Efficient Diastereoselective Synthesis of Trifarane-type Sesquiterpenes, Trifarienols A and B #### Kazunori Takahashi, Ryuichi Akao, and Toshio Honda* Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142-8501, Japan honda@hoshi.ac.jp ### **Supporting Information** | 1) General Experimental Procedures | S-2 | |--|-----| | (3R)-3-[(1S, 4S)-1,4-Dimethyl-2-oxocyclohexyl]butyl benzoate and (3S)- | | | 3-[(1S, 4S)-1,4-Dimethyl-2-oxocyclohexyl]butyl benzoate (4) | S-3 | | $(3R) - 3 - \{[(1S, 4S) - 1, 4 - Dimethyl - 2 - (trimethyl silyl) oxy] cyclohex - 2 - en - 1 - yl\} butyl benzoate$ | | | and (3S)-3- $\{[(1S, 4R)-1, 4-Dimethyl-2-(trimethylsilyl)oxy]cyclohex-2-en-1-yl\}$ butyl | | | benzoate (5). | S-3 | | (3R)-3-{(1S)-1,4-Dimethyl-2-oxocyclohex-3-en-1-yl} butyl benzoate (6) | S-4 | | $(3R)$ -3- $\{(1S, 4S)$ -1,4-Dimethyl-2- oxo-4-vinylcyclohexyl $\}$ butyl benzoate and $(3R)$ - | | | 3-{(1S, 4R)-1,4-Dimethyl-2-oxo-4-vinylcyclohexyl} butyl benzoate (7) | S-4 | | $(3R) - 3 - ((1S,4R)1,4 - dimethyl - 2 - \{[(trifluoromethyl)sulfonyl]oxy\} - 4 - vinylcyclohex - (2R) (2R$ | | | 2-en-1-yl)butyl benzoate and $(3R)$ -3- $((1S,4S)$ -1,4-Dimethyl-2- | | | {[(trifluoromethyl)sulfonyl]oxy}-4-vinylcyclohex-2-en-1-yl)butyl benzoate | (8) | | S-5 | | | 2) NMR spectra | | | ¹ H NMR Spectrum of 4 | S-7 | | ¹³ C NMR Spectrum of 4 | S-8 | | ¹ H NMR Spectrum of 5 | S-9 | |---|------| | ¹³ C NMR Spectrum of 5 | S-10 | | ¹ H NMR Spectrum of 6 | S-11 | | ¹³ C NMR Spectrum of 6 | S-12 | | ¹ H NMR Spectrum of 7 | S-13 | | ¹³ C NMR Spectrum of 7 | S-14 | | ¹ H NMR Spectrum of 8 | S-15 | | ¹³ C NMR Spectrum of 8 | S-16 | | ¹ H NMR Spectrum of 9 | S-17 | | ¹³ C NMR Spectrum of 9 | S-18 | | ¹ H NMR Spectrum of 10 | S-19 | | ¹³ C NMR Spectrum of 10 | S-20 | | ¹ H NMR Spectrum of 11 | S-21 | | ¹³ C NMR Spectrum of 11 | S-22 | | ¹ H NMR Spectrum of 12 | S-23 | | ¹³ C NMR Spectrum of 12 | S-24 | | ¹ H NMR Spectrum of 13 | S-25 | | ¹³ C NMR Spectrum of 13 | S-26 | | ¹ H NMR Spectrum of 14 | S-27 | | ¹³ C NMR Spectrum of 14 | S-28 | | ¹ H NMR Spectrum of 15 | S-29 | | ¹³ C NMR Spectrum of 15 | S-30 | | ¹ H NMR Spectrum of 16 | S-31 | | ¹³ C NMR Spectrum of 16 | S-32 | | ¹ H NMR Spectrum of 17 | S-33 | | ¹³ C NMR Spectrum of 17 | S-34 | | NMR Spectrum of 1 | S-35 | | ¹³ C NMR Spectrum of 1 | S-36 | | ¹ H NMR Spectrum of 2 | S-37 | | ¹³ C NMR Spectrum of 2 | S-38 | General Experimental Procedures. Melting points were measured with a melting point apparatus and are uncorrected. IR spectra were recorded as thin films on sodium chloride plates. Otherwise noted, 1 H and 