Organometallic Complexes for Nonlinear Optics. 43. Quadratic optical nonlinearities of dipolar alkynylruthenium complexes with phenyleneethynylene/phenylenevinylene bridges

Luca Rigamonti,^{1,2} Bandar Babgi,¹ Marie P. Cifuentes,¹ Rachel L. Roberts,¹ Mark G. Humphrey,^{1,*} Simon Petrie,¹ Robert Stranger,¹ Stefania Righetto,² Ayele Teshome,³ Inge Asselberghs,³ and Koen

Clays³

¹Department of Chemistry, Australian National University, Canberra, ACT 0200, Australia, ²Dipartimento di Chimica Inorganica, Metallorganica e Analitica 'L. Malatesta', Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy, and ³Department of Chemistry, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.

Supporting Information

Complete reference 43:

Baerends, E. J.; Autsbach, J.; Bérces, A.; Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; Ellis, D. E.; Faassen, M. v.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Groeneveld, J. A.; Gritsenko, O. V.; Gruning, M.; Harris, F. E.; van den Hoek, P.; Jacob, C. R.; Jacobsen, H.; Jensen, L.; van Kessel, G.; Kootstra, F.; van Lenthe, E.; McCormack, D. A.; Michalak, A.; Neugebauer, J.; Osinga, V. P.; Patchkovskii, S.; Philipsen, P. H. T.; Post, D.; Pye, C.; Ravenek, W.; Ros, P.; Schipper, P. R. T.; Schreckenbach, G.; Snijders, J. G.; Sola, M.; Swart, M.; Swerhone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visser, O.; Wang, F.; Wesolowski, T. A.; van Wezenbeek, E.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Yakovlev, A. L.; Ziegler, T.; S.C.M., Theoretical Chemistry, Vrije Universiteit: Amsterdam, the Netherlands, http://www.scm.com, 2006.

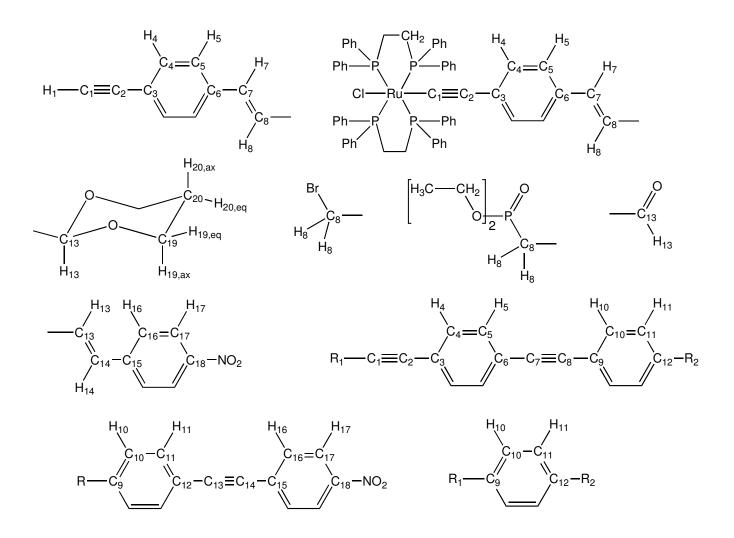


Chart S1. Atom labeling for NMR assignments.

Synthesis of 4,4'-Me₃SiC α CC₆H₄C α CC₆H₄CHO(CH₂)₃O (1). PdCl₂(PPh₃)₂ (155 mg, 0.22 mmol), CuI (41 mg, 0.22 mmol) and 4-HC α CC₆H₄CHO(CH₂)₃O (820 mg, 4.33 mmol) were added to a solution of 4-Me₃SiC α CC₆H₄Br (1.10 g, 4.33 mmol) in NEt₃ (70 mL). The mixture was stirred under reflux for 3 h and at room temperature overnight. The mixture was filtered, the solvent removed from the filtrate, and the resulting orange residue was purified by column chromatography on silica, eluting with CH₂Cl₂/petrol (2:1). Reduction in volume of the solvent on a rotary evaporator afforded **1** as a white powder (270 mg, 33%). EI MS: 360 ([M]⁺, 100). Anal. Calcd for C₂₃H₂₄O₂Si: C, 76.62; H, 6.71. Found: C, 76.40; H, 6.61. UV-vis (CH₂Cl₂): 30700 [5.4], 31800 sh [4.4], 32700 [5.4], 33700 sh [4.1], 34600 sh [3.8]. IR (CH₂Cl₂): 2156 ν (C α C). ¹H NMR: δ 0.26 (s, 9H, Me), 1.46 (m, 1H, H_{20,e0}), 2.23 (m, 1H, $H_{20,ax}$), 3.99 (m, 2H, $H_{19,ax}$), 4.28 (m, 2H, $H_{19,eq}$), 5.51 (s, 1H, H_{13}), 7.44 (s, 4H, H_4 and H_5), 7.50 (AA'BB', 4H, H_{10} and H_{11}). ¹³C NMR: δ 25.8 (C₂₀), 67.5 (C₁₉), 89.3 (C₁), 91.2 (C₂), 96.3 (C₇), 101.1 (C₁₃), 104.7 (C₈), 122.9 (C₃), 123.2 (C₆), 123.4 (C₉), 126.1 (C₁₁), 131.4, 131.6, 131.9 (C₄, C₅, C₁₀), 138.9 (C₁₂).

