-6-fluorophenylboronic acid, 2-chlorophenylboronic acid, and 3methoxyphenylboronic acid were purchased from Aldrich Chemical Co. Diphenyl acetylene and 1-phenyl-1-butyne were purchased from Tokyo Kasei Kogyo Co. 1,4-Dioxane (dehydrated), sodium carbonate, 1-phenyl-1-propyne, 1-(trimethylsilyl)-1-propyne, methyl propiolate, ethyl 3(trimethylsilyl)propiolate and 2,5-dichlorophenylboronic acid were purchased from Wako Pure Chemical Industries, Ltd. 2-Bromo-5-methoxyphenylboronic acid was prepared using a method reported by Kuivila. ${ }^{3}$
${ }^{31} \mathbf{P}$ NMR Experiments. All the operations were conducted in a glove-box. The ${ }^{31} \mathrm{P}$ NMR analysis revealed that the treatment of $10 \mu \mathrm{~mol}$ of $[\mathrm{RhCl}(\operatorname{cod})]_{2}$ with $4 \mu \mathrm{~mol}$ of BINAP in 0.65 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ afforded a doublet signal at $49.5 \mathrm{ppm}\left(\mathrm{d}, J_{P-R h}=199 \mathrm{~Hz}\right.$). The signal was consistent with that of $[\mathrm{RhCl}(\mathrm{BINAP})]_{2}$, which was prepared using the reported method. ${ }^{4}$ See the page S1-9.
${ }^{103} \mathbf{R h}$ NMR experiments. All the operations were conducted in a glove-box. It was clarified that, from ${ }^{103} \mathrm{Rh} \mathrm{NMR}$, the treatment of 0.406 mmol of $[\mathrm{RhCl}(\mathrm{cod})]_{2}$ with 0.162 mmol of BINAP in 0.65 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded two signals: one was the singlet at 2438 ppm and the other was the triplet at $1620 \mathrm{ppm}\left(J_{R h-P}=199 \mathrm{~Hz}\right)$, as shown in page $\mathrm{S} 1-10$ and 11 . Although the ${ }^{103} \mathrm{Rh}$ NMR analysis of $[\operatorname{RhCl}(\mathrm{BINAP})]_{2}$ failed because of extremely low solubility in all solvents tested $\left(\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, acetone, benzene, and toluene), the latter could be assigned to that of $[\mathrm{RhCl}(\mathrm{BINAP})]_{2}$ from its coupling constant.

Typical Procedure for an $\mathbf{R h}(\mathrm{I})$-Catalyzed Carbonylative Cyclization Reaction of Alkynes with 2-Bromoarylboronic Acid Using Paraformaldehyde (Table 1, entry 2). In a 7-mL screwcapped tube were placed 4-octyne ($110 \mathrm{mg}, 1 \mathrm{mmol}$), 2-bromophenylboronic acid ($602 \mathrm{mg}, 3 \mathrm{mmol}$), $[\mathrm{RhCl}(\operatorname{cod})]_{2}(12.3 \mathrm{mg}, 0.025 \mathrm{mmol}), \operatorname{BINAP}(6.23 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(212 \mathrm{mg}, 2 \mathrm{mmol})$, and 1,4-dioxane/water (100/1, 2 mL). The mixture was then degassed, charged with N_{2}, sealed, and stirred at $100{ }^{\circ} \mathrm{C}$. After 30 h , the reaction mixture was filtered, and the filtered cake was washed with ethyl acetate (10 mL X 3). The combined filtrates were concentrated in vacuo, and the residue was purified by column chromatography on silica-gel (eluent; hexane/AcOEt=30/1) to give 2,3-dipropyl-1H-indene-1-one (2) ($\left.R_{f} 0.20,178 \mathrm{mg}, 0.83 \mathrm{mmol}\right)$ in 83% yield as yellow oil.

Procedure for an $\mathbf{R h}(\mathrm{I})$-Catalyzed Carbonylative Cyclization Reaction of 2Bromophenyl(trimethylsilyl)acetylene (21) with Phenylboronic Acid Using Paraformaldehyde (Scheme 3). In a 7-mL screw-capped tube were placed 2-bromophenyl(trimethylsilyl)acetylene (21) ($253 \mathrm{mg}, 1 \mathrm{mmol}$), phenylboronic acid $(366 \mathrm{mg}, 3 \mathrm{mmol})$, $[\mathrm{RhCl}(\operatorname{cod})]_{2}(12.3 \mathrm{mg}, 0.025 \mathrm{mmol})$, BINAP ($6.23 \mathrm{mg}, 0.01 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(212 \mathrm{mg}, 2 \mathrm{mmol})$, styrene ($208 \mathrm{mg}, 2 \mathrm{mmol}$), and $1,4-$ dioxane/water (100/1, 2 mL). The mixture was then degassed, charged with N_{2}, sealed, and stirred at $100{ }^{\circ} \mathrm{C}$. After 30 h , the reaction mixture was filtered, and the filtered cake was washed with ethyl acetate (10 mL X 3). The combined filtrates were concentrated in vacuo, and the residue was purified by column chromatography on silica-gel (eluent; hexane/AcOEt=20/1) to give 3-phenyl-2-(trimethylsilyl)-1H-inden-1-one (8) $\left(R_{f} 0.30,161 \mathrm{mg}, 0.58 \mathrm{mmol}\right)$ in 58% yield as yellow oil.

