Supplemental Information

Discovery of inducible Nitric Oxide Synthase (iNOS) inhibitor Development Candidate KD7332 (Part 1): Identification of a Novel, Potent and Selective series of Quinolinone iNOS Dimerization Inhibitors that are Orally Active in Rodent Pain Models

Céline Bonnefous ${ }^{l}$, Joseph E. Payne ${ }^{l}$, Jeffrey Roppe ${ }^{l}$, Hui Zhang ${ }^{l}$, Xiaohong Chen ${ }^{l}$, Kent T. Symons ${ }^{2}$, Phan M. Nguyen ${ }^{2}$, Marciano Sablad ${ }^{3}$, Natasha Rozenkrants ${ }^{3}$, Yan Zhang ${ }^{3}$, Li Wang ${ }^{4}$, Daniel Severance ${ }^{1}$, John P. Walsh ${ }^{5}$, Nahid Yazdani ${ }^{5}$, Andrew K. Shiau ${ }^{2}$, Stewart A. Noble ${ }^{l}$, Peter Rix ${ }^{4}$, Tadimeti S. Rao ${ }^{3}$, Christian A. Hassig ${ }^{2}$ and Nicholas D. Smith* ${ }^{1}$

${ }^{1}$ Department of Chemistry ${ }^{2}$ Department of Biology ${ }^{3}$ Department of Pharmacology ${ }^{4}$ Department of Drug Metabolism and Pharmacokinetics ${ }^{5}$ Department of Analytical Chemistry Kalypsys Inc., 10420 Wateridge Circle, San Diego, CA92121

* To whom correspondence should be addressed. Phone (858) 754-3481. Fax: (858) 7543301. E-mail: nsmith@kalypsys.com

TABLE OF CONTENTS

S-1 Title Page.

S-2 to S-15 Experimental Section (Chemistry)
S-16 to S-19 Experimental Section (Methods)
S-20 to S-75 ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR (when available), and LC trace (for purity).
S-76 to S-77 High Resolution Mass Spectrum (table format).
S-78 to S-82 Crystal data, structure refinement and Atomic coordinates for Cpd 12 synthesized as described for compound 53 using 4-(bromomethyl)-8-fluoroquinolin-2(1H)-one (52) and 2-chloroaniline as starting materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.63(\mathrm{~s}, 1 \mathrm{H})$, $7.67(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.39(\mathrm{dd}, 1 \mathrm{H}, J=11.2,8.4 \mathrm{~Hz}), 7.23(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.6 \mathrm{~Hz}), 7.18-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{td}, 1 \mathrm{H}, J=7.8,1.6 \mathrm{~Hz}), 6.54(\mathrm{td}, 1 \mathrm{H}, J=7.8,1.0 \mathrm{~Hz}), 6.45(\mathrm{dd}, 1 \mathrm{H}, J=8.4$, $1.2 \mathrm{~Hz}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 4.59(\mathrm{~d}, 2 \mathrm{H}, J=5.2 \mathrm{~Hz})$. LRMS (ESI+) $\mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFN}_{2} \mathrm{O}$ 303.1, found $303.2[\mathrm{M}+\mathrm{H}]^{+}$.

4-((3-Chlorophenylamino)methyl)-8-fluoroquinolin-2(1H)-one (56). Compound 56 was synthesized as described for compound $\mathbf{5 3}$ using 4-(bromomethyl)-8-fluoroquinolin-2(1H)-one (52) and 3-chloroaniline as starting materials. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.67(\mathrm{~s}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.42(\mathrm{ddd}, 1 \mathrm{H}, J=10.8,8.0,0.8 \mathrm{~Hz}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{t}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 6.62(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, 2 \mathrm{H}, J=5.2 \mathrm{~Hz})$. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFN}_{2} \mathrm{O} 303.1$, found $303.2[\mathrm{M}+\mathrm{H}]^{+}$.

4-((4-Chlorophenylamino)methyl)-8-fluoroquinolin-2(1H)-one (57). Compound 57 was synthesized as described for compound 53 using 4-(bromomethyl)-8-fluoroquinolin-2(1H)-one (52) and 4-chloroaniline as starting materials. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.63(\mathrm{~s}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.38(\mathrm{dd}, 1 \mathrm{H}, J=10.8,7.2 \mathrm{~Hz}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}$, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 6.48(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{bs}, 2 \mathrm{H})$. LRMS (ESI+) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFN}_{2} \mathrm{O}$ 303.1, found $303.2[\mathrm{M}+\mathrm{H}]^{+}$.

8-Fluoro-4-((3-fluorophenylamino)methyl)quinolin-2(1H)-one (58). Compound 58 was synthesized as described for compound $\mathbf{5 3}$ using 4-(bromomethyl)-8-fluoroquinolin-2(1H)-one (52) and 3-fluoroaniline as starting materials. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.68(\mathrm{~s}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.42(\mathrm{ddd}, 1 \mathrm{H}, J=11.2,8.4,1.2 \mathrm{~Hz}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 1 \mathrm{H}), 6.63$
$(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 6.43-6.29(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz})$. LRMS $(\mathrm{ESI}+) \mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$ 287.1, found $287.2[\mathrm{M}+\mathrm{H}]^{+}$.

8-Fluoro-4-((3-cyanophenylamino)methyl)quinolin-2(1H)-one (59). Compound 59 was synthesized as described for compound $\mathbf{5 3}$ using 4-(bromomethyl)-8-fluoroquinolin-2(1H)-one (52) and 3-aminobenzonitrile as starting materials. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$) $\delta 11.64$ (s, $1 \mathrm{H}), 7.60(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.44-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~m}$, $1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, 2 \mathrm{H}, J=2.8 \mathrm{~Hz})$. LRMS (ESI+) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}$ 294.1, found $294.2[\mathrm{M}+\mathrm{H}]^{+}$.

8-Fluoro-4-((m-tolylamino)methyl)quinolin-2(1H)-one (60). Compound $\mathbf{6 0}$ was synthesized as described for compound 53 using 4-(bromomethyl)-8-fluoroquinolin-2(1H)-one (52) and m toluidine as starting materials. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 11.60(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 7.38(\mathrm{ddd}, 1 \mathrm{H}, J=10.8,7.6,0.8 \mathrm{~Hz}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.31(\mathrm{~m}, 4 \mathrm{H})$, $6.17(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{bs}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}$ 283.1, found $283.2[\mathrm{M}+\mathrm{H}]^{+}$.

8-Fluoro-4-((3-methoxyphenylamino)methyl)quinolin-2(1H)-one (61). Compound 61 was synthesized as described for compound $\mathbf{5 3}$ using 4 -(bromomethyl)-8-fluoroquinolin-2(1H)-one (52) and 3-methoxyaniline as starting materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.61$ (s, $1 \mathrm{H}), 7.62(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.38(\mathrm{ddd}, 1 \mathrm{H}, J=10.8,8.0,0.8 \mathrm{~Hz}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{t}, 1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~m}, 1 \mathrm{H}), 6.14-6.08(\mathrm{~m}, 3 \mathrm{H}), 4.45(\mathrm{bs}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H})$. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{2}$ 299.1, found $299.2[\mathrm{M}+\mathrm{H}]^{+}$.