Synthesis of 4,4'-Me₃SiC α CC₆H₄C α CC₆H₄CHO (2) *Method A.* PdCl₂(PPh₃)₂ (60 mg, 0.09 mmol), CuI (14 mg, 0.08 mmol) and 4-HC α CC₆H₄CHO (252 mg, 1.93 mmol) were added to a solution of 4-Me₃SiC α CC₆H₄I (577 mg, 1.92 mmol) in NEt₃ (60 mL). The mixture was stirred under reflux overnight. The solvent was removed from the mixture and the resulting residue was extracted with Et₂O (2 × 40 mL), yielding a yellow-orange organic phase that was adsorbed on alumina and purified by column chromatography on alumina, eluting with CH₂Cl₂/petrol (1:1). Reduction in volume of the solvent on a rotary evaporator afforded **2** as a white powder (52 mg, 10%).

Method B. HCl 9% w/w (1 mL) was added to a solution of **1** (201 mg, 0.56 mmol) in acetone (20 mL). The mixture was stirred under reflux for 1 h. The reaction mixture was treated with distilled water (30 mL) and extracted with Et₂O (2 × 30 mL). The organic phase was washed with aqueous NaHCO₃, H₂O and dried with MgSO₄. Reduction in volume of the solvent on a rotary evaporator afforded **2** as a white powder (141 mg, 82%). EI MS: 302 ([M]⁺, 80), 287 ([M – Me]⁺, 100). HR EI MS [C₂₀H₁₈SiO]⁺: calcd 302.1127, found 302.1127. Anal. Calcd for C₂₀H₁₈OSi.0.25CH₂Cl₂: C, 75.14; H, 5.76. Found: C, 74.95; H, 6.11. UV-vis (CH₂Cl₂): 29100 [2.5], 30600 [2.7], 33700 sh [1.0], 34200 sh [1.5]. IR (CH₂Cl₂): 2215, 2156 ν (C α C); 1702 ν (C=O). ¹H NMR: δ 0.26 (s, 9H, Me), 5.28 (s, 0.5H, CH₂Cl₂), 7.47 (s, 4H, H₄ and H₅), 7.66 (d, *J*_{HH} = 8 Hz, 2H, H₁₀), 7.87 (d, *J*_{HH} = 8 Hz, 2H, H₁₁), 10.02 (s, 1H, H₁₃). ¹³C NMR: δ -0.1 (SiMe₃), 90.3, 93.0, 96.9 (C₁, C₇, C₈), 103.3 (C₂), 122.5, 123.7 (C₃, C₆), 129.3 (C₉), 129.6 (C₁₁), 131.6, 131.8, 132.1 (C₄, C₅, C₁₀), 135.6 (C₁₂), 191.4 (C₁₃).

Synthesis of (*E*)-4,4',4''-Me₃SiC α CC₆H₄C α CC₆H₄CH=CHC₆H₄NO₂ (3). PdCl₂(PPh₃)₂ (122 mg, 0.17 mmol), CuI (36 mg, 0.19 mmol) and (*E*)-4,4'-HC α CC₆H₄CH=CHC₆H₄NO₂ (750 mg, 3.01 mmol) were added to a solution of 4-Me₃SiC α CC₆H₄I (970 mg, 3.24 mmol) in NEt₃ (100 mL). The mixture

was stirred at 35-40°C overnight. The mixture was filtered and washed with NEt₃, and the resultant solid residue was extracted with CH₂Cl₂ (200 mL) and the solvent removed from the extract on a rotary evaporator. The resulting yellow-brown residue was purified by passing through a small pad of alumina, eluting with CH₂Cl₂. Reduction in volume of the solvent on a rotary evaporator afforded **3** as a pale yellow powder (320 mg, 25%). EI MS: 421 ([M]⁺, 100), 406 ([M – Me]⁺, 50). HR EI MS $[C_{27}H_{23}NSiO_2]^+$: calcd 421.1498, found 421.1488. Anal. Calcd for $C_{27}H_{23}NO_2Si.0.125CH_2Cl_2$: C, 75.38; H, 5.56; N, 3.24. Found: C, 75.84; H, 5.73; N, 3.15. UV-vis (CH₂Cl₂): 26600 [9.2], 30800 sh [5.3]. IR (CH₂Cl₂): 2154 ν (C α C); 1592 ν (C=C); 1517, 1343 ν (NO₂). ¹H NMR: δ 0.26 (s, 9H, Me), 5.28 (s, 0.25H, CH₂Cl₂), 7.17 (d, *J*_{HH} = 16 Hz, 1H, H₁₃), 7.25 (d, *J*_{HH} = 16 Hz, 1H, H₁₄), 7.46 (s, 4H, H₄ and H₅), 7.54 (s, 4H, H₁₀ and H₁₁), 7.65 (d, *J*_{HH} = 9 Hz, 2H, H₁₆), 8.24 (d, *J*_{HH} = 9 Hz, 2H, H₁₇). ¹³C NMR: δ 0.03 (SiMe₃), 90.8, 91.2 (C₇, C₈), 96.5, 104.6 (C₁, C₂), 123.1, 123.3 (C₃, C₆), 124.2, 127.0, 127.2 (2C), 131.4, 132.0, 132.1, 132.5 (C₄, C₅, C₁₀, C₁₁, C₁₃, C₁₄, C₁₆, C₁₇), 136.2 (C₁₂), 143.5 (C₁₅), 146.9 (C₁₈), C₉ not observed.