13 C NMR spectra were obtained for solutions in CDCl₃, and chemical shifts are reported on the δ scale using TMS as an internal standard of δ 0.00 for 1 H-NMR spectra, and CDCl₃ as an internal standard or δ 77.00 for 13 C NMR spectra, respectively (1 H-NMR: 400 MHz, 13 C NMR: 100 MHz). Reagents were purchased from commercial sources. ## (3R)-3-[(1S, 4S)-1,4-Dimethyl-2-oxocyclohexyl]butyl benzoate and (3S)-3-[(1S, 4S)-1,4-Dimethyl-2-oxocyclohexyl]butyl benzoate (4). To a stirred suspension of CuI (1.20 g, 6.51 mmol) in dry Et₂O (6 mL), was added MeLi (1.09 M Et₂O solution) (12 mL) (13 mmol) at -40 °C under Ar, and the resulting mixture was stirred for 20 min. To this mixture was added a solution of enone **3** (620 mg, 2.17 mmol) in Et₂O (4 mL) at -78 °C, and the whole was stirred at -40 °C for further 1 h. After addition of saturated aq. ammonium chloride, the mixture was extracted with AcOEt. The extract was washed with brine and dried over Na₂SO₄. Evaporation of the solvent gave a residue, which was subjected to column chromatography on silica gel. Elution with *n*-hexane-AcOEt (7:1, v/v) afforded a diastereoisomeric mixture of ketone **4** (611 mg, 93%) as a colorless oil. (3*R*)-3-[(1*S*, 4*S*)-1,4-Dimethyl-2-oxocyclohexyl]butyl benzoate (major): IR vmax 2954, 1720, 1704 cm⁻¹; 1 H-NMR (CDCl₃; 400 MHz) δ 8.01-8.05 (2H, m), 7.54-7.58 (1H, m), 7.42-7.46 (2H, m), 4.28-4.36 (2H, m), 2.25-2.32 (2H, m), 2.13-2.20 (1H, m), 2.02-2.07 (1H, m), 1.71-1.81 (1H, m), 1.29-1.65 (5H, m), 0.97 (3H, d, *J*=6.6 Hz), 0.95 (3H, d, *J*=6.4 Hz), 0.89 (3H, s); 13 C-NMR (CDCl₃; 100 MHz) δ 216.0, 166.4, 132.9, 130.1, 129.4 (2), 128.3 (2), 63.3, 51.3, 46.8, 36.4, 35.5, 31.5, 30.8, 28.8, 22.2, 16.21, 12.3; MS (EI): 302 (M⁺); HRMS (EI): Calcd for C₁₉H₂₆O₃: 302.1882. Found: 302.1904. (3*R*)-3-[(1*S*, 4*S*)-1,4-Dimethyl-2-oxocyclohexyl]butyl benzoate (minor): 1 H-NMR (CDCl₃; 400 MHz) δ 8.01-8.05 (2H, m), 7.54-7.58 (1H, m), 7.42-7.76 (2H, m), 4.38-4.43 (2H, m), 2.25-2.32 (2H, m), 2.13-2.20 (1H, m), 2.02-2.07 (1H, m), 1.71-1.81 (1H, m), 1.57-1.65 (1H, m), 1.29 -1.50 (4H, m), 0.99 (3H, d, *J*=5.9 Hz), 0.94 (3H, d, *J*=6.7 Hz), 0.89 (3H, s); 13 C- NMR (CDCl₃, 100 MHz) δ 215.5, 166.4, 132.8, 130.3, 129.5 (2), 128.3 (2), 64.0, 50.9, 46.4, 33.8, 33.3, 32.7, 30.7, 28.5, 21.2, 19.7, 14.3. ### (3R)-3-{[(1S, 4S)-1,4-Dimethyl-2-(trimethylsilyl)oxy]-cyclohex-2-en-1-yl}butyl benzoate and (3R)-3-{[(1S, 4R)-1,4-Dimethyl-2-(trimethylsilyl)oxy]-cyclohex-2-en-1-yl}butyl benzoate (5). To a stirred solution of (3*R*)-ketone **4** (6.8 g, 22.5 mmol) in CH₂Cl₂ (140 mL) were added