Zhang et al 2009

Facilitated Assignment of Adenine H2 Resonances in Oligonucleotides using Homonuclear Long-range Couplings

Jin Zhang, Alexander Spring \& Markus W. Germann

Complete Ref. 15

15. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;
Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;

Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

Figure S1. A) DFT spin-spin calculations: 2'-endo deoxyadenosine was optimized with Gaussian03 utilizing HF/6-31G [15]. NMR shielding and spin-spin calculations were obtained using B3LYP and a $6-31 \mathrm{G}^{* *}$ basis set with the polarizable continuum model and the UA0 cavity for water effects [16, 17]. Couplings from H 2 are shown in the figure; couplings from H8 to sugar protons are as follows: H1' (-0.80 Hz) H3' $(0.00 \mathrm{~Hz}) \mathrm{H} 5^{\prime}(0.41 \mathrm{~Hz}), \mathrm{H} 5^{\prime \prime}(0.75 \mathrm{~Hz})$ B) 500 MHz long range optimized COSY spectrum of a $50 \mathrm{mM} 5^{\prime}$-AMP sample in $99.99 \% \mathrm{D}_{2} \mathrm{O}, 10 \mathrm{mM}$ sodium phosphate, 0.5 mM EDTA, $\mathrm{pH}^{*} 6.6$ recorded at 298 K with long-range evolution delay of 300 ms and a 10 s relaxation delay. NMR experiments were recorded on Bruker Avance 500 using a 5 mm TBI probe. A 1024×128 data point matrix was acquired in a spectral window of $3.0 \times 3.0 \mathrm{ppm}$ using 8 scans. Data was processed using a sine window function ($\mathrm{SSB}=$ 0) in F1 and F2 and the spectrum is displayed in magnitude mode.

Figure S2. 500 MHz expansion of he XLOC [13] spectrum of a $200 \mathrm{mM} 5^{\prime}$-AMP in $99.99 \% \mathrm{D}_{2} \mathrm{O}, 10 \mathrm{mM}$ sodium phosphate, 0.5 mM EDTA, $\mathrm{pH}^{*} 6.6$ recorded at 298 K using a first order low-pass J filter with a 1.5 s relaxation delay and an excitation delay of 0.343 s [10]. A $2 \mathrm{~K} \times 512$ matrix was acquired in a spectral window of 4 x 90 ppm with 16 scans per increment. For processing the window functions were cosine in T_{1} and sine in T_{2}. NMR experiments were recorded on Bruker Avance 500 using a 5 mm TBI probe.

Figure S3. Dependence of cross peak intensity (A6 in Figure 2) on the TOCSY mixing time for the decamer DNA duplex. NMR experiments were recorded on Bruker Avance 600 using a 5mm QXI probe. Transfer H8 (t 1)->H2 (t2)

Figure S4 H1'-base region of a 600 MHz NOESY spectrum of the 0.75 mM hairpin recorded at $298 \mathrm{~K}\left(99.99 \% \mathrm{D}_{2} \mathrm{O}, 10\right.$ mM sodium phosphate buffer, 0.1 mM EDTA $50 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}^{*} 6.84$) with a mixing time of 200 ms and a relaxation delay of 8 s . Intraresidue H1' connectivities are indicated in red, while cross strand NOE's are show in blue. Black denotes NOE's to loop cytosines. Note that the intraresidue connectivity is very weak and in some cases (A16) absent. For A7, next to the hairpin loop, several weak and several medium NOEs are obtained that are structurally important.