Synthesis of (*E*)-4,4',4''-HC α CC₆H₄C α CC₆H₄CH=CHC₆H₄NO₂ (4). *Method A.* NBu^{*n*}₄F (2.5 mL, 1 M solution in THF) was added to a solution of **3** (214 mg, 0.51 mmol) in CH₂Cl₂ (20 mL) yielding a suspension. This was stirred at room temperature for 2 h. The mixture was passed through a small pad of alumina, eluting with CH₂Cl₂, and the solvent reduced in volume, affording **4** as a yellow powder (143 mg, 80%).

Method B. Solid NaOMe (excess) was added to a solution of $4-(\text{EtO})_2(\text{O})\text{PCH}_2\text{C}_6\text{H}_4\text{NO}_2$ (164 mg, 0.60 mmol) in THF (20 mL) and the purple solution was stirred at 0°C for 15 min. **2** (171 mg, 0.57 mmol) was added and the resultant mixture stirred at 0°C for 20 min and then at room temperature for another 20 min. H₂O (30 mL) and MeOH (12 mL) were added to the mixture to afford a yellow precipitate, which was collected, washed (H₂O/MeOH mixture), and dried in vacuo to afford **4** as a yellow powder (120 mg, 60%). EI MS: 349 ([M]⁺, 10), 319 ([M – NO]⁺, 5). HR EI MS [C₂₄H₁₅NO₂]⁺: calcd 349.1103, found 349.1103. UV-vis (CH₂Cl₂): 26700 [6.0], 31100 sh [3.1]. IR (CH₂Cl₂): 2103

 ν (C α C); 1512, 1345 ν (NO₂). ¹H NMR: δ 3.19 (s, 1H, H₁), 7.17 (d, J_{HH} = 16 Hz, 1H, H₁₃), 7.25 (d, J_{HH} = 16 Hz, 1H, H₁₄), 7.49 (s, 4H, H₄ and H₅), 7.55 (s, 4H, H₁₀ and H₁₁), 7.65 (d, J_{HH} = 9 Hz, 2H, H₁₆), 8.24 (d, J_{HH} = 9 Hz, 2H, H₁₇).

Synthesis of 4,4'-(EtO)₂(**O)PCH**₂**C**₆**H**₄**CαCC**₆**H**₄**NO**₂ (5). Pd(PPh₃)₄ (93 mg, 0.08 mmol) and 4-HCαCC₆H₄NO₂ (375 mg, 2.55 mmol) were added to a solution of 4-(EtO)₂(**O**)PCH₂C₆H₄I (900 mg, 2.54 mmol) in NEt₃ (30 mL). The orange mixture was stirred under reflux overnight. The dark mixture was filtered, the filtrate taken to dryness and purified by column chromatography on alumina, eluting with a gradient polarity eluent (acetone/petrol 1:3, EtOAc/petrol 1:1, EtOAc). Removal of the solvent on a rotary evaporator afforded **5** as a pale yellow oil (560 mg, 59%). EI MS: 373 ([M]⁺, 100), 236 ([M – P(O)(OEt)₂]⁺. HR EI MS [C₁₉H₂₀NO₅P]⁺: calcd 373.1079, found 373.1081. UV-vis (CH₂Cl₂): 29500 [2.0]. IR (CH₂Cl₂): 2217 ν (CαC); 1520, 1346 ν (NO₂). ¹H NMR: δ 1.25 (t, *J*_{HH} = 7 Hz, 6H, CH₃), 3.17 (d, *J*_{PH} = 22 Hz, 2H, H₈), 4.04 (q, *J*_{HH} = 7 Hz, 4H, CH₂), 7.32 (dd, *J*_{HH} = 8 Hz, *J*_{PH} = 2 Hz, 2H, H₁₀), 7.50 (d, *J*_{HH} = 8 Hz, 2H, H₁₁), 7.65 (d, *J*_{HH} = 9 Hz, 2H, H₁₆), 8.21 (d, *J*_{HH} = 9 Hz, 2H, H₁₇). ¹³C NMR: δ 16.4 (d, *J*_{CP} = 23 Hz, CH₃), 34.0 (d, *J*_{CP} = 548 Hz, C₈), 62.3 (d, *J*_{CP} = 27 Hz, CH₂), 87.8 (C₁₄), 94.5 (C₁₃), 120.7 (C₁₂), 123.7 (C₁₇), 130.0, 130.3 (C₁₅, C₁₀), 132.0, 132.3 (C₁₁, C₁₆), 133.3 (C₉), 147.0 (C₁₈). ³¹P NMR: δ 26.1.

Synthesis of (*E*)-4,4',4''-HC α CC₆H₄CH=CHC₆H₄C α CC₆H₄NO₂ (6). Solid NaOMe (excess) was added to a solution of **5** (535 mg, 1.43 mmol) in THF (20 mL) and the dark green solution was stirred at 0°C for 15 min. 4-Me₃SiC α CC₆H₄CHO (287 mg, 1.42 mmol) was added and the mixture stirred at 0°C for 10 min and then at room temperature for a further 15 min. H₂O (30 mL) and MeOH (12 mL) were added to the mixture to afford a yellow precipitate, which was collected, washed (H₂O/MeOH mixture) and dried in vacuo to afford **6** as a yellow powder (454 mg, 92%). EI MS: 349 ([M]⁺, 25), 319 ([M – NO]⁺. HR EI MS [C₂₄H₁₅NO₂]⁺: calcd 349.1103, found 349.1103. UV-vis: 27000 [5.4]. IR (KBr): 2212 ν (C α C); 1513, 1345 ν (NO₂). ¹H NMR: δ 3.15 (s, 1H, H₁), 7.13 (s, 2H, H₇ and H₈), 7.49 (s, 4H, H₄ and H₅), 7.54 (s, 4H, H₁₀ and H₁₁), 7.66 (d, J_{HH} = 7 Hz, 2H, H₁₆), 8.23 (d, J_{HH} = 7 Hz, 2H, H₁₇).

