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S1. Detection selectivity for the two differently labeled lysozyme solutions. 

The intensity diagrams in Figures S1.1 and S1.2 show the selectivity in the detection of the 

two differently labeled lysozyme solutions. No instrumental setting was changed between the 

scannings of Figures S1.1 and S1.2.  

 

 

(a)            (b) 

 

Figure S1.1. Emission intensity diagrams, representing a “cut” through the centre of a 

microgel particle, after uptake of Oregon Green 488-labeled lysozyme. Emission intensities 

are registered at (a) 500-530 nm after excitation with 488 nm, and at (b) 650-750 nm after 

excitation with 633 nm. 
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(a)             (b) 

 

Figure S1.2. Emission intensity diagrams, representing the centre layer of a microgel particle, 

after uptake of Alexa Fluor 647-labeled lysozyme. Emission intensities are registered at (a) 

500-530 nm after excitation with 488 nm, and at (b) 650-750 nm after excitation with 633 nm. 

 

 

S2. Derivation of kinetic equations 

For a protein with net charge Z we define an overall protein-to-polymer charge ratio in the 

gel: 
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and a corresponding ratio for the protein in the shell: 
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where npr and   is the number of moles of protein molecules in the whole gel and in the 

shell, respectively, and npol the number of moles of polymer charged groups in the gel. Note, β 

and βshell include only stationary protein molecules. 

shell
prn

 

The volume of the gel in osmotic equilibrium with the solution prior to protein binding can 

be written: 
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where R0 is the initial gel radius, and v0 is the volume per mole of polymer charged groups in 

the gel prior to protein binding. To find a relationship between the gel volume V and the 

number of bound protein molecules we let fshell denote the local polymer-to-protein charge 

ratio in the shell, so that the fraction of polymer located in the shell is fshellβshell. If the volume 

of the shell per mole of polymer charged groups in it is equal to vshell the total shell volume 

equals npolfshellβshellvshell. Thus, the volume of the core is npol(1-fshellβshell)vcore, where vcore is the 

volume per mole of polymer charge, assumed constant throughout the entire core. Since the 

total gel volume is the sum of the shell and core volumes we obtain: 
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where the last term on the r.h.s. is the core volume Vcore normalized by V0: 
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By letting fcdl represent the local polymer-to-protein charge ratio in the core diffusion layer, 

we obtain in a similar way for the protein free part of the core: 
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The steady state transport rate of protein through the core diffusion layer and the shell are 

given by eqs. (S:7) and (S:8), respectively 1, 2: 
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In these expressions, Dcdl is the diffusion constant of the mobile protein in cdl and Dshell
  is the 

value in the shell. and  are the concentrations of mobile protein in cdl and the shell 

respectively at ra. Mass transfer from the bulk solution to the gel surface can be described by 

the Sherwood number (Sh) 3. At steady state this can be written 4:  
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where Cbulk and   is the concentration of it in the bulk liquid and in the liquid at r2, 

respectively, and D is the diffusion constant of the protein in the liquid. 

liqC2

 

The requirement of local equilibrium provides relationships between the protein 

concentration on each side of the boundaries at r1 and r2: 
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where kα/β is the partition coefficient for the distribution of protein between regions α and β 

(see Supporting Material S3). Since, at steady state, the transport rate must be the same in all 

regions, eqs. (S:7) - (S:11) can be combined to give: 
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where 
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liqshellshellshell kDP /=                (S:14) 

liqcdlcdlcdl kDP /=                (S:15) 

 

Finally, it follows from the assumption that the protein transport is rate determining that r0, r1, 

and r2 can be considered as functions of β only. Therefore eq. (S:12) can be integrated to give: 
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Eq. (S:16) is quite general for steady-state transport in the geometry in Figure 1b. When 

applied to the theory outlined above one uses eqs. (S:4) – (S:6) to substitute for r0 – r2. The 

equation can then be used to calculate the time for a gel to reach a certain β value, which in 

turn provides the corresponding values of r0 – r2. 

 

S3. Partition coefficients. 

At pH 7 the liquid solution contains mainly lysozyme (LZ+), Na+ (M+), and H2PO4
- (A-). 