Et₃N (53 ml, 225 mmol) and TMSOTf (16.3 mL, 90 mmol) at 0 °C under Ar, and the resulting mixture was stirred for further 30 min at rt. After treatment with saturated aq. NaHCO₃ at 0 °C, the mixture was extracted with Et₂O-pentane (1:1, v/v). The extract was washed with brine and dried over MgSO₄. Evaporation of the solvent gave a residue, which was purified by column chromatography on silica gel. Elution with n-hexane-AcOEt (20:1, v/v) afforded silyl enol ether **5** (7.9 g, 94%) as a colorless oil. (3*R*)-3-{[(1*S*, 4*S*)-1,4-Dimethyl-2-(trimethylsilyl)oxy]-cyclohex-2-en-1-yl}butyl benzoate (major): IR vmax 2959, 1724, 1653 cm⁻¹; ¹H-NMR (CDCl₃; 400 MHz) δ 8.01-8.06 (2H, m), 7.53-7.57 (1H, m), 7.41-7.46 (2H, m), 4.66 (1H, d, *J*=4.8 Hz), 4.40-4.46 (1H, m), 4.25-4.35 (1H, m), 2.21-2.27 (1H, m), 1.90-2.07 (1H, m), 1.77-1.89 (1H, m), 1.63-1.75 (1H, m), 1.20-1.47 (3H, m), 1.11-1.16 (1H, m), 1.05 (3H, s), 0.96 (3H, d, *J*=7.0 Hz), 0.91 (3H, d, *J*=6.7 Hz), 0.17 (9H, s); ¹³C-NMR (CDCl₃; 100 MHz) δ 166.7, 155.2, 132.7, 130.6, 129.5 (2), 128.3 (2), 108.6, 64.6, 40.9, 35.3, 29.9, 28.73, 26.7, 26.3, 23.8, 21.7, 15.2, 0.3 (3); MS (EI): 374 (M⁺); HRMS (EI): Calcd for C₂₂H₃₄O₃Si: 374.2277. Found: 374.2298. #### (3R)-3-{[(1S, 4R)-1,4-Dimethyl-2-(trimethylsilyl)oxy]cyclohex-2-en-1-yl}butyl benzoate (minor): ¹H-NMR (CDCl₃; 400 MHz) δ 8.01-8.06 (2H, m), 7.53-7.57 (1H, m), 7.41-7.46 (2H, m), 4.52 (1H, s), 4.40-4.46 (1H, m), 4.24-4.35 (1H, m), 2.21-2.27 (1H, m), 1.90-2.07 (1H, m), 1.77-1.89 (1H, m), 1.63 -1.75 (1H, m), 1.20-1.47 (3H, m), 1.11-1.16 (1H, m), 1.07 (3H, s), 0.93 (3H, d, *J*=6.9 Hz), 0.91 (3H, d, *J*=6.7 Hz), 0.17 (9H, m); ¹³C-NMR (CDCl₃, 100 MHz) δ 166.7, 155.2, 132.7, 130.6, 129.5 (2), 128.3 (2), 109.7, 64.5, 40.9, 35.5, 30.4, 29.7, 26.7, 26.3, 24.1, 22.9, 14.7, 0.3 (3). #### (3R)-3- $\{(1S)$ -1,4-Dimethyl-2-oxocyclohex-3-en-1-yl $\}$ butyl benzoate (6). To a stirred solution of silyl enol ether **5** (124 mg, 0.332 mmol) in dry DMSO (2 mL) was added Pd(OAc)₂ (30 mg, 0.133 mmol) at rt, and the mixture was stirred at 80 °C for 20 h under an atmospheric pressure of oxygen. The mixture was treated with H₂O and extracted with AcOEt. The extract was washed with brine and dried over MgSO₄. Evaporation of the solvent gave a residue, which was purified by column chromatography on silica gel. Elution with *n*-hexane-AcOEt (5:1, v/v) afforded enone **6** (74.9 mg, 75%) as a pale yellowish oil: $[\alpha]_D^{22} = +18.3$ (c 0.6, CHCl₃); mp 71-73 °C; IR vmax 2965, 1719, 1663, 1276 cm⁻¹; ¹H-NMR (CDCl₃; 400 MHz) δ 7.99-8.02 (2H, m), 7.53-7.57 (1H, m), 7.41-7.44 (2H, m), 5.77 (1H, d, *J*=1.3 Hz), 4.23-4.38 (2H, m), 1.99-2.35 (4H, m), 1.88 (3H, s), 1.82-1.89 (1H, m), 1.66-1.73 (1H, m), 1.34-1.43 (1H, m), 1.01 (3H, s), 0.97 (3H, d, *J*=6.8 Hz); ¹³C-NMR (CDCl₃; 100 MHz) δ 204.1, 166.5, 159.9, 132.8, 130.3, 129.5 (2), 128.2 (2), 125.4, 63.7, 46.4, 32.3, 30.8, 30.1, 27.9, 23.7, 18.0, 14.6; MS (EI): 300 (M⁺); HRMS (EI): Calcd for C₁₉H₂₄O₃: 300.1725. Found: 300.1748. Anal. Calcd for C₁₉H₂₄O₃: C, 75.97; H, 8.05. Found: C, 75.98, H, 8.17. (3R)-3-{(1S, 4S)-4-Ethenyl-1,4-dimethyl-2- oxocyclohexyl}butyl benzoate and (3R)-3-{(1S, 4R)-4-Ethenyl-1,4-dimethyl-2-oxocyclohexyl}butyl benzoate (7). Vinylmagnesium bromide (1.0 M THF solution) (22 mL, 22 mmol) was added lithium-2-thienylcyanocuprate (0.25 M THF solution) (44 mL, 11.0 mmol) at -78 °C under Ar, and the whole was stirred at 0 °C for 30 min. The mixture was cooled to -78 °C, and a solution of enone 6 (1.1 g, 3.67 mmol) in THF (18 mL) was added to the mixture at the same temperature, and stirred at -40 °C for 12 h. After treatment with saturated aq. ammonium chloride, the mixture was extracted with AcOEt. The organic layer was washed with brine and dried over Na_2SO_4 . Evaporation of the solvent gave a residue, which was subjected to column chromatography on silica gel. Elution with *n*-hexane-AcOEt (9:1, v/v) afforded ketone **7** (1.1 g, 90%) as a colorless oil. (3*R*)-3-{(1*S*, 4*S*)-4-Ethenyl-1,4-dimethyl-2-oxocyclohexyl}butyl benzoate (major): IR vmax 2966, 1719, 1704, 1274 cm⁻¹; 1 H-NMR (CDCl₃; 400 MHz) δ 8.00-8.03 (2H, m), 7.52-7.58 (1H, m), 7.41-7.46 (2H, m), 5.72 (1H, dd, *J*=17.5 and 10.8 Hz), 4.92 (1H, dd, *J*=10.8 and 0.71 Hz), 4.88 (1H, dd, *J*=17.5 and 0.71 Hz), 4.28-4.39 (2H, m), 2.60 (1H, d, *J*=13.8 Hz), 2.19-2.29 (1H, m), 2.15 (1H, dd, *J*=12.2 and 1.5 Hz), 1.91-1.97 (1H, m), 1.78-1.85 (1H, m), 1.41-1.66 (4H, m), 1.00 (3H, s), 0.97 (3H, s), 0.96 (3H, d, *J*=6.6 Hz); 13 C-NMR (CDCl₃; 100MHz) δ 215.4, 166.5, 146.9, 132.9, 130.2, 129.5 (2), 128.4 (2), 111.2, 63.4, 51.1, 48.6, 41.8, 32.3, 31.8, 31.5, 30.7, 25.3, 18.0, 13.2; MS (EI): 328 (M⁺); HRMS (EI): Calcd for C₂₁H₂₈O₃: 328.2038. Found: 328.2044. (3*R*)-3-{(1*S*, 4*R*)-4-Ethenyl-1,4-dimethyl-2-oxocyclohexyl}butyl benzoate (minor): ¹H-NMR (CDCl₃; 400 MHz) δ 8.00-8.03 (2H, m), 7.52-7.58 (1H, m), 7.41-7.46 (2H, m), 5.63 (1H, dd, *J*=17.5 and 11.0 Hz), 5.02 (1H, dd, *J*=11.0 and 0.71 Hz), 4.99 (1H, dd, *J*=17.5 and 0.71 Hz), 4.28-4.39 (2H, m), 2.60 (1H, d, *J*=13.8 Hz), 2.19- 2.41 (1H, m), 2.15 (1H, dd, *J*=12.2 and 1.5 Hz), 1.91-1.97 (1H, m), 1.78-1.85 (1H, m), 