Synthesis of 4-BrCH₂C₆H₄CHO(CH₂)₃O (7). 1,3-Propandiol (0.5 mL, 6.96 mmol) and 4-MeC₆H₄SO₃H (60 mg, 0.32 mmol) were added to a solution of 4-BrCH₂C₆H₄CHO (473 mg, 2.37 mmol) in toluene (40 mL). The mixture was stirred under reflux for 4 h with the use of a Dean-Stark apparatus, then cooled and washed once with aqueous NaOH, twice with water, and then dried with MgSO₄. The organic phase was taken to dryness to afford a yellowish crude product, which was purified by column chromatography on silica, eluting with a gradient polarity eluent (petrol/CH₂Cl₂ 2:1, petrol/CH₂Cl₂ 1:1). Reduction in volume of the solvent on a rotary evaporator afforded **7** as a white solid (450 mg, 74%). EI MS: 255 ([M – H]⁺, 20), 197 ([M – O(CH₂)₃ – H]⁺, 15), 177 ([M – Br]⁺, 100). Anal. Calcd for C₁₁H₁₃BrO₂: C, 51.38; H, 5.10. Found: C, 51.38; H, 5.38. UV-vis (CH₂Cl₂): 36400 [0.06]. IR (CH₂Cl₂): 1684 ν (O-C-O); 1607 ν (C=C). ¹H NMR: δ 1.45 (m, 1H, H_{20,eq}), 2.22 (m, 1H, H_{20,ax}), 3.99 (m, 2H, H_{19,ax}), 4.27 (m, 2H, H_{19,eq}), 4.48 (s, 2H, H₈), 5.49 (s, 1H, H₁₃), 7.42 (AA'BB', 4H, H₁₀ and H₁₁). ¹³C NMR: δ 25.8 (C₂₀), 33.2 (C₈), 67.4 (C₁₉), 101.1 (C₁₃), 126.5 (C₁₁), 129.0 (C₁₀), 138.3 (C₉), 138.9 (C₁₂).

Synthesis of 4-(EtO)₂(**O**)**PCH**₂**C**₆**H**₄**CHO**(**CH**₂)₃**O** (**8**). P(OEt)₃ (1.5 mL, 8.75 mmol) was added to **9** (400 mg, 1.56 mmol) in a Schlenk tube and the mixture was stirred under reflux overnight. The excess of P(OEt)₃ was removed affording **8** as a colorless oil (488 mg, 100%). EI MS: 313 ([M]⁺, 80), 197 ([M – 2Et]⁺, 60). HR EI MS [C₁₅H₂₂O₅P] ([M – H]⁺): calcd 313.1205, found 313.1202. UV-vis (CH₂Cl₂): 35500 [0.9]. IR (CH₂Cl₂): 1714 ν (O-C-O); 1609 ν (C=C). ¹H NMR: δ 1.22 (t, *J*_{HH} = 7 Hz, 6H, CH₃), 1.45 (m, 1H, H_{20,eq}), 2.21 (m, 1H, H_{20,ax}), 3.14 (d, *J*_{PH} = 22 Hz, 2H, H₈), 3.90-4.10 (m, 6H, CH₂ and H_{19,ax}), 4.26 (m, 2H, H_{19,eq}), 5.48 (s, 1H, H₁₃), 7.28 (dd, *J*_{HH} = 8 Hz, *J*_{PH} = 2 Hz, 2H, H₁₀), 7.41 (d, *J*_{HH} = 8 Hz, 2H, H₁₁). ¹³C NMR: δ 16.4 (d, *J*_{CP} = 23 Hz, CH₃), 25.8 (C₂₀), 33.6 (d, *J*_{CP} = 548 Hz, C₈), 62.1 (d, *J*_{CP} = 25 Hz, CH₂), 67.4 (C₁₉), 101.4 (C₁₃), 126.2 (d, *J*_{CP} = 13 Hz, C₁₁), 129.7 (d, *J*_{CP} = 25 Hz, C₁₀), 132.3 (d, *J*_{CP} = 35 Hz, C₉), 137.4 (C₁₂). ³¹P NMR: δ 26.7.

Synthesis of (*E*)-4,4'-HC α CC₆H₄CH=CHC₆H₄CHO(CH₂)₃O (9). Solid NaOMe (excess) was added to a solution of 8 (301 mg, 0.96 mmol) in THF (20 mL) and the mixture was stirred at 0°C for 30 min. 4-Me₃SiC α CC₆H₄CHO (195 mg, 0.96 mmol) was added and the mixture was stirred at 0°C for 30 min and at room temperature for a further 30 min. H₂O (30 mL) and MeOH (12 mL) were added to the mixture to afford a yellow precipitate, which was collected, washed (H₂O/MeOH mixture) and dried in vacuo to afford **9** as a pale yellow powder (150 mg, 54%). EI MS: 290 ([M]⁺, 100), 232 ([M – O(CH₂)₃]⁺, 75). HR EI MS C₂₀H₁₈O₂ ([M]⁺): calcd 290.1307, found 290.1307. Anal. Calcd for C₂₀H₁₈O₂.0.2CH₂Cl₂: C, 78.82; H, 6.48. Found: C, 78.75; H, 6.35. UV-vis (thf): 29200 sh [2.8], 30600 [4.3], 32000 sh [3.7], 34800 sh [2.0]. IR (CH₂Cl₂): 2106 ν (C α C); 1602 ν (C=C). ¹H NMR: δ 1.45 (m, 1H, H_{20,eq}), 2.24 (m, 1H, H_{20,ax}), 3.13 (s, 1H, H₁), 4.00 (m, 2H, H_{19,ax}), 4.28 (m, 2H, H_{19,eq}), 5.28 (s, 0.4H, CH₂Cl₂), 5.51 (s, 1H, H₁), 7.07 (d, *J*_{HH} = 16 Hz, 1H, H₈), 7.13 (d, *J*_{HH} = 16 Hz, 1H, H₇), 7.47 (s, 4H, H₄ and H₅), 7.49 (AA'BB', 4H, H₁₀ and H₁₁). ¹³C NMR: δ 25.8 (C₂₀), 67.5 (C₁₉), 78.0 (C₂), 83.8 (C₁), 101.4 (C₁₃), 121.1 (C₃), 126.4, 126.5, 126.6 (C₅, C₁₀, C₁₁), 128.1, 129.6 (C₇, C₈), 132.5 (C₄), 137.5, 137.8, 138.4 (C₆, C₉, C₁₂).