Products. All the compounds are known and their spectral data were compared with those of authentic specimen. ${ }^{5-8}$ Their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are shown as follows:

2,3-Dipropyl-1H-inden-1-one (2). ${ }^{5}$ Yellow oil. $R_{f} 0.20$ (hexane/ $\mathrm{AcOEt}=30 / 1$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{qt}, J=7.3 \mathrm{~Hz}, 7,6 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{qt}, J=7.3 \mathrm{~Hz}$, $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$
(ddd, $J=1.2 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.1,14.3,21.2,22.4,24.8,28.2,118.9,121.6,127.8,131.1,133.1,134.8$, 145.6, 157.6, 198.7.

2,3-Diphenyl-1H-inden-1-one (4). ${ }^{6}$ Orange solid. $R_{f} 0.18$ (hexane/AcOEt $=20 / 1$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.25(\mathrm{c}, 6 \mathrm{H}), 7.31-7.37(\mathrm{c}, 6 \mathrm{H}), 7.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 121.2,122.9,127.7,128.0,128.7,128.9,129.2,129.9,130.1,132.3,133.4,145.1$, 155.2, 196.1.

3-Methyl-2-phenyl- \mathbf{H}-inden-1-one (5). ${ }^{7}$ Orange solid. $R_{f} 0.20$ (hexane/ $\mathrm{AcOEt}=20 / 1$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \oint: 2.33(\mathrm{~s}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=6.7 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (dddd, $J=1.9 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 6.7 \mathrm{~Hz}, 6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.46(\mathrm{c}, 5 \mathrm{H}), 7.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta: 12.4,119.3,121.8,127.5,128.1,128.7,129.3,130.1,131.0,133.1,145.6,154.6,196.2$.

3-Butyl-2-phenyl-1H-inden-1-one (6) and 2-butyl-3-phenyl-1H-inden-1-one (6'). ${ }^{8}$ Orange oil. $R_{f} 0.28$ (hexane/AcOEt $=20 / 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:\left[0.84\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{6}^{\prime}\right), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathbf{6})],\left[1.27-1.50\left(\mathrm{c}, 4 \mathrm{H}, \mathbf{6}^{\prime}\right), 1.44(\mathrm{tq}, J=7.3 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{6}), 1.68(\mathrm{tt}, J=7.4 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{6})\right]$, [2.34 (t, $\left.J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{6}^{\prime}\right), 2.71(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{6})$], [7.00(d, 1H, 6'), 7.24-7.51 (c, 9H, 6 and c,

3-Methyl-2-(trimethylsilyl)-1H-inden-1-one (7). ${ }^{8}$ Orange solid. $R_{f} 0.28$ (hexane/ $\mathrm{AcOEt}=$ 20/1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.29(\mathrm{~s}, 9 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=6.7 \mathrm{~Hz}$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=6.7 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:-0.3$, 14.3, 118.7, 121.1, 128.7, 132.2, 132.7, 147.0, 168.8, 201.6.

3-Phenyl-2-(trimethylsilyl)-1H-inden-1-one (8). ${ }^{5}$ Orange oil. $R_{f} 0.30$ (hexane/ $\mathrm{AcOEt}=20 / 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.05(\mathrm{~s}, 9 \mathrm{H}), 6.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.50(\mathrm{c}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-$ $0.2,120.7,122.1,127.5,128.2,128.9,129.0,132.2,132.8,134.6,134.8,147.1,170.6,201.6$.

1-Oxo-3-Phenyl-1H-indene-2-carboxylic acid methyl ester ($\mathbf{9}_{\text {major }}$). ${ }^{8}$ Yellow solid. $R_{f} 0.20$ (hexane/AcOEt = 5/1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 3.75(\mathrm{~s}, 9 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.62(\mathrm{c}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 51.8,123.3,123.4,128.0,128.3,130.3,130.5,131.1,131.2,133.5,142.9,163.3,165.6$, 191.9.

