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Figure S1 Low-magnification TEM image of ZnSe:Cu NCs. 
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Figure S2 The XPS Mn 2p spectrum of ZnSe:Mn NCs. The Mn/Zn feed ratio was 

0.02/1. The appearance of the characteristic Mn 2p3/2 peak at 641.4 eV and Mn 2p1/2 

peak at 656.1 eV indicated the presence of Mn element in the resulting NCs. 
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Figure S3 The schematic illustration of the PL emission levels of doped ZnSe NCs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4 The schematic illustration of the surface adsorption and internal doping of 

copper in ZnSe NCs. 
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Figure S5 The schematic mechanism of the aggregation of Cu-doped ZnSe NCs. 
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Figure S6 The comparison of 
/Zn2Zn

E +  and ++/Cu2Cu
E  in ZnSe:Cu-MPA system. 

The computing method of the reduction potential of Zn2+/Zn was expressed as 
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where R  was the gas constant, T  was the temperature, n  was the number of 

transferred electron, F  was the Faraday constant, which was 96500 C·mol-1, and K  

was represented to the stability constant. In our system, the pH value was 11.5, whereas 

Cu/Zn had a specific molar ratio. Consequently, Zn2+ existed the side reaction with OH-, 

and MPA would react with H+ and Cu2+. In this context, Znα  was the side reaction 

coefficient of Zn2+, which was expressed as Znα = [ ]∑
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cumulative stability constant, MPAα  was the side reaction coefficient of MPA, which 
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was the ionization constant, and 
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K −  was the stability constant of Cu2+ and MPA. 

So, take Zn(MPA) complex as the example, the reduction potential of Zn(MPA)/Zn 

was finally expressed as  
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The calculated value of Zn(MPA)/ZnE  was approximately -0.840 V, which was slightly 

smaller than 0

/Zn2Zn
E + (-0.763 V). Similarly, 

/Zn-2
2Zn(MPA)

E  and 
/Zn-4

3Zn(MPA)
E  were also 

calculated. We could also calculate +Cu(MPA)/Cu
E  by using the aforementioned method. In 
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this context, Cu2+ would also react with OH-, and MPA would react with H+ and Zn2+. In 

the end, the reduction potential of Cu(MPA)/Cu+ was expressed as 
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The calculated +Cu(MPA)/Cu
E  was approximately 0.848 V, which was quite larger than 

0

/Cu2Cu
E ++ (0.153 V). It meant in ZnSe:Cu-MPA system, the oxidability of Cu(II) was 

improved. Cu(II) was easier to be reduced by MPA than Zn(II). 

 

 

 

 