Synthesis of (*E***)-4,4'-HCαCC₆H₄CH=CHC₆H₄CHO (10). HCl (9% w/w) (1 mL) was added to a solution of 9** (130 mg, 0.45 mmol) in acetone (20 mL). The mixture was stirred at room temperature for 24 h. The reaction mixture was treated with distilled water (30 mL) and extracted with Et₂O (2 × 30 mL). The organic phase was washed with aqueous NaHCO₃, H₂O and dried with MgSO₄. Reduction in volume of the solvent on a rotary evaporator afforded **10** as a yellow solid (101 mg, 94%). EI MS: 232 ([M]⁺, 100), 202 ([M – CH₂O]⁺, 70). HR EI MS C₁₇H₁₂O ([M]⁺): calcd 232.0888, found 232.0892. UV-vis (CH₂Cl₂): 30600 [1.4]. IR (CH₂Cl₂): 2106 ν(CαC); 1698 ν(C=O); 1599 ν(C=C). ¹H NMR: δ3.16 (s, 1H, H₁), 7.20 (AB, 2H, H₇ and H₈), 7.51 (s, 4H, H₄ and H₅), 7.66 (d, *J*_{HH} = 8 Hz, 2H, H₁₀), 7.88 (d, *J*_{HH} = 8 Hz, 2H, H₁₁). ¹³C NMR: δ78.5 (C₁), 83.5 (C₂), 122.0 (C₃), 126.8, 127.1 (C₅, C₁₀), 128.5, 131.3 (C₇, C₈), 130.3 (C₁₁), 132.6 (C₄), 135.6 (C₆), 137.0 (C₁₂), 143.0 (C₉), 191.6 (C₁₃).

Synthesis of (E,E)-4,4',4''-HC α CC₆H₄CH=CHC₆H₄CH=CHC₆H₄NO₂ (11). Solid NaOMe (excess) was added to a solution of 4-(EtO)₂(O)PCH₂C₆H₄NO₂ (110 mg, 0.40 mmol) in THF (30 mL) and the purple solution was stirred at 0°C for 15 min. **10** (95 mg, 0.40 mmol) was added and the mixture stirred at 0°C for 20 min and then at room temperature for a further 20 min. H₂O (30 mL) and MeOH

(12 mL) were added to the mixture to afford a yellow precipitate. This was collected, washed (H₂O/MeOH mixture) and dried in vacuo to afford **11** as a yellow solid, which was recrystallized from CH₂Cl₂/MeOH mixtures (115 mg, 83%). EI MS: 351 ([M]⁺, 20). HR EI MS $[C_{24}H_{17}NO_2]^+$ ([M]⁺): calcd 351.1259, found 351.1255. Anal. Calcd for C₂₄H₁₇NO₂.0.33CH₂Cl₂: C, 76.97; H, 4.69; N, 3.69. Found: C, 76.62; H, 4.81; N, 3.50. UV-vis (CH₂Cl₂): 25600 [3.9]. IR (CH₂Cl₂): 2106 ν (C α C); 1604, 1592 ν (C=C); 1519, 1344 ν (NO₂). ¹H NMR: δ 3.15 (s, 1H, H₁), 5.28 (s, 0.67H, CH₂Cl₂), 7.13 (s, 2H, H₇ and H₈), 7.20 (AB, 2H, H₁₃ and H₁₄), 7.49 (s, 4H, H₄ and H₅), 7.55 (s, 4H, H₁₀ and H₁₁), 7.65 (d, *J*_{HH} = 9 Hz, 2H, H₁₆), 8.23 (d, *J*_{HH} = 9 Hz, 2H, H₁₇).