1-Oxo-2-Phenyl-1H-indene-3-carboxylic acid methyl ester ($\mathbf{9}_{\text {minor }}$). ${ }^{8}$ Orange solid. $R_{f} 0.27$ (hexane/AcOEt $=5 / 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.84(\mathrm{~s}, 9 \mathrm{H}), 7.31-7.58(\mathrm{c}, 9 \mathrm{H})$.

1-Oxo-2-(Trimethylsilyl)-1H-indene-3-carboxylic acid ethyl ester ($\mathbf{1 0}_{\text {major }}$). ${ }^{8}$ Yellow oil. R_{f} 0.44 (hexane/AcOEt $=5 / 1$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.29(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.42(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.49(\mathrm{c}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-0.8,14.1,61.6,121.8,123.0,129.2,131.4,133.7$, 141.6, 143.5, 157.7, 165.4, 200.7.

1-Oxo-3-(Trimethylsilyl)-1H-indene-2-carboxylic acid ethyl ester ($\mathbf{1 0}_{\text {minor }}$). ${ }^{8}$ Yellow oil. R_{f} 0.40 (hexane/AcOEt $=5 / 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.39(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.32(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=7.3 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Methoxy-2,3-dipropyl-1H-inden-1-one (11). ${ }^{8}$ Yellow oil. $R_{f} 0.18$ (hexane/ $\mathrm{AcOEt}=20 / 1$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta: 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{tq}, J=7.3 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.63(\mathrm{tq}, J=7.3 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.53$ $(\mathrm{dd}, J=1.8 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:$ $14.1,14.3,21.4,22.5,25.0,28.0,55.6,108.5,108.6,123.4,123.9,136.4,148.3,155.2,164.3,197.2$.

5-Methoxy-3-methyl-2-(trimethylsilyl)-1H-inden-1-one (12). ${ }^{8}$ Yellow solid. $R_{f} 0.23$ (hexane/AcOEt $=20 / 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.27(\mathrm{~s}, 9 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{dd}, J=1.8$ $\mathrm{Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=1.8,1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:-0.2,14.2,55.6$, $107.5,110.4,123.0,125.1,134.6,149.9,164.1,166.5,200.6$.

5-Methoxy-3-phenyl-2-(trimethylsilyl)-1H-inden-1-one (13). ${ }^{8}$ Yellow solid. $R_{f} 0.25$ (hexane/AcOEt = 20/1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.04(\mathrm{~s}, 9 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ $(\mathrm{dd}, J=1.8 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.35(\mathrm{c}, 2 \mathrm{H}), 7.44-7.49(\mathrm{c}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:-0.2,55.7$, $109.4,110.8,124.0,125.1,127.7,128.3,129.0,134.8,136.6,149.9,164.1,168.5,200.4$.

5,6-Difluoro-2,3-dipropyl-1H-inden-1-one (14). ${ }^{8}$ Yellow oil. $R_{f} 0.33$ (hexane/ $\mathrm{AcOEt}=20 / 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{tq}, J=7.3 \mathrm{~Hz}, 7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.62(\mathrm{tq}, J=7.3 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=$ $6.5 \mathrm{~Hz}, 9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 14.0,14.1,21.0,22.3$, $25.0,28.1,109.3(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 112.0(\mathrm{dd}, J=1.9 \mathrm{~Hz}, 20.1 \mathrm{~Hz}), 127.1(\mathrm{dd}, J=4.8 \mathrm{~Hz}), 136.0(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}), 142.4(\mathrm{dd}, J=3.8 \mathrm{~Hz}, 6.7 \mathrm{~Hz}), 149.5(\mathrm{dd}, J=13.7 \mathrm{~Hz}, 218.1 \mathrm{~Hz}), 153.2(\mathrm{dd}, J=13.6 \mathrm{~Hz}$, $221.5 \mathrm{~Hz}), 155.6,195.42$.

5,6-Difluoro-3-methyl-2-(trimethylsilyl)-1H-inden-1-one (15). ${ }^{8}$ Yellow solid. $R_{f} 0.35$ (hexane/AcOEt $=20 / 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.28(\mathrm{~s}, 9 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 6.94(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.3 \mathrm{~Hz}, 8.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:-0.3,14.6,108.9(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 111.6$ $(\mathrm{d}, J=18.2 \mathrm{~Hz}), 128.6(\mathrm{dd}, J=3.8 \mathrm{~Hz}, 4.8 \mathrm{~Hz}), 134.5(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 143.9(\mathrm{dd}, J=3.8 \mathrm{~Hz}, 6.7 \mathrm{~Hz})$, 149.8 (dd, $J=14.3 \mathrm{~Hz}, 229.7 \mathrm{~Hz}), 153.0(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 233.5 \mathrm{~Hz}), 166.7$, 198.9.

