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SUPPORTING INFORMATION 

When one attaches two adhesive tapes into their glue sides and peels off from each 

other, bunches of glue strands are suspended across two tapes (Figs. S1a and b). The glue 

strands of the acrylate adhesive tape is generally composed of hard (high Tg), soft (low 

Tg), and functional monomers, where Tg is a glass transition temperature [
S1

]. Fig. S1c 

shows a representative example of chain composition of an acrylic adhesive [
S1

]. The 



internal strength is provided by the hard monomers such as ethyl and methyl acrylate 

with high Tg. The adhesion property originates from the soft monomers with low glass 

temperatures such as 2-ethylhyxyl, n-butyl, and n-octyl acrylate. The acrylic acid and 

acrylic amide play a role of functional monomers for the specific adhesion to desired 

object. 

 

 

 

 

 

 



Figure S1 (a) 3M scotch tape was folded and attached each other. When one tries to 

separate from each other, one would find polymer strings at an interface such as a black 

circled area between two tapes. These strings are shown in (b) at the interfaces between 



two tapes as indicated by a dashed box. Scale bar is 1 mm. (c) Schematic of the 

representative chain composition of an acrylic adhesive, where Tg is a melting 

temperature of the monomers from Ref. [S1]. This is not for a 3M Scotch tape. (d) TEM 

total image of the 12 nm-thick-Mo76Ge24 wire in Fig. 1c. (e) TEM image of the junction 

part between the thin film and the nanowire from another 12 nm-thick-Mo76Ge24wire.  

 

 Figure S2. (a) dV/dI-2eV/hf curves with various frequencies of MoGe2, where 8.2 

GHz-one is shifted vertically as 300 Ω for the clarity. (b) dV/dI-2eV/hf curves with 

various frequencies of Al wire, where data are shifted vertically as 1.8 kΩ for the clarity 



 

Figure S3. dV/dI (I/IC, IRF/IC) plot numerically calculated by the McCumber-Stewart 

model based on (a) single-valued nonsinusoidal CPR as shown in the inset and 

multivalued nonsinusoidal CPR with (b) L/ξ(0)=5.6 (c) L/ξ(0)=5.9 at Ω �=0.8. The integer 

numbers are index numbers of integer Shapiro steps. Inset of (a): An example of the CPR 

in the case of a short wire limit. To produce this, we used Kulik and Omelyanchuk model 

for a diffusive wire [
S2

]: 
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where 2 2 2cos ( / 2)δ φ ω= ∆ + , ∆ is the superconducting gap energy, (2 1)
B

k T mω π= +  

are the Matsubara frequency, and m is integer number. 

 

Figure S4. dV/dI (I/IC, IRF/IC) plot numerically calculated based on the CPR in the case 

of L[=80 nm]~ξ(T) [=73 nm] as shown in the inset at Ω=0.6 (see main text). 

 

Current-Phase relation from Mathieu equation in a QPS-dominated 

superconducting wire 

In this note, the phase difference of the wire isφ , and the charge transported through 

the wire is θ. The Hamiltonian [
S3

] is  

                    

2 2/ 2( / ) cosH K θ α θ= − ∂ ∂ −  

and the energies are given by the Schrödinger equation H EΨ = Ψ . 



Make a change of variable θ = π+2z. Then, the Schrödinger equation becomes of the 

standard Mathieu form: 

                  2 2( / ) ( 2 cos 2 ) 0z a q z∂ ∂ Ψ + − Ψ = . 

Here, a=8E/K and q=4α/K. Mathieu functions are of the form 

                        ( ) ( )i z
F z e P z

ν
ν = . 

Here, P(z) is periodic with period π. The characteristic exponent ν is related to the 

phase difference φ  on the wire by /ν φ π= . So, φ π=  corresponds to ν=1. 

A good superconductor corresponds to 1q << . In this case, the critical current 

corresponds to 1ν ≈  and is approximately / 4
C

I K π≈  (in units of 2e). Expansion of a in 

q is [Abramowitz and Stegun, Eq. 20.3.15] 

                      2 2 2 4/ 2( 1) ( )a q O qν ν= + − + . 

This is useful as long as ν is not too close to 1, i.e., the current is not too close to critical 

current. This gives energy as a function of φ : 

                    

2 2 2 4 3( / 8)( / ) /{ [( / ) 1]} ( / )E K K O Kφ π α φ π α= + − + . 

Differentiating with respect to φ , we obtain the current in units of 2e 

                     

2 2 2 2 2( / 4 ) (2 / ){ /[1 ( / ) ] }I K Kφ π α π φ φ π≈ − − . 
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