Synthesis of *trans*-[**Ru**{(*E*)-4,4',4''-CαCC₆**H**₄CαCC₆**H**₄CH=CHC₆**H**₄NO₂}Cl(dppm)₂] (13). *cis*-[RuCl₂(dppm)₂] (162 mg, 0.17 mmol) and NaPF₆ (29 mg, 0.17 mmol) were added to a suspension of **4** (60 mg, 0.27 mmol) in CH₂Cl₂ (35 mL). The orange mixture was stirred at room temperature overnight. NEt₃ (1 mL) was added and the red mixture stirred at room temperature for 24 h. The reaction mixture was purified by passing through a short pad of alumina, eluting with CH₂Cl₂/petrol/NEt₃ (10:10:1). Reduction in volume of the solvent on a rotary evaporator afforded **13** as a purple powder (95 mg, 44%). ESI MS: 1255 ([M + H]⁺, 60), 1219 ([M - Cl]⁺, 100), 905 ([RuCl(dppm)₂]⁺, 50)⁺. Anal. Calcd for C₇₄H₅₈ClNO₂P₄Ru.0.67CH₂Cl₂: C, 68.45; H, 4.56; N, 1.07. Found: C, 68.44; H, 4.88; N, 1.11. UV-vis (CH₂Cl₂): 22700 sh [1.1], 26700 [2.6]. IR (KBr): 3050 ν(H-C=C); 2067 ν(RuCαC). ¹H NMR: δ 4.91 (m, 4H, PCH₂), 5.28 (s, 1.3H, CH₂Cl₂), 6.00 (d, *J*_{HH} = 8 Hz, 2H, H₄), 7.05-7.51 (m, 48H, H₅, H₁₀, H₁₁, H₁₃, H₁₄ and Ph), 7.66 (d, *J*_{HH} = 9 Hz, 2H, H₁₆), 8.25 (d, *J*_{HH} = 9 Hz, 2H, H₁₇). ¹³C NMR: δ 50.5 (CH₂), 89.4 (C₁, C₂), 93.0 (C₇, C₈), 124.5 (C₁₇), 124.6 (C₉), 126.9 (C₃, C₆), 127.2 (C₁₁), 127.8, 132.0, 133.9 (PPh), 132.9 (C₁₀), 133.6 (C4, C₅), 143.9 (C₁₅), 147.0 (C₁₈), 135.6 (C₁₂). ³¹P NMR: δ-5.94.

Synthesis of *trans*-[Ru{(*E*)-4,4',4''-C α CC₆H₄CH=CHC₆H₄C α CC₆H₄NO₂}Cl(dppe)₂] (14). *cis*-[RuCl₂(dppe)₂] (461 mg, 0.48 mmol) and NaPF₆ (80 mg, 0.48 mmol) were added to a suspension of **6** (166 mg, 0.48 mmol) in CH₂Cl₂ (50 mL). The orange mixture was stirred at room temperature overnight. NEt₃ (1 mL) was added and the red mixture stirred at room temperature for 2 h. The reaction

mixture was purified by passing through a short pad of alumina, eluting with CH₂Cl₂/petrol/NEt₃ (10:10:1). Reduction in volume of the solvent on a rotary evaporator afforded **14** as a purple powder (530 mg, 87%). ESI MS: 1247 ([M – Cl]⁺, 80), 898 ([Ru(dppe)₂]⁺, 10). Anal. Calcd for C₇₆H₆₂ClNO₂P₄Ru.0.67CH₂Cl₂: C, 68.80; H, 4.77; N, 1.05. Found: C, 68.97; H, 5.30; N, 1.09. UV-vis (CH₂Cl₂): 22000 [3.0], 26700 [3.2], 35300 sh [5.5], 36200 [5.9]. IR (CH₂Cl₂): 2062 ν (RuCαC); 1587 ν (C=C). ¹H NMR: δ 2.69 (m, 8H, PCH₂), 5.28 (s, 1.3H, CH₂Cl₂), 6.64 (d, *J*_{HH} = 8 Hz, 2H, H₄), 6.90-7.60 (m, 48H, H₅, H₇, H₈, H₁₀, H₁₁ and Ph), 7.68 (d, *J*_{HH} = 9 Hz, 2H, H₁₆), 8.24 (d, *J*_{HH} = 9 Hz, 2H, H₁₇). ¹³C NMR: δ 30.7 (PCH₂), 88.4, 95.4 (C₁₃, C₁₄), 114.9 (C₂), 120.2 (C₁), 127.1 (d, *J*_{CP} = 20 Hz), 128.9, 134.4 (d, *J*_{CP} = 8 Hz), 136.0 (m) (PPh), 123.7, 125.2, 126.1, 126.3, 130.4, 130.7, 132.2, 132.3 (C₄, C₅, C₇, C₈, C₁₀, C₁₁, C₁₆, C₁₇), 128.7, 130.5, 131.1 (C₃, C₆, C₁₂), 139.1 (C₁₅), 146.9 (C₁₈), C₉ not observed. ³¹P NMR: δ 50.0.

Synthesis of *trans*-[**Ru**{(*E*)-4,4',4''-CαCC₆**H**₄**CH**=CHC₆**H**₄CαCC₆**H**₄NO₂}Cl(dppm)₂] (15). *cis*-[RuCl₂(dppm)₂] (162 mg, 0.17 mmol) and NaPF₆ (29 mg, 0.17 mmol) were added to a suspension of **6** (60 mg, 0.17 mmol) in CH₂Cl₂ (50 mL). The orange mixture was stirred at room temperature overnight. NEt₃ (1 mL) was added and the red mixture stirred at room temperature for 2 h. The reaction mixture was purified by passing through a short pad of alumina, eluting with CH₂Cl₂/petrol/NEt₃ (10:10:1). Reduction in volume of the solvent on a rotary evaporator afforded **15** as a purple powder (123 mg, 57%). ESI MS: 1255 ([M + H]⁺, 100), 1219 ([M - Cl]⁺, 50), 905 ([RuCl(dppm)₂]⁺, 100)⁺. Anal. Calcd for C₇₄H₅₈ClNO₂P₄Ru.0.33CH₂Cl₂: C, 69.65; H, 4.61; N, 1.09. Found: C, 69.52; H, 4.82; N, 1.24. UV-vis (CH₂Cl₂): 22300 [4.9], 26500 [4.9]. IR (KBr): 3051 *ν*(H-C=C), 2059 *ν*(RuCαC). ¹H NMR: *δ* 4.92 (m, 4H, PCH₂), 5.28 (s, 0.67H, CH₂Cl₂), 6.07 (d, *J*_{HH} = 8 Hz, 2H, H₄), 6.90-7.54 (m, 48H, H₅, H₇, H₈, H₁₀, H₁₁, and Ph), 7.67 (d, *J*_{HH} = 9 Hz, 2H, H₁₆), 8.24 (d, *J*_{HH} = 9 Hz, 2H, H₁₇). ¹³C NMR: *δ* 53.0 (CH₂), 88.5 (C₁, C₂), 95.6 (C₇, C₈), 120.3 (C₉), 123.9 (C₁₇), 124.9 (C₃, C₆), 125.7 (C₁₁), 126.4 (C₁₀), 127.8, 129.5, 133.9 (PPh), 132.4 (C₄, C₅), 134.4 (C₁₂), 139.4 (C₁₅), 147.1 (C₁₈). ³¹P NMR: *δ* -5.90.