5,6-Difluoro-3-phenyl-2-(trimethylsilyl)-1H-inden-1-one (16). ${ }^{8}$ Yellow solid. $R_{f} 0.33$ (hexane/AcOEt = 20/1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.05(\mathrm{~s}, 9 \mathrm{H}), 6.71(\mathrm{dd}, J=6.1 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.35$
$(\mathrm{c}, 3 \mathrm{H}), 7.46-7.52(\mathrm{c}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-0.4,110.7(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 112.3(\mathrm{~d}, J=21.2 \mathrm{~Hz})$, 127.4, 128.6, 129.5, 134.0, $136.1(\mathrm{~d}, ~ J=4.8 \mathrm{~Hz}), 143.8(\mathrm{dd}, J=3.8 \mathrm{~Hz}, 6.7 \mathrm{~Hz}), 150.9(\mathrm{dd}, J=14.4$ Hz, 248.6 Hz), 153.0 (dd, $J=14.4 \mathrm{~Hz}, 256.2 \mathrm{~Hz}), 168.6,198.7$.

4-Fluoro-2,3-dipropyl-1H-inden-1-one (17). ${ }^{8}$ Yellow oil. $R_{f} 0.28$ (hexane/AcOEt $=20 / 1$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta: 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{tq}, J=7.3 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.65(\mathrm{tq}, J=7.3 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=8.6$ $\mathrm{Hz}, 9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=4.3 \mathrm{~Hz}, 6.7 \mathrm{~Hz}, 8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 14.1,14.2,21.3(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 22.5,24.6,30.2(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 117.9(\mathrm{~d}, J=1.9 \mathrm{~Hz})$, $122.4(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 134.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 135.1(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}), 155.4(\mathrm{~d}, J=252.4 \mathrm{~Hz}), 156.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 197.3(\mathrm{~d}, J=2.9 \mathrm{~Hz})$.

4-Fluoro-3-methyl-2-(trimethylsilyl)- $\mathbf{1 H}$-inden-1-one (18). ${ }^{8} \quad$ Yellow solid. $\quad R_{f} \quad 0.30$ (hexane/AcOEt $=20 / 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.29(\mathrm{~s}, 9 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 7.01-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.24$ $(\mathrm{c}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-0.2,17.8(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 121.8(\mathrm{~d}, J=23.0 \mathrm{~Hz})$, $131.1(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 135.7(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 156.0(\mathrm{~d}, J=$ $255.3 \mathrm{~Hz}), 167.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 200.5(\mathrm{~d}, J=1.9 \mathrm{~Hz})$.

4-Fluoro-3-phenyl-2-(trimethylsilyl)- $\mathbf{1 H}$-inden-1-one (19). ${ }^{8} \quad$ Yellow \quad solid. $\quad R_{f} \quad 0.28$ (hexane/AcOEt $=20 / 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.01(\mathrm{~s}, 9 \mathrm{H}), 6.99(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.44(\mathrm{c}, 7 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-0.4,118.4,(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 122.4(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 127.9$, $128.9,130.9(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 136.1(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 136.2$ $(\mathrm{d}, J=1.9 \mathrm{~Hz}), 155.7(\mathrm{~d}, J=258.2 \mathrm{~Hz}), 168.8(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 200.2(\mathrm{~d}, J=1.9 \mathrm{~Hz})$.

5-Chloro-2,3-dipropyl-1H-inden-1-one (20). ${ }^{8}$ Yellow oil. $R_{f} 0.30$ (hexane/AcOEt $=20 / 1$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta: 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{tq}, J=7.3 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.63 (tq, $J=7.3 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=1.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.14(\mathrm{dd}, J=1.8 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 14.1,14.2,21.1$, $22.3,24.9,28.0,119.8,122.5,127.3,129.3,136.4,139.1,147.5,156.3,197.3$.

References

1 Gill, D. S.; Gansow, O. A.; Bennis, F. J.; Ott, K. C. J. Magn. Reson. 1979, 35, 459-461.
2 Giordano, G.; Crabtree, R. H. Inorg. Synth. 1979, 19, 218-220.
3 Kuivila, H. G.; Benjamin, L. E.; Murphy, C. J.; Price, A. D.; Polevy, J. H. J. Org. Chem. 1962, 27, 825-829.

Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 50525058.

Larock, R. C.; Doty, M. J.; Cacchi, S. J. Org. Chem. 1993, 58, 4579-4583.
Pouchert, C.; Behnke, J. Aldrich Library of ${ }^{13} \mathrm{C}$ and ${ }^{1} H$ FT-NMR Spectra, Aldrich Chemical Co., 1992.

Liebeskind, L. S.; South, M. S. J. Org. Chem. 1980, 45, 5426-5429.
Harada, Y.; Nakanishi, J.; Fujihara, H.; Tobisu, M.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2007, 129, 5766-5771.