1.58-1.66 (1H, m), 1.41-1.54 (3H, m), 0.96 (3H, d, *J*=6.6 Hz), 0.89 (3H, s), 0.89 (3H, s); ¹³C-NMR (CDCl₃; 100MHz) δ 215.4, 166.5, 146.9, 132.9, 130.2, 129.5 (2), 128.4 (2), 111.2, 63.4, 51.1, 48.6, 41.8, 32.3, 31.8, 31.5, 30.7, 25.3, 18.0, 13.2. (3R)-3-((1S,4R)-4-Ethenyl-1,4-dimethyl-2- $\{[(trifluoromethyl)sulfonyl]oxy\}$ -cyclohex-2-en-1-yl)buty l benzoate and (3R)-3-((1S,4S)-4-Ethenyl-1,4-dimethyl-2- $\{[(trifluoromethyl)sulfonyl]oxy\}$ -cyclohex-2-en-1-yl)butyl benzoate (8). To a stirred solution of ketone **7** (158 mg, 0.482 mmol) and Comins reagent (284 mg, 0.723 mmol) in THF (2.4 mL) was gradually added NaHMDS (1.9 M THF solution) (0.3 ml, 0.578 mmol) at -40 °C, and the resulting mixture was stirred at the same temperature for further 12 h. After treatment with saturated aq. ammonium chloride, the mixture was extracted with AcOEt. The organic layer was washed with brine and dried over Na_2SO_4 . Evaporation of the solvent gave a residue, which was subjected to column chromatography on silica gel. Elution with *n*-hexane-AcOEt (95:5, v/v) afforded triflate **8** (153 mg, 69%) as a colorless oil. (3*R*)-3-((1*S*,4*R*)-4-Ethenyl-1,4-dimethyl-2-{[(trifluoromethyl)sulfonyl]oxy}-cyclohex-2-en-1-yl)buty l benzoate (major): IR νmax 2968, 1721, 1453 cm⁻¹; ¹H-NMR (CDCl₃; 400 MHz) δ 8.01-8.03 (2H, m), 7.49-7.55 (1H, m), 7.40-7.44 (2H, m), 5.72 (1H, dd, *J*=17.4 and 10.6 Hz), 5.51 (1H, s), 5.05 (1H, dd, *J*=10.6 and 1.1 Hz), 4.95 (1H, dd, *J*=17.4 and 1.1 Hz), 4.41-4.47 (1H, m), 4.21-4.28 (1H, m), 1.83-2.01 (2H, m), 1.69-1.77 (1H, m), 1.52-1.55 (2H, m), 1.25-1.42 (2H, m), 1.23 (3H, s), 1.15 (3H, s), 0.95 (3H, d, J=6.7 Hz); 13 C-NMR (CDCl₃; 100 MHz) δ 166.4, 154.8, 144.7, 132.8, 130.2, 129.4 (2), 128.3 (2), 123.1, 118.3 (q), 114.2, 63.5, 41.5, 40.3, 35.6, 31.4, 29.4, 28.7, 26.8, 23.1, 14.6; MS (CI): 461 (M+1)⁺, HRMS (CI): Calcd for $C_{22}H_{27}O_5F_3S$ +H: 461.1609. Found: 461.1628. (3*R*)-3-((1*S*,4*S*)-4-Ethenyl-1,4-dimethyl-2-{[(trifluoromethyl)sulfonyl]oxy}-cyclohex-2-en-1-yl)butyl benzoate (minor): ¹H-NMR (CDCl₃; 400 MHz) δ 8.01-8.03 (2H, m), 7.49-7.55 (1H, m), 7.40-7.44 (2H, m), 5.77 (1H, dd, *J*=17.4 and 10.6 Hz), 5.57 (1H, s), 5.05 (1H, dd, *J*=17.4 and 1.1 Hz), 4.95 (1H, dd, *J*=10.6 and 1.1 Hz), 4.41-4.47 (1H, m), 4.21-4.28 (1H, m), 1.83-2.01 (2H, m), 1.69-1.77 (1H, m), 1.52-1.55 (2H, m), 1.25-1.42 (2H, m), 1.20 (3H, s), 1.14 (3H, s), 0.99 (3H, d, *J*=6.8 Hz); ¹³C-NMR (CDCl₃; 100 MHz) δ 166.4, 154.2, 145.8, 132.0, 130.2, 129.9 (2), 128.7 (2), 124.1, 118.3 (q), 112.5, 68.0, 41.3, 39.6, 35.3, 31.6, 29.9, 29.6, 27.4, 25.8, 14.9.