Synthesis of *trans*-[Ru{(E,E)-4,4',4''-C α CC₆H₄CH=CHC₆H₄CH=CHC₆H₄NO₂]Cl(dppe)₂] (16).

cis-[RuCl₂(dppe)₂] (263 mg, 0.27 mmol) and NaPF₆ (46 mg, 0.27 mmol) were added to a suspension of **11** (96 mg, 0.27 mmol) in CH₂Cl₂ (35 mL). The dark orange mixture was stirred at room temperature overnight. NEt₃ (1 mL) was added and the red mixture stirred at room temperature for 24 h. The reaction mixture was purified by passing through a short pad of alumina, eluting with CH₂Cl₂/petrol/NEt₃ (10:10:1). Reduction in volume of the solvent on a rotary evaporator afforded **16** as a purple powder (125 mg, 36%). ESI MS: 1247 ([M – Cl]⁺, 30), 898 ([Ru(dppe)₂]⁺, 10). Anal. Calcd for C₇₆H₆₄ClNO₂P₄Ru.2CH₂Cl₂: C, 64.44; H, 4.71; N, 0.96. Found: C, 64.29; H, 5.17; N, 0.99. UV-vis (CH₂Cl₂): 21800 [1.6], 26100 [2.2], 35300 sh [6.2], 36200 [6.6]. IR (CH₂Cl₂): 2066 *v*(RuCαC); 1598, 1587 *v*(C=C). ¹H NMR: δ 2.69 (m, 8H, CH₂), 5.28 (s, 4H, CH₂Cl₂), 6.64 (d, *J*_{HH} = 8 Hz, 2H, H₄), 6.95-7.54 (m, 50H, H₅, H₇, H₈, H₁₀, H₁₁, H₁₃, H₁₄ and Ph), 7.65 (d, *J*_{HH} = 9 Hz, 2H, H₁₆), 8.23 (d, *J*_{HH} = 9 Hz, 2H, H₁₇). ¹³C NMR: δ 30.7 (CH₂), 114.9 (C₁), 124.2 (C₁₇), 125.5, 125.7 (C₇, C₈), 126.0, 126.7, 126.8, 127.5 (C₅, C₁₀, C₁₁, C₁₆), 127.1 (d, *J*_{CP} = 20 Hz), 129.0, 134.4 (d, *J*_{CP} = 9 Hz), 136.0 (m) (PPh), 129.9, 133.1 (C₁₃, C₁₄), 130.5 (C₄), 134.9 (C₆), 131.37 (2C, C₉, C₁₂), 138.7 (C₃), 144.1 (C₁₅), 146.7 (C₁₈), C₂ not observed. ³¹P NMR: δ 50.0.

Synthesis of *trans*-[Ru{(*E,E*)-4,4',4''-C α CC₆H₄CH=CHC₆H₄CH=CHC₆H₄NO₂)Cl(dppm)₂] (17). *cis*-[RuCl₂(dppm)₂] (263 mg, 0.27 mmol) and NaPF₆ (46 mg, 0.27 mmol) were added to a suspension of 11 (96 mg, 0.27 mmol) in CH₂Cl₂ (35 mL). The dark orange mixture was stirred at room temperature overnight. NEt₃ (1 mL) was added and the red mixture stirred at room temperature for 24 h. The reaction mixture was purified by passing through a short pad of alumina, eluting with CH₂Cl₂/petrol/NEt₃ (10:10:1). Reduction in volume of the solvent on a rotary evaporator afforded **17** as a purple powder (90 mg, 46%). ESI MS: 1256 ([M]⁺, 50), 905 ([RuCl(dppm)₂]⁺, 100). Anal. Calcd for C₇₄H₆₀ClNO₂P₄Ru.CH₂Cl₂: C, 67.19; H, 4.66; N, 1.04. Found: C, 66.93; H, 5.31; N, 1.17. UV-vis (CH₂Cl₂): 21700 [1.5], 25800 [1.7]. IR (KBr): 3048 ν (H-C=C); 2066 ν (RuC α C). ¹H NMR: δ 4.91 (m, 4H, PCH₂), 5.28 (s, 2H, CH₂Cl₂), 6.06 (d, *J*_{HH} = 8 Hz, 2H, H₄), 6.96-7.50 (m, 50H, H₅, H₇, H₈, H₁₀, H₁₁,