The chemical potentials for the electrolytes LAZ and MA can be written: 
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where “0” denotes the standard state. Local equilibrium at r2 requires that the chemical 

potential of both electrolytes are the same in the shell and the liquid solution. In as much as 

the form of eq. (S:17) and (S:18) is valid for the mobile electrolytes in the shell, the 

equilibrium conditions can be written: 
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where we have noted that = = Csalt. The electroneutrality condition for the shell can 

be written: 
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Eqs. (S:19-21) represent a system of equations from which , , and can be 

calculated from vshell, fshell, Csalt, and using an iterative procedure. If , 

the first term in eq. (S:21) can be neglected, and one obtains: 
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Eq. (S:22) is a good approximation when the protein concentration in the liquid in contact 

with the gel is low and when fshell does not deviate too much from unity. 

 

Local equilibrium at r1 can be handled in a similar way, but requires in the general case 

additional relationships provided by eqs. (S:7) - (S:9) and the steady-state condition. 

However, in the limit of low mobile protein concentrations on both sides of the phase 

boundary we have: 
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where kcdl/liq is given by eq. (S:22) with “shell” replaced “cdl”.  
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The neglect of activity coefficients in the above expressions is reasonable as long as there is 

excess salt in both phases, and the concentrations of the mobile and stationary protein are low. 

Note also that the concentration of stationary proteins are unaffected by variations in the 

mobile protein concentration (i.e., the aggregated structure is considered to be “saturated” 

with protein). 

 

S4. Model fitting in the absence of stagnant layer; (D’)-1=0.  

By substituting for r0 – r2 using eqs. (S:4) – (S:6), putting vcore= v0, and applying the 

conditions eqs. (5a,b), the integral in eq. (1; S:16) can be calculated analytically. The result 

can be expressed as the time to reach a state during shell formation (tshell):  

 

( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−−+

+−=
1/

11/11
3 0

3
2

03
2

0

3
0

vv
fvvf

fPZCv
Rt

shell

shellshellshell
shellshell

shellshellbulk
shell

ββ            (S:24) 

 

and during core diffusion (tcore): 
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where 
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is the contribution to tcore  from the diffusion through cdl, and  
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is the contribution from the diffusion through the shell. 

 

To fit eq. (S:24) to experimental data of r2 as a function of t, one can eliminate βshell from 

the expression using: 
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obtained from eq. (S:4). Since Pshell is a function of fshell through eqs. (S:19) – (S:21) and eq. 

(S:14), this leaves fshell as the only adjustable parameter.   

 

In cases where tshell is easy to determine directly from the experimental curves, eq. (S:24) 

offers a short cut to determinations of f shell.  

 

S5. Calculation of R0 and v0 

Figure S5.1 shows the volume v0 per polymer charge of microgels in protein-free solutions 

plotted as a function of log of the salt concentration 5. A least-square fit resulted in the 

following relationship: 
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All gels in the present study had a radius of 35±5 μm in a reference 220 mM salt solution, 

where according to eq. (S:27) v0=0.0051 m3/mol. The radius R0 at lower ionic strengths is 

therefore given by: 
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Figure S5.1. The volume v0 per polymer charge of microgels in protein-free solutions 

plotted as a function of log of the salt concentration in the liquid. Data taken from previous 

work 5. 

 

S6. Dependence of model fitting parameters on δ∞ 

As noted above, the fits were obtained for a final shell thickness δ∞ equal to 5 μm, a value 

determined for the 0.25 g/L sample in the confocal microscopy study. The fact that the 

variation of δ∞ did not change much as the protein concentration in the solution increased 

from 0.25 to 1 g/L gives some credit to using the same value also at lower concentrations, but 

the differences in the conditions during protein binding in the two experiments introduces 

uncertainties. The limited resolution of the light microscope prevented accurate measurements 

of the shell thickness, but as a rough estimate δ∞ was found to be 5 ± 2 μm. To test how the 

uncertainty in δ∞ influences on the determination of the parameters, we repeated the fitting 

procedure for a number of different δ∞. The result is presented in Figures S6.1 and S6.2. It 

was found that the model fitted nearly equally well in a wide range, and so there is no unique 

set of parameters giving the best fit. (Outside the range set by the curves in Figs. S6.1 and 
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S6.2 the model could not be fitted to the data). However, common to all experimental 

conditions is that fshell is quite insensitive to both δ∞ and protein concentration in the solution, 

and never deviates much from unity. Some of the other parameters showed a strong variation 

with δ∞, in particularly the stationary and mobile protein concentration in the shell. 

Importantly, however, for any variation of δ∞ within the estimated range (5 ± 2 μm), it is clear 

that φshell is larger at 100 than at 40 mM salt. Furthermore, for any variation of δ∞ in the same 

range, φshell is higher and lower at 0.063 than at 0.25 g/L of lysozyme in the liquid.  shell
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Figure S6.1. The variation of the model parameters fshell (solid lines), βshell,∞ (dashed), and 

vshell (dotted) with the final shell thickness δ∞ used in the model fitting at (a) 40 mM and (b) 

100 mM salt. Protein concentration in the liquid: 0.063 (triangles), 0.125 (squares), 0.25 g/L 

(dots). 
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Figure S6.2. The variation of the model parameters φshell (solid lines) and (dashed) with 

the final shell thickness δ∞ used in the model fitting at (a) 40 mM  and (b) 100 mM salt. 

Protein concentration in the liquid: 0.063 (triangles), 0.125 (squares), 0.25 g/L (circles). 
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S7. Discussion of possible scenarios leading to an arrested shell structure  

Initially the shell forms as protein molecules enter and collapse the network in the outer 

layers of the gel. As binding proceeds the position of the core/shell boundary (r1) moves 

toward the centre of the gel. The continuous conversion of core to shell during this process is 

chiefly responsible for the deswelling of the gel. Due to the large difference in swelling 

between the shell and the core, the gel boundary (r2) also moves closer to the centre, initially 

with nearly the same speed as the core/shell boundary. Thus, the progression of shell 

formation involves ordered motion of all molecules in the shell toward the gel centre, in 

response to elastic forces in the gel network. The motion is resisted by the viscous drag from 

water being “filtered” through the shell structure, and by the work of deforming the shell 

material. The latter arises in spherical geometry because the shrinking of the core forces 

volume elements in the shell to elongate radially and shorten laterally 6. It is easy to see that 

the distance between two chains in the network of the shell, at the same distance from the 
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centre, will decrease with decreasing gel radius. At the same time, however, the distance 

between two chains at different distances to the centre increases. For constant density of the 

shells, as assumed here, and for the relative radial changes encountered in the experiments at 

40 mM salt, a small initially cube-shaped volume element positioned in the shell close to the 

gel surface will at the end of deswelling assume an essentially rectangular parallelpiped 

shape. During the process, the shell network, which is initially in a highly anisotropic 

deformational state 7, 8, becomes more relaxed. Although it is difficult to draw any 

conclusions about how the deformation would affect the protein structure, three extreme 

scenarios leading to a finite shell thickness can be envisaged. Consider first shells in which 

the clusters already at an early point are connected both in the lateral and radial direction into 

a network. In scenario 1, the protein network continually rearranges during growth to 

maintain the same structure. However, the time required for rearrangements increases with the 

size of the structure (since it involves a larger number of molecules and rearrangements over 

larger distances) and at a certain shell thickness goes to infinity. The effect is thus kinetic, and 

the protein structure needs not be directly related to the deformational state of the polymer 

network in the shell. In scenario 2, the aggregate structure is deformed in a similar way as the 

polymer network. In this case the work of deforming the aggregate structure finally becomes 

too large. Here one can envisage an increased work of compressing the structure in the lateral 

direction, but also a work of extending it in the radial direction. Scenario 3 is similar to 2 but 

the clusters are initially of finite size and separated from each other in the shell. Here the 

concerted inward motion of the material in the shell (the freedom of the clusters to 

redistribute is limited due to the interaction with the polymer network) leads to an overlap of 

the clusters finally forming a percolated stress-bearing structure.  Note, since the compression 

of a volume element in the lateral direction is compensated for by an extension in the radial 
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direction also scenario 2 and 3 can, in principle, can take place at constant protein volume 

fraction in the shell. 
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