2-(tert-Butyldimethylsilyloxy)-4-(chloromethyl)-8-fluoroquinoline (62). To a stirred solution of 4-(bromomethyl)-8-fluoroquinolin-2(1H)-one (52, $1.28 \mathrm{~g}, 5.0 \mathrm{mmol}$) in DMF (50 mL) at $25^{\circ} \mathrm{C}$ was added tert-butyldimethylsilyl chloride ($1.51 \mathrm{~g}, 10.0 \mathrm{mmol}$) followed by $\mathrm{Et}_{3} \mathrm{~N}(2.4 \mathrm{~mL}, 17.5$ $\mathrm{mmol})$. After 4 h , the reaction mixture was poured into ice water (500 mL), and the resulting
precipitate was collected by vacuum filtration. The filter cake was washed with water (100 mL), then dried for 18 h to afford 2-(tert-butyldimethylsilyloxy)-4-(chloromethyl)-8-fluoroquinoline (62, $1.42 \mathrm{~g}, 88 \%$) as a tan solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, 7.52-7.45 (m, 2H), $7.23(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H})$. LRMS (ESI+) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClFNOSi} 326.1$, found $211.9[\mathrm{M}-\mathrm{TBDMS}+\mathrm{H}]^{+}$.

2-(tert-Butyldimethylsilyloxy)-8-fluoro-4-(iodomethyl)quinoline (63). Sodium iodide (157 $\mathrm{mg}, 1.05 \mathrm{mmol}$) was added to a stirred solution of 2-(tert-butyldimethylsilyloxy)-4-(chloromethyl)-8-fluoroquinoline ($62,325 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry acetone at $25^{\circ} \mathrm{C}$. After 2 h , the heterogeneous mixture was diluted with $\mathrm{DCM}(200 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure to afford 2-(tert-butyldimethylsilyloxy)-8-fluoro-4(iodomethyl)quinoline ($\mathbf{6 3}, 390 \mathrm{mg}, 94 \%$) as an orange solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.72(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.44$ $(\mathrm{s}, 6 \mathrm{H})$. LRMS (ESI +) $m / z:$ calcd for $\mathrm{C}_{16} \mathrm{H}_{21}$ FINOSi 418.0, found 303.8 [M - TBDMS +H$]^{+}$.
N-(3-Chlorophenyl)-1-methyl-1H-imidazole-5-carboxamide (66). O-(7-Azabenzotriazol-1-yl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyluronium hexafluorophosphate (HATU, $912 \mathrm{mg}, 2.4 \mathrm{mmol}$) was added to a stirred mixture of 1-methyl-1 H -imidazole-5-carboxylic acid ($\mathbf{6 5}, 252 \mathrm{mg}, 2.0 \mathrm{mmol}$), 3chloroaniline ($\mathbf{6 4}, 273 \mu \mathrm{~L}, 2.6 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$ in DMF (10 mL). After 18 h at $25^{\circ} \mathrm{C}$, the reaction mixture was diluted with $1: 1$ hexanes:EtOAc $(200 \mathrm{~mL})$, washed with 5% brine ($3 \times 50 \mathrm{~mL}$), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The resulting crude residue was purified by silica gel column chromatography ($9: 1 \mathrm{DCM} / \mathrm{ACN}$) to afford N -(3-chlorophenyl)-1-methyl-1H-imidazole-5-carboxamide ($\mathbf{6 6}, 358 \mathrm{mg}, 76 \%$) as a tan solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}$) $\delta 10.03(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~m}, 2 \mathrm{H})$, $7.30(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H})$.

3-Chloro- N-((2-chloropyridin-4-yl)methyl)aniline (68). A mixture of 4-(bromomethyl)-2chloropyridine ($67,{ }^{11} 3.6 \mathrm{~g}, 15.8 \mathrm{mmol}$), 3-chloroaniline ($2.0 \mathrm{~g}, 15.47 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.2 \mathrm{~g}$, 15.78 mmol) in DMF (50 mL) was stirred for 2 h at $60^{\circ} \mathrm{C}$. The resulting solution was diluted with water (150 mL) and extracted with EtOAc (2 x 100 mL). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness under reduced pressure. The residue was purified by silica gel column chromatography (1:5 EtOAc/Hexanes) to afford $2.8 \mathrm{~g}(67 \%)$ of 3-chloro-N-((2-chloropyridin-4-yl)methyl)aniline (68) as a yellow solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} 253.0$, found $253.0[\mathrm{M}+\mathrm{H}]^{+}$.

N-(3-Chlorophenyl)- N-((2-chloropyridin-4-yl)methyl)-4-methylthiazole-5-carboxamide

(69). 4-Methylthiazole-5-carbonyl chloride (synthesis of acid chloride described for compound 7,
$1.43 \mathrm{~g}, 7.99 \mathrm{mmol})$ was added in several batches to 3-chloro-N-((2-chloropyridin-4yl)methyl)aniline ($68,1.12 \mathrm{~g}, 3.98 \mathrm{mmol}$) in DMF $(20 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$. The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The solvent was removed by evaporation under reduced pressure and the residue was purified by silica gel column chromatography (1:2 EtOAc/Hexanes) to afford 0.8 g (46\%) of N -(3-chlorophenyl)-N-((2-chloropyridin-4-yl)methyl)-4-methylthiazole-5carboxamide (69) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, 1 \mathrm{H})$, $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$. LRMS (ESI+) $m / z:$ calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OS} 378.0$, found $378.0[\mathrm{M}+\mathrm{H}]^{+}$.
(2-Chloro-5,6,7,8-tetrahydroquinolin-4-yl)methanol (71). LiAlH_{4} (190 mg, 5.00 mmol) was added to methyl 2-chloro-5,6,7,8-tetrahydroquinoline-4-carboxylate ($\mathbf{7 0},{ }^{\mathrm{i}} 200 \mathrm{mg}, 0.88 \mathrm{mmol}$) in THF (10 mL) at $0^{\circ} \mathrm{C}$. The resulting slurry was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was then quenched by adding water and $15 \% \mathrm{NaOH}$ solution. The precipitate was filtered and dried to afford 250 mg (crude) of (2-chloro-5,6,7,8-tetrahydroquinolin-4-yl)methanol (71) as a white solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}$ 198.1, found $198.0[\mathrm{M}+\mathrm{H}]^{+}$. DCM (10 mL) was added dropwise to (2-chloro-5,6,7,8-tetrahydroquinolin-4-yl)methanol (71, $250 \mathrm{mg}, 1.26 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 30 min. The reaction mixture was then quenched with water (30 mL), neutralized to pH 7 using aqueous sodium bicarbonate, and extracted with DCM (4 x 120 mL). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford 160 mg (crude) of 4-(bromomethyl)-2-chloro-5,6,7,8-tetrahydroquinoline (72) as a white solid.

3-Chloro- N-((2-chloro-5,6,7,8-tetrahydroquinolin-4-yl)methyl)aniline (73). A mixture of 4-(bromomethyl)-2-chloro-5,6,7,8-tetrahydroquinoline (72, $860 \mathrm{mg}, 3.30 \mathrm{mmol}$), 3-chloroaniline ($420 \mathrm{mg}, 3.28 \mathrm{mmol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(350 \mathrm{mg})$ in DMF (20 mL) was heated to $60^{\circ} \mathrm{C}$ for 2 h . The resulting solution was diluted with water $(60 \mathrm{~mL})$ and extracted with EtOAc ($5 \times 300 \mathrm{~mL}$). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (1:20 EtOAc/Hexanes) to afford 600 mg of 3-chloro- N -((2-chloro-5,6,7,8-tetrahydroquinolin-4-yl)methyl)aniline (73) as a light yellow solid. LRMS (ESI+) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} 307.1$, found $307.0[\mathrm{M}+\mathrm{H}]^{+}$
N-((2-Chloro-5,6,7,8-tetrahydroquinolin-4-yl)methyl)- N-(3-chlorophenyl)-4-methylthiazole-
5-carboxamide (74). 4-Methylthiazole-5-carbonyl chloride (synthesis of acid chloride described in compound $7,700 \mathrm{mg}, 4.32 \mathrm{mmol})$ in DMF $(15 \mathrm{~mL})$ was added dropwise to 3-chloro- N -((2-chloro-5,6,7,8-tetrahydroquinolin-4-yl)methyl)aniline (73, $510 \mathrm{mg}, 1.66 \mathrm{mmol}$) in DMF (5 mL). The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 7 h . The reaction mixture was then quenched with water (60 mL) and extracted with EtOAc ($4 \times 240 \mathrm{~mL}$). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (1:5 EtOAc/Hexanes) to afford 420 mg of N-((2-chloro-5,6,7,8-tetrahydroquinolin-4-yl)methyl)- N-(3-chlorophenyl)-4-methylthiazole-5-carboxamide (74) as a light yellow solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OS} 432.0$, found $432.0[\mathrm{M}+\mathrm{H}]^{+}$. Page 6 of $\mathbf{8 2}$

8-Fluoro-4-methyl-2H-chromen-2-one (77). A mixture of 1-(3-fluoro-2hydroxyphenyl)ethanone ($\mathbf{7 5}, 13 \mathrm{~g}, 75.91 \mathrm{mmol}$) and (triphenylphosphoranylidene) acetic acid ethyl ester (76, ${ }^{\text {ii }} 30 \mathrm{~g}, 86.2 \mathrm{mmol}$) in toluene (200 mL) was stirred at $120^{\circ} \mathrm{C}$ for 18 h . The mixture was concentrated under reduced pressure and the residue was partitioned between EtOAc (100 mL) and water (200 mL). The organic layer was isolated, washed with water (200 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness under reduced pressure. The residue was purified by silica gel column chromatography (1:25 EtOAc/Hexanes) to afford 5 g (35\%) of 8-fluoro-4-methyl- 2 H -chromen-2-one (77) as a yellow solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{FO}_{2}$ 179.0, found $179.2[\mathrm{M}+\mathrm{H}]^{+}$.

4-(Bromomethyl)-8-fluoro-2H-chromen-2-one (78). A mixture of 8-fluoro-4-methyl-2H-chromen-2-one (77, $5 \mathrm{~g}, 25.3 \mathrm{mmol}$), NBS ($6 \mathrm{~g}, 33.71 \mathrm{mmol}$), AIBN (cat., 0.1 g) in CCl_{4} (300 mL) was refluxed for 18 h . The reaction mixture was concentrated to dryness and the residue was purified by silica gel chromatography (1:20 EtOAc/Hexanes) to afford 1.17 g (17\%) of 4-(bromomethyl)-8-fluoro- 2 H -chromen-2-one (78) as a yellow solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrFO}_{2} 256.9$, found $257.0[\mathrm{M}+\mathrm{H}]^{+}$.

4-((3-Chlorophenylamino)methyl)-8-fluoro-2H-chromen-2-one (79). A mixture of 4-(bromomethyl)-8-fluoro- 2 H -chromen-2-one (78, $500 \mathrm{mg}, 1.94 \mathrm{mmol}$) and 3-chloroaniline $(0.8$ $\mathrm{mL}, 7.78 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ was heated to $70^{\circ} \mathrm{C}$ for 1 h . The cooled reaction mixture was then poured into ice water, and extracted with DCM (3x50 mL). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness under reduced pressure. The residue was purified by silica gel chromatography (20-50\% EtOAc/Hexanes) to afford 500 mg of 4-((3-chlorophenylamino)methyl)-8-fluoro- $2 H$-chromen-2-one (79) as a yellow solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClFNO}_{2} 304.0$, found $303.9[\mathrm{M}+\mathrm{H}]^{+}$.

4-(Bromomethyl)-8-fluoroquinoline (81). A mixture of 8-fluoro-4-methylquinoline ($\mathbf{8 0}$, ${ }^{\mathrm{iii}} 500$ $\mathrm{mg}, 3.11 \mathrm{mmol}$), NBS ($553 \mathrm{mg}, 3.11 \mathrm{mmol}$), and AIBN (cat.) in $\mathrm{CCl}_{4}(30 \mathrm{~mL})$ was refluxed for 2 h. The reaction mixture was filtered to remove insoluble materials, and the filtrate was concentrated to dryness under reduced pressure. The residue was purified by silica gel chromatography (1:20 EtOAc/Hexanes) to afford 380 mg (51%) of 4-(bromomethyl)-8fluoroquinoline (81) as a white solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrFN}$ 239.9, found $240.0[\mathrm{M}+\mathrm{H}]^{+}$.

3-Chloro- N-((8-fluoroquinolin-4-yl)methyl)aniline (82). A mixture of 4-(bromomethyl)-8fluoroquinoline ($\mathbf{8 1}, 380 \mathrm{mg}, 1.59 \mathrm{mmol}$), 3-chloroaniline ($400 \mathrm{mg}, 3.15 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (440 $\mathrm{mg}, 3.19 \mathrm{mmol}$) in DMF (20 mL) was heated to $60^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was filtered to remove insoluble materials, and then concentrated to dryness under reduced pressure. The residue was purified by silica gel chromatography (1:20 EtOAc/Hexanes) to afford 320 mg (70\%) of 3-chloro- N-((8-fluoroquinolin-4-yl)methyl)benzenamine (82) as a white solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFN}_{2}$ 287.1, found $287.0[\mathrm{M}+\mathrm{H}]^{+}$.
N-Allyl- N-benzyl-2-fluoro-6-iodobenzamide (85). A mixture of 2-fluoro-6-iodobenzoic acid $(\mathbf{8 4}, 30 \mathrm{~g}, 113 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(60 \mathrm{~mL})$ was heated to $80^{\circ} \mathrm{C}$ for 1.5 h . Excess SOCl_{2} was removed under reduced pressure and the residue was taken up with a solution of $\mathrm{Et}_{3} \mathrm{~N}(13.7 \mathrm{~g}$, $136 \mathrm{mmol})$ in THF (50 mL). This solution was then added dropwise to a separate solution of N -benzylprop-2-en-1-amine ($83,16.6 \mathrm{~g}, 113 \mathrm{mmol}$) in THF $(150 \mathrm{~mL})$ at $5^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The mixture was concentrated under reduced pressure and the residue was dissolved in EtOAc (200 mL). The organic layer was washed with aqueous $\mathrm{NaHSO}_{4}(2 \times 50 \mathrm{~mL})$, aqueous sodium bicarbonate (50 mL), and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness under reduced pressure to afford $30 \mathrm{~g}(67 \%)$ of N -allyl-N-benzyl-2-fluoro-6-iodobenzamide (85) as a white solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{15}$ FINO 396.0, found $396.0[\mathrm{M}+\mathrm{H}]^{+}$.

2-Benzyl-8-fluoro-4-methylisoquinolin-1(2H)-one (86). A mixture of N-allyl- N-benzyl-2-fluoro-6-iodobenzamide $(\mathbf{8 5}, 198 \mathrm{mg}, 0.50 \mathrm{mmol})$, dicyclohexylamine ($362 \mathrm{mg}, 2.00 \mathrm{mmol}$), $\mathrm{PPh}_{3}(13.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{DMA}(7 \mathrm{~mL})$ was heated to $100^{\circ} \mathrm{C}$ for 18 h . The mixture was concentrated under reduced pressure and the residue was purified by silica gel chromatography (1:30 EtOAc/Hexanes) to afford $83 \mathrm{mg}(62 \%)$ of 2-benzyl-8-fluoro-4-methylisoquinolin-1(2H)-one (86) as a white solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNO} 268.1$, found $268.0[\mathrm{M}+\mathrm{H}]^{+}$.

8-Fluoro-4-methylisoquinolin-1(2H)-one (87). A solution of 2-benzyl-8-fluoro-4-methylisoquinolin-1 $(2 \mathrm{H})$-one $(\mathbf{8 6}, 30 \mathrm{~g}, 112.36 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{SO}_{4}(450 \mathrm{~g})$ was heated to $150^{\circ} \mathrm{C}$ for 2.5 h . Adjustment of the pH to 9 was accomplished by the addition of $\mathrm{NaOH}(4 \mathrm{M})$. The resulting aqueous solution was extracted with EtOAc (3 x 100 mL). The organics were combined, washed with brine ($2 \times 500 \mathrm{~mL}$), filtered, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford $15.8 \mathrm{~g}(79 \%)$ of 8 -fluoro-4-methylisoquinolin- $1(2 \mathrm{H})$-one $(\mathbf{8 7})$ as a white solid. LRMS (ESI +) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{FNO}$ 178.1, found $178.0[\mathrm{M}+\mathrm{H}]^{+}$.

1-Chloro-8-fluoro-4-methylisoquinoline (88). A mixture of 8-fluoro-4-methylisoquinolin$1(2 \mathrm{H})$-one $(\mathbf{8 7}, 3 \mathrm{~g}, 16.95 \mathrm{mmol})$ in $\mathrm{POCl}_{3}(40 \mathrm{~mL})$ was heated to $80^{\circ} \mathrm{C}$ for 2 h . The mixture was concentrated to dryness and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}(1: 1,100 \mathrm{~mL})$. Adjustment of the pH to 8 was accomplished by the addition of $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(25 \%)$. The two layers were separated and the aqueous layer was extracted with EtOAc (50 mL). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford 3.3 g (99\%) of 1-chloro-8-fluoro-4-methylisoquinoline (88) as a white solid. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClFN}$ 196.0, found $196.0[\mathrm{M}+\mathrm{H}]^{+}$. described for compound $\mathbf{8 1}$ using 1-chloro-8-fluoro-4-methylisoquinoline (88) as the starting material. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrClFN} 273.9$, found $274.0[\mathrm{M}+\mathrm{H}]^{+}$.

3-Chloro- N-((1-chloro-8-fluoroisoquinolin-4-yl)methyl)benzenamine (90). Compound 90 was synthesized as described for compound $\mathbf{8 2}$ using 1-chloro-8-fluoro-4-methylisoquinoline (89) and 3-chloroaniline as starting materials. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{FN}_{2}$ 321.0, found $321.0[\mathrm{M}+\mathrm{H}]^{+}$.

3-Chloro- N-((8-fluoroisoquinolin-4-yl)methyl)benzenamine (91). A solution of 3-chloro- N -((1-chloro-8-fluoroisoquinolin-4-yl)methyl)benzenamine (90, $500 \mathrm{mg}, 1.56 \mathrm{mmol})$ and Pd / C (cat.) in $\mathrm{MeOH}\left(20 \mathrm{~mL}\right.$) was hydrogenated (with a balloon of hydrogen) for 4 h at $25^{\circ} \mathrm{C}$. A filtration through celite was performed to remove the Pd / C and the filtrate was evaporated to dryness under reduced pressure. The residue was dissolved in EtOAc (30 mL) and the organic layer was washed with aqueous sodium bicarbonate ($2 \times 20 \mathrm{~mL}$) and brine ($2 \times 20 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford 380 mg (85\%) of 3-chloro- N -((8-fluoroisoquinolin-4-yl)methyl)benzenamine (91) as a beige solid. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.84$ $(\mathrm{m}, 1 \mathrm{H}), 7.52(\mathrm{dd}, 1 \mathrm{H}, J=10.8,8.0 \mathrm{~Hz}), 7.06(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.61(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.53(\mathrm{~m}$, 3H), $4.69(\mathrm{~d}, 2 \mathrm{H}, J=5.2 \mathrm{~Hz})$. LRMS (ESI+) $m / z:$ calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFN}_{2} 287.1$, found 287.0 [M $+\mathrm{H}]^{+}$.
N-(2-Chlorophenyl)-3-oxobutanamide (98). Compound 98 was synthesized as described for compound 49 using 3-oxobutanoate and 2-chloroaniline (92) as starting materials. ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{dd}, 1 \mathrm{H}, J=8.2,0.8 \mathrm{~Hz}), 7.37(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.25(\mathrm{t}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
N-(3-Fluorophenyl)-3-oxobutanamide (99). Compound 99 was synthesized as described for compound 49 using 3-oxobutanoate and 3-fluoroaniline (93) as starting materials. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}_{2}$ 196.0, found $195.9[\mathrm{M}+\mathrm{H}]^{+}$.
N-(4-Fluorophenyl)-3-oxobutanamide (100). Compound 100 was synthesized as described for compound 49 using 3-oxobutanoate and 4-fluoroaniline (94) as starting materials. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}_{2}$ 196.0, found $196.0[\mathrm{M}+\mathrm{H}]^{+}$.
N-(2-Bromo-5-fluorophenyl)-3-oxobutanamide (101). Compound 101 was synthesized as described for compound 49 using 3-oxobutanoate and 2-bromo-5-fluoroaniline (95) as starting materials. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{dd}, 1 \mathrm{H}, J=11.0,3.0 \mathrm{~Hz}), 7.48(\mathrm{dd}$, $1 \mathrm{H}, J=8.8,5.6 \mathrm{~Hz}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$. LRMS (ESI+) m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrFNO}_{2} 273.9$, found $277.9[\mathrm{M}+\mathrm{H}]^{+}$.
N-(2,3-Difluorophenyl)-3-oxobutanamide (102). Compound 102 was synthesized as described for compound 49 using 3-oxobutanoate and 2,3-difluoroaniline (96) as starting materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H})$. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{NO}_{2} 214.0$, found $214.1[\mathrm{M}+\mathrm{H}]^{+}$.

4-Bromo- N-(2-chlorophenyl)-3-oxobutanamide (103). Compound 103 was synthesized as described for compound 50 using N-(2-chlorophenyl)-3-oxobutanamide (98) as the starting material. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4,1.2 \mathrm{~Hz}), 7.39(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=8.4,1.4 \mathrm{~Hz}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=8.2,1.6 \mathrm{~Hz}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H})$.

4-Bromo- N-(3-fluorophenyl)-3-oxobutanamide (104). Compound 104 was synthesized as described for compound 50 using N-(3-fluorophenyl)-3-oxobutanamide (99) as the starting material. LRMS (ESI+) $m / z:$ calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrFNO}_{2} 273.9$, found $273.8[\mathrm{M}+\mathrm{H}]^{+}$. described for compound 50 using N-(4-fluorophenyl)-3-oxobutanamide (100) as the starting material. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrFNO}_{2} 273.9$, found $274.0[\mathrm{M}+\mathrm{H}]^{+}$.

4-Bromo- N-(2-bromo-5-fluorophenyl)-3-oxobutanamide (106). Compound 106 was

 synthesized as described for compound $\mathbf{5 0}$ using N-(2-bromo-5-fluorophenyl)-3-oxobutanamide (101) as the starting material. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H}), 7.03$ (m, 1H), 4.49 (s, 2H), 3.87 (s, 2H).4-Bromo- N-(2,3-difluorophenyl)-3-oxobutanamide (107). Compound 107 was synthesized as described for compound 50 using N-(2,3-difluorophenyl)-3-oxobutanamide (102) as the starting material. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 1 \mathrm{H})$, $4.02(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H})$. LRMS (ESI+) m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrF}_{2} \mathrm{NO}_{2} 291.9$, found $292.0[\mathrm{M}+$ $\mathrm{H}]^{+}$.

4-Bromo-2-fluoro- N -(2-fluorophenyl)-3-oxobutanamide (108). A mixture of 4-bromo- N -(2-fluorophenyl)-3-oxobutanamide (50,1 g, 3.65 mmol) and Selectfluor® $(0.7 \mathrm{~g}, 4.74 \mathrm{mmol})$ in ACN (30 mL) was heated to $60^{\circ} \mathrm{C}$ for 2 h . The solvent was removed under reduced pressure and the residue was dissolved in DCM $(30 \mathrm{~mL})$. The organic layer was washed with water $(2 \times 10$ mL), dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography ($0-50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to afford 0.5 g of 4-bromo-2-fluoro-N-(2-fluorophenyl)-3-oxobutanamide (108) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 3 \mathrm{H}), 5.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=48.4 \mathrm{~Hz}), 4.34$ (dd, 2H, $J=69.6,12.8 \mathrm{~Hz}$).

4-(Bromomethyl)-8-chloroquinolin-2(1H)-one (109). Compound 109 was synthesized as described for compound 52 using 4-bromo- N-(2-chlorophenyl)-3-oxobutanamide (103) as the starting material. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrClNO} 271.9$, found $272.8[\mathrm{M}+\mathrm{H}]^{+}$. described for compound 52 using 4-bromo- N-(3-fluorophenyl)-3-oxobutanamide (104) as the starting material. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 11.91(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{dd}, 1 \mathrm{H}, J=9.0,5.8 \mathrm{~Hz}$), $7.11(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H})$. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrFNO} 255.9$, found $255.8[\mathrm{M}+\mathrm{H}]^{+}$.

4-(Bromomethyl)-6-fluoroquinolin-2(1H)-one (111). Compound 111 was synthesized as described for compound 52 using 4-bromo- N -(4-fluorophenyl)-3-oxobutanamide (105) as the starting material. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrFNO} 255.9$, found $256.0[\mathrm{M}+\mathrm{H}]^{+}$.

8-Bromo-4-(bromomethyl)-5-fluoroquinolin-2(1H)-one (112). Compound 112 was synthesized as described for compound 52 using 4-bromo- N -(2-bromo-5-fluorophenyl)-3-oxobutanamide (106) as the starting material. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta 10.64(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 9.0, 5.0), 7.14 (m, 1H), $6.90(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H})$.

4-(Bromomethyl)-7,8-difluoroquinolin-2(1H)-one (113). Compound 113 was synthesized as described for compound $\mathbf{5 2}$ using 4-bromo- N -(2,3-difluorophenyl)-3-oxobutanamide (107) as the starting material. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$) $\delta 7.70(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H})$, 4.90 (s, 2H).

4-(Bromomethyl)-3,8-difluoroquinolin-2(1H)-one (114). Compound 114 was synthesized as described for compound 52 using 4-bromo-2-fluoro- N-(2-fluorophenyl)-3-oxobutanamide (108) as the starting material. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) \delta 12.50(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.47(\mathrm{dd}, 1 \mathrm{H}, J=10.8,7.6 \mathrm{~Hz}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H})$. LRMS (ESI+) $\mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrF}_{2} \mathrm{NO} 273.9$, found $273.7[\mathrm{M}+\mathrm{H}]^{+}$.

4-((3-Chlorophenylamino)methyl)quinolin-2(1H)-one (115). Compound 115 was synthesized as described for compound 53 using 4-(bromomethyl) quinolin-2(1H)-one (51, commercially
available) and 3-chloroaniline as starting materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.68(\mathrm{~s}$, $1 \mathrm{H}), 7.82(\mathrm{dd}, 1 \mathrm{H}, J=8.2,1.2 \mathrm{~Hz}), 7.51(\mathrm{td}, 1 \mathrm{H}, J=8.4,1.2 \mathrm{~Hz}), 7.33(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.2 \mathrm{~Hz})$, $7.20(\mathrm{td}, 1 \mathrm{H}, J=8.0,1.2 \mathrm{~Hz}), 7.06(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H})$, $4.54(\mathrm{~s}, 2 \mathrm{H})$. LRMS (ESI+) $m / z:$ calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O} 285.1$, found $285.2[\mathrm{M}+\mathrm{H}]^{+}$.

8-Chloro-4-((3-chlorophenylamino)methyl)quinolin-2(1H)-one (116). Compound 116 was synthesized as described for compound $\mathbf{5 3}$ using 4-(bromomethyl)-8-chloroquinolin-2(1H)-one (109) and 3-chloroaniline as starting materials. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.92(\mathrm{~s}, 1 \mathrm{H})$, $7.84(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.23(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.08(\mathrm{t}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 6.64-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 2 \mathrm{H})$. LRMS (ESI+) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ 319.0, found $318.9[\mathrm{M}+\mathrm{H}]^{+}$.

4-((3-Chlorophenylamino)methyl)-7-fluoroquinolin-2(1H)-one (117). Compound 117 was synthesized as described for compound 53 using 4-(bromomethyl)-7-fluoroquinolin-2(1H)-one (110) and 3-chloroaniline as starting materials. LRMS (ESI+) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClFN}_{2} \mathrm{O}$ 303.1, found $302.9[\mathrm{M}+\mathrm{H}]^{+}$.

4-((3-Chlorophenylamino)methyl)-6-fluoroquinolin-2(1H)-one (118). Compound 118 was synthesized as described for compound 53 using 4-(bromomethyl)-6-fluoroquinolin-2(1H)-one (111) and 3-chloroaniline as starting materials.

8-Bromo-4-((3-chlorophenylamino)methyl)-5-fluoroquinolin-2(1H)-one (119). Compound 119 was synthesized as described for compound 53 using 8-bromo-4-(bromomethyl)-5-fluoroquinolin-2(1H)-one (112) and 3-chloroaniline as starting materials. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrClFN}_{2} \mathrm{O} 380.9$, found $380.6[\mathrm{M}+\mathrm{H}]^{+}$.

4-((3-Chlorophenylamino)methyl)-7,8-difluoroquinolin-2(1H)-one (120). Compound 120 was synthesized as described for compound $\mathbf{5 3}$ using 4-(bromomethyl)-7,8-difluoroquinolin-2(1H)-
one (113) and 3-chloroaniline as starting materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 11.96$ (s, $1 \mathrm{H}), 7.70(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.63-6.55(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.54$ ($\mathrm{m}, 2 \mathrm{H}$). LRMS (ESI+) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClF}_{2} \mathrm{~N}_{2} \mathrm{O} 321.0$, found $320.9[\mathrm{M}+\mathrm{H}]^{+}$.

4-((3-Chlorophenylamino)methyl)-3,8-difluoroquinolin-2(1H)-one (121). Compound 121 was synthesized as described for compound $\mathbf{5 3}$ using 4-(bromomethyl)-3,8-difluoroquinolin-2(1H)one (114) and 3-chloroaniline as starting materials. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClF}_{2} \mathrm{~N}_{2} \mathrm{O}$ 321.0, found $320.8[\mathrm{M}+\mathrm{H}]^{+}$.
N-((8-Bromo-5-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)- N-(3-chlorophenyl)-4-methylthiazole-5-carboxamide (122). Compound 122 was synthesized as described for compound 7 using 8-bromo-4-((3-chlorophenylamino)methyl)-5-fluoroquinolin-2(1H)-one (119) and 4-methylthiazole-5-carboxylic acid as starting materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ $10.59(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{dd}, 1 \mathrm{H}, J=8.4,4.8 \mathrm{~Hz}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27$ $(\mathrm{m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, 1 \mathrm{H}, J=12.0,8.4 \mathrm{~Hz}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$. LRMS (ESI+) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{BrClFN}_{3} \mathrm{O}_{2} \mathrm{~S} 505.9$, found $505.7[\mathrm{M}+\mathrm{H}]^{+}$.

Low Temperature SDS-PAGE: RAW 264.7 cells were seeded into 6 -well dishes at a density of 1.5×10^{6} cells/well in 2 mL of growth media. Cells were incubated for $2-3 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$ and 10% CO_{2}. Next, 1 mL of media was removed from each well and replaced with 1 mL of a 2 X cocktail containing IFN γ ($100 \mathrm{U} / \mathrm{mL}$ final), LPS ($2 \mu \mathrm{~g} / \mathrm{mL}$ final) and compound or vehicle (0.1% DMSO final) diluted in DMEM without serum. Cells were incubated overnight ($\sim 15 \mathrm{hr}$) at $37^{\circ} \mathrm{C}$ and $10 \% \mathrm{CO}_{2}$. Cells were washed once with ice cold PBS and then $200 \mu \mathrm{~L}$ of ice-cold lysis buffer containing protease inhibitors was added to each well. Cells were scraped from the dish and transferred to micro-centrifuge tubes on ice. Samples were sonicated for 5 seconds at setting 4 and centrifuged for 10 minutes at $4^{\circ} \mathrm{C}$. Supernatants were transferred to clean tubes and stored on ice. The concentration of protein in the cell extracts was determined using a Bradford assay with a BSA standard curve as described by the manufacturer (Advanced). Equivalent amounts of protein extracts were added to micro-centrifuge tubes and the volume was adjusted to $10 \mu \mathrm{~L}$ with lysis buffer. An equal volume of ice-cold 2 X loading buffer was added to each sample and gently pipetted to mix. Samples were stored on ice until ready to load. Twenty microliters of each sample was loaded onto a 15 -well 4-20\% Tris-glycine polyacrylamide gel. The gel was run in pre-chilled 1X SDS running buffer in a cold room for 2.5 h at 125 V . Proteins were transferred to nitrocellulose for 2.5 h at 70 V in 1X transfer buffer. The membrane was blocked overnight in Blotto diluted in western wash buffer at $4^{\circ} \mathrm{C}$. The membrane was incubated in a 1:2500 dilution of mouse anti-iNOS antibody (BD Biosciences) in Blotto for 1 h at room temperature followed by $3 \times 5 \mathrm{~min}$ washes in western wash buffer. The blot was then incubated in a 1:2000 dilution of goat anti-mouse HRP-conjugated secondary antibody (Santa Cruz Biotech) in Blotto for 1 hour at room temperature. Following 4×5 min washes, the proteins were visualized by chemiluminescence using West Dura detection reagent as described by the manufacturer (Pierce). The data were captured on a CCD-based imaging device (Alpha Inotech).

X-Ray Diffraction Data: Crystal data: $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClFN}_{3} \mathrm{O}_{2} \mathrm{~S}$, f.w. $=427.87$, colorless needle, triclinic, $P-1, a=8.8921(13), b=17.982(3), c=18.935(3) \AA, \alpha=72.680(2), \beta=82.543(2), \gamma=$ $77.465(2)^{\circ}, V=2814.5 \AA^{3}, Z=6, Z^{\prime}=3, d($ calcd $)=1.515 \mathrm{~g} \mathrm{~cm}^{-3} .16620$ reflections were collected at 100 K using a Bruker D8 platform diffractometer with an APEX CCD detector and $\mathrm{MoK} \alpha$ radiation. The structure was refined using 9455 independent reflections with all nonhydrogen atoms anisotropic and hydrogen atoms treated as idealized contributions. The symmetry independent structure consists of three chemically similar molecules. All software is contained in the APEX, SAINT and SHELXTL libraries of programs maintained by BrukerAXS (Madison, WI).

Mouse Pharmacokinetics: Male (Balb/c) mice (6 to 8 weeks of age) were obtained from Charles-River Laboratories (Hollister, CA). Animals were acclimated for a minimum of 3 days prior to performing any experimental procedures. A 12-hr light: 12-hr dark cycle was maintained throughout the course of all experiments in a temperature and humidity controlled vivarium facility. Animals were fed standard laboratory rodent chow, and water ad libitum. For intravenous (IV) administration, 12 overnight fasted animals received a single dose of 3 or 1 $\mathrm{mg} / \mathrm{kg}$ body weight (3 or $1 \mathrm{~mL} / \mathrm{kg}$) via penile vein injection under light isoflurane anesthesia in 10% DMSO; 30% PEG-400 and 60% HP β CD ($30 \% \mathrm{w} / \mathrm{v}$ in water). For oral (PO) administration, 9 overnight fasted animals received a single dose of $10 \mathrm{mg} / \mathrm{kg}$ body weight ($10 \mathrm{~mL} / \mathrm{kg}$) via oral gavage in a suspension of 0.5% Tween-80, 0.5% PVP-K30, 9% PEG- 400 and 90% CMC in water $(0.5 \% \mathrm{w} / \mathrm{v})$. PO dose suspensions were dispersed with an electric homogenizer, followed by treatment with a sonicator probe on wet ice. Blood samples ($\sim 125 \mu \mathrm{~L}$) were collected by puncture of the submandibular vein (i.e. the cheek pouch method) into lithium heparin pretreated tubes at 0 (pre-dose), 5, 10, 20 and 40 minutes, $1,2,4,8,12$ and 24 hours following IV administration and at 0 (pre-dose), $0.25,0.5,1,2,4,8,12$ and 24 hours post-dose following PO
administration, such that no animal was sampled more than 3 times. Plasma was isolated by centrifugation and stored at $-80^{\circ} \mathrm{C}$ until analysis by LC-MS/MS.

Sample analyses were performed by LC-MS using a PE Sciex API 4000 Q-Trap mass spectrometer tandem with Agilent 1100 chromatography system. Polar-RP Synergi column from Phenomenex ($2.0 \times 3.0 \mathrm{~mm}, 4.0$ micron). Chromatography was performed using a gradient system using two mobile phases A and B. The mobile phase A consisted of 0.1% formic acid in water and mobile phase B of 0.1% formic acid in acetonitrile. Mobile phase B was ramped from 0% to 100% from 0.0 to 1.0 min and was held at 100% B from 1.0 to 1.9 min. From 2.0 to 2.7 \min, column was equilibrated to the initial condition at $100 \% \mathrm{~A}$. Flow rate for the gradient was set at $1.0 \mathrm{~mL} / \mathrm{min}$. Mass spectrometry detection was carried out on a PE Sciex API4000 Q-Trap equipped with a Turbo IonSpray source. ESI+ mass spectra were acquired with multiple reaction monitoring (MRM). The plasma samples were prepared by protein precipitation monitored with an internal standard. Standard curve was prepared by spiking control plasma with the compound and serial dilutions from this spiked solution generated different levels of the standard curve. A weighted linear least squares regression was then performed to generate a correlation between concentration and the relative amounts of analyte and internal standard for compound. Twelve standard curve were used, highest level at $10,000 \mathrm{ng} / \mathrm{mL}$. Lowest level of detection was at 4.0 $\mathrm{ng} / \mathrm{mL}$.

Mouse Liver Microsome Assay: Test article in DMSO was added to incubation buffer such that the final DMSO concentration was $0.4 \%(\mathrm{v} / \mathrm{v})$. Microsomes were stored at $-70^{\circ} \mathrm{C}$ until use, thawed on ice and then diluted to $5 \mathrm{mg} / \mathrm{mL}$ in Phosphate buffer immediately before use. Microsome incubations were performed in 100 mM Phosphate buffer (pH 7.4), containing 0.1% BSA (fatty acid free), 1 mM EDTA, 3 mM MgCl 2 , alamethicin ($50 \mu \mathrm{~g} / \mathrm{mg}$ microsomal protein) and 1.25 mM D-Saccharic acid 1,4-lactone. D-saccharic acid 1,4-lactone is an inhibitor of β glucuronidase, an enzyme which can rapidly hydrolyze glucuronide conjugates. Microsomes Page 18 of 82
and test article in incubation buffer were pre-warmed in triplicate at $37^{\circ} \mathrm{C}$ for 5 minutes. Reactions were initiated by addition of $25 \mu \mathrm{~L}$ of NADPH-regenerating system (consisting of 20 mM NADP, 100 mM glucose-6-phosphate, $20 \mathrm{U} / \mathrm{mL}$ glucose-6-phosphate dehydrogenase and 100 mM UDPGA). Final incubation volume was 0.5 mL with a test article concentration of 5 $\mu \mathrm{M}$. At specified time points, $100 \mu \mathrm{~L}$ aliquots were removed and combined with $300 \mu \mathrm{~L}$ of chilled quenching reagent (1:2 water: acetonitrile) containing internal standard (IS). Sample plates were then centrifuged at $1,500 \mathrm{~g}$ for 15 minutes and supernatants submitted for LCMS/MS analysis. Relative test article concentrations were defined by the analyte/IS peak ratios in each sample.

Cytochrome P450 Inhibition Assay: Compounds were evaluated for biochemical inhibition of cytochrome P450 using the Vivid CYP450 Blue assay (Invitrogen) adapted to 1536-well plate format. Briefly, individual isozymes and their blue substrates were diluted to a 2 X working concentration in 1X assay buffer. Isozyme concentrations were: 3A4, $10 \mathrm{nM} ; 2 \mathrm{D} 6,40 \mathrm{nM} ; 1 \mathrm{~A} 2$, $12 \mathrm{nM} ; 2 \mathrm{C} 9,20 \mathrm{nM}$; and 2C19, 10 nM . 2X Regeneration System was included in the isozyme mix. Substrate concentrations were: 40 nM for 3 A 4 and 2D6; $20 \mu \mathrm{M}$ for 1A2, 2C9, and 2C19. NADP+ was added to the substrate mix at a concentration of $400 \mu \mathrm{M}$ for the assays. A volume of $2.5 \mu \mathrm{~L}$ of the isozyme mix was dispensed into black Greiner 1536 -well plates. Then, 30 nL of compound was added to the wells. Subsequently, $2.5 \mu \mathrm{~L}$ of the blue substrate was added and plates were incubated for 1 hour at room temperature. Four replicate data points are obtained per compound at each concentration. Inhibition of substrate turnover was measured using a fluorescent plate reader with excitation at 405 nm and emission at 450 nm (Molecular Devices).

Compound 7: N-((2-Oxo-1,2-dihydroquinolin-4-yl)methyl)- N-phenylfuran-2-carboxamide

Compound 8: N-((8-Fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)- N-phenylfuran-2carboxamide

Page $\mathbf{2 2}$ of $\mathbf{8 2}$

Compound 9: 4-Methyl- N-((2-oxo-1,2-dihydroquinolin-4-yl)methyl)- N-phenylthiazole-5carboxamide

Compound 10: N-((8-Fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methyl- N -phenylthiazole-5-carboxamide

Page $\mathbf{2 4}$ of $\mathbf{8 2}$

Compound 11: N-(2-Chlorophenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Compound 12: N-(3-Chlorophenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Compound 13: N-(4-Chlorophenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Compound 14: N-((8-Fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)- N-(3-fluorophenyl)-4-methylthiazole-5-carboxamide

Page $\mathbf{2 9}$ of 82

Compound 15: N-(3-Cyanophenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Compound 16: N-(3-Methylphenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Page 32 of 82

Compound 17: N-(3-Methoxyphenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier \& Dilution Factor with ISTDs				
Signal 1: DAD1 B, Sig= 254,16 Ref $=360,100$				
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
15.981 BB	0.1301	4735.00977	552.0305	100.0000
Totals :		4735.00977	552.0305	

Compound 18: N -(3-Chlorophenyl)- N -((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)thiazole-5-carboxamide

$\underset{\#}{\text { Peak }}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	Area
1	5.757	BB	0.1324	23.04755	2.67786	1.3293
2	6.140	BB	0.1267	1685.81738	191.56599	97.2305
3	6.857	BV	0.0829	10.52154	1.73202	0.6068
4	6.968	VV	0.0937	9.05845	1.39767	0.5230
5	7.087	VB	0.0734	5.38075	1.02166	0.3103
Totals				1733.83567	198.39520	

Compound 19: N-(3-Chlorophenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-2-methylnicotinamide

Compound 20: N-(3-Chlorophenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-3-
methylisonicotinamide

Page 38 of 82

Compound 21: N-(3-Chlorophenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylnicotinamide

21

Compound 22: N-(3-Chlorophenyl)- N -((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-3-methylpicolinamide

22

Compound 23: N-(3-Chlorophenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-1-methyl- 1 H -imidazole-5-carboxamide

Signal 1: DAD1 B, Sig=254,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	4.881	BB	0.1637	3212.71289	298.23834	97.2035
2	6.173	BB	0.1564	54.31204	4.78523	1.6433
3	6.791	BB	0.1327	38.11776	4.33170	1.1533
Totals				3305.14268	307.35527	

Compound 24: N-(3-Chlorophenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-3,5-dimethylisoxazole-4-carboxamide


```
l======================================================================== 3
1%-95% ACCN in Na, Sig=254,4Ref=360,100(0050301D)
DAD1 A, Sig=254,4 Ref=360,100(005-0301.D)
```



```
\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000
\end{tabular}
Multiplier : 1.0000
Dilution 
Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{aligned}
& \text { RetTime } \\
& {[\mathrm{min}]}
\end{aligned}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[m A U * s]}
\end{gathered}
\] & Height [mAU] & \[
\begin{gathered}
\text { Area } \\
\%
\end{gathered}
\] \\
\hline 1 & 6.300 & BB & 0.1308 & 3914.82495 & 462.19650 & 100.0000 \\
\hline Totals & & & & 3914.82495 & 462.19650 & \\
\hline
\end{tabular}
```

Compound 25: N-(3-Chlorophenyl)- N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4yl)methyl)cyclopentanecarboxamide

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	\vdots	1.0000
Use Multiplier \& Dilution	Factor	with
ISTDs		

Signal 1: DAD1 A, Sig=254,4 Ref=360,100
$\left.\begin{array}{cccccc}\begin{array}{c}\text { Peak } \\ \text { RetTime Type } \\ \text { [min] }\end{array} & \begin{array}{c}\text { Width } \\ \text { [min] }\end{array} & \begin{array}{c}\text { Area } \\ \text { [mAU*S] }\end{array} & \begin{array}{c}\text { Height } \\ \text { [mAU] }\end{array} & \begin{array}{c}\text { Area } \\ \%\end{array} \\ \hdashline-\mid & 6.209 & \text { BB } & 0.1766 & 175.76521 & 15.46430\end{array}\right) 4.7737$

Compound 26: N -(3-Chlorophenyl)- N -((8-fluoro-2-oxo-1,2-dihydroquinolin-4yl)methyl)isobutyramide

Compound 27: N-(3-Chlorophenyl)-4-methyl- N-((2-oxo-1,2-dihydropyridin-4-yl)methyl)thiazole-5-carboxamide

Compound 28: N-(3-Chlorophenyl)-4-methyl- N-((2-oxo-1,2,5,6,7,8-hexahydroquinolin-4-yl)methyl)thiazole-5-carboxamide

28

28

Compound 29: N-(3-Chlorophenyl)- N-((8-fluoro-2-oxo-2H-chromen-4-yl)methyl)-5-methylthiazole-4-carboxamide

Compound 30: N-(3-Chlorophenyl)- N-((8-fluoro-2-methoxyquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

30

Compound 31: N-(3-chlorophenyl)- N-((8-fluoro-1-methyl-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Area Percent Report				
Sorted By	:	Signal		
Multiplier	:	1.0000		
Use Multiplier \& Dilution Factor with ISTDs				
Signal 1: DAD1 B, Sig= 254,16 Ref $=360,100$				
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \vdots \end{gathered}$
16.742 BB	0.1259	3586.06836	436.33945	100.0000
Totals		3586.06836	436.33945	

Compound 32: N-(3-Chlorophenyl)- N-((8-fluoroquinolin-4-yl)methyl)-4-methylthiazole-5carboxamide

Compound 33: N-(3-Chlorophenyl)- N-((8-fluoroisoquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Page 56 of 82

Compound 34: 4-((N-(3-Chlorophenyl)-4-methylthiazole-5-carboxamido)methyl)-8fluoroisoquinoline 2-oxide

Signal 1: DAD1 A, Sig=254,4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \\ \hline 8 \end{gathered}$
1	5.680	BV	0.1255	53.81546	6.30801	0.7916
2	6.054	VB	0.1509	6744.15088	672.89453	99.2084
Total	s			6797.96634	679.20254	

Compound 35: N-(3-chlorophenyl)-4-methyl- N-((2-oxo-1,2-dihydroquinolin-4-yl)methyl)thiazole-5-carboxamide

Compound 36: N-((8-Chloro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)- N-(3-chlorophenyl)-4-methylthiazole-5-carboxamide

Compound 37: N-(3-Chlorophenyl)-N-((7-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

37

Compound 38: N-(3-chlorophenyl)- N-((6-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Page 62 of 82

(ming)

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text {] }} \end{gathered}$	Height [mAU]	Area
1	6.727	VB	0.1187	7429.33447	977.27155	99.8732
2	7.738	BB	0.1415	9.43596	1.15217	0.1268
Totals	s :			7438.77044	978.42371	

Compound 39: N-(3-Chlorophenyl)- N-((5-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Compound 40: N-(3-Chlorophenyl)- N-((7,8-difluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Compound 41: N-(3-Chloropheny)- N-((7,8-difluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylnicotinamide


```
ction Date : 8/21/2008 10:31:41 AM Seq. Line : 6
Sample Name : KuNu00930165 Location : Vial 8
```

Acq. Operator : 1 Inj: 1
Acq. Instrument : Kalypsys Inj Volume : $5 \mu \mathrm{pl}$
Sequence File : C:\CHEM32 \1 \SEQUENCE\DEF_LC2.S
Method : C: \CHEM32\1\METHODS $\backslash 1-95=$ LC.M
Last changed: 8/21/2008 9:05:30 AM by $\overline{1}$
$1 \%-95 \%$ AcCN in H20, . $05 \% \mathrm{TFA}$
(008-0601.D)

$===$	
	Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	\vdots	1.0000
Use Multiplier \&	Dilution Factor	with

Signal 1: DAD1 A, Sig=254,