H₁₃, H₁₄ and Ph), 7.64 (d, $J_{\text{HH}} = 9$ Hz, 2H, H₁₆), 8.24 (d, $J_{\text{HH}} = 9$ Hz, 2H, H₁₇). ¹³C NMR: δ 53.2 (CH₂), 94.3 (C₇, C₈), 124.4 (C₉), 125.7 (C₃, C₆), 126.8 (C₁₇), 131.2 (C₁₁), 127.8, 129.5, 133.9 (PPh), 127.8 (C₄, C₅), 130.4 (C₁₀), 133.6 (C₁₂), 139.0 (C₁₅), 147.0 (C₁₈). ³¹P NMR: δ -5.41.

trans-[Ru(4,4',4''-CaCC₆H₄CaCC₆H₄CaCC₆H₄NO₂)Cl(dppe)₂] **Synthesis** of (18). cis-[RuCl₂(dppe)₂] (160 mg, 0.16 mmol) and NaPF₆ (28.4 mg, 0.17 mmol) were added to a suspension of 4,4',4"-HC α CC₆H₄C α CC₆H₄C α CC₆H₄NO₂ (55 mg, 0.16 mmol) in CH₂Cl₂ (40 mL). The orange mixture was stirred at room temperature overnight. NEt₃ (1 mL) was added and the red mixture obtained was stirred at room temperature for 2 h. The reaction mixture was concentrated and purified by column chromatography on alumina, eluting with CH_2Cl_2 /petrol/NEt₃ (10:10:1). Reduction in volume of the solvent afforded **18** as a red powder (170 mg, 84%). ESI MS: 1245 ($[M - Cl]^+$, 60), 898 ($[Ru(dppe)_2]$, 10). Anal. Calcd for C₇₆H₆₀ClNO₂P₄Ru.0.25CH₂Cl₂: C, 70.40; H, 4.69; N, 1.08. Found: C, 70.21; H, 5.05; N, 1.40. UV-vis (CH₂Cl₂): 23100 sh [2.3], 27300 [3.8]. IR (CH₂Cl₂): 2059 cm⁻¹ v(RuCαC). ¹H NMR: $\delta 2.68$ (m, 8H, CH₂), 5.28 (s, 0.5H, CH₂Cl₂), 6.53 (d, $J_{\text{HH}} = 7$ Hz, 2H, H₄), 6.92-7.49 (m, 46H, H₅, H₁₀, H₁₁, Ph), 7.68 (d, $J_{\text{HH}} = 9$ Hz, 2H, H₁₆), 8.24 (d, $J_{\text{HH}} = 9$ Hz, 2H, H₁₇). ¹³C NMR: δ 30.6 (CH₂), 89.1 (C₂), 92.9 (C₇, C₈, C₁₃, C₁₄), 123.7 (C₁₇), 124.8 (C₃, C₆), 127.1 (d, $J_{CP} = 17$ Hz), 128.8, 134.3 (d, $J_{CP} = 17$ Hz), 136.0 (m) (PPh), 130.5 (C₄), 130.9 (C₁₅), 131.4 (C₄, C₅), 131.8 (C₁₀, C₁₁), 132.3 (C₁₆), 147.0 (C₁₈), C₁, C₉, C₁₂ not observed. ³¹P NMR: δ 49.7.

Synthesis of *trans*-[Ru(4,4'-C α CC₆H₄C α CC₆H₄NO₂)Cl(dppe)₂] (19). *cis*-[RuCl₂(dppe)₂] (360 mg, 0.37 mmol) and NaPF₆ (68.5 mg, 0.41 mmol) were added to a solution of 4,4'-HC α CC₆H₄C α CC₆H₄NO₂ (91.7 mg, 0.37 mmol) in CH₂Cl₂ (35 mL). The red solution was stirred at room temperature overnight. NEt₃ (1 mL) was added and the deep red mixture stirred at room temperature for 1 h. The reaction mixture was purified by passing through a short pad of alumina, eluting with CH₂Cl₂/petrol/NEt₃ (10:10:1). Reduction in volume of the solvent on a rotary evaporator afforded **16** as a purple powder (400 mg, 92%). ESI MS: 1145 ([M – Cl]⁺, 60), 898 ([Ru(dppe)₂], 20). Anal. Calcd for C₆₈H₅₆NO₂P₄RuCl.0.25CH₂Cl₂: C, 68.26; H, 4.47; N, 1.17. Found: C, 68.28; H, 4.96;

N, 1.30. UV-vis (CH₂Cl₂): 21400 [1.8], 28600 [2.6]. IR (CH₂Cl₂): 2056 cm⁻¹ v(RuC α C). ¹H NMR: δ 2.69 (m, 8H, CH₂), 5.28 (s, 0.5H, CH₂Cl₂), 6.55 (d, *J*_{HH} = 7 Hz, 2H, H₄), 6.92-7.59 (m, 42H, H₅, Ph), 7.68 (d, *J*_{HH} = 8 Hz, 2H, H₁₆), 8.24 (d, *J*_{HH} = 8 Hz, 2H, H₁₇). ¹³C NMR: δ 30.6 (CH₂), 88.1 (C₁), 96.7 (C₂), 105.9 (C₁₃, C₁₄), 123.6 (C₁₇), 127.1 (d, *J*_{CP} = 17 Hz), 128.8, 134.3 (d, *J*_{CP} = 17 Hz) (PPh), 130.0 (C₃), 130.9 (C₁₅), 131.2 (C₄, C₅), 131.8 (C₁₆), 146.5 (C₁₈). ³¹P NMR: δ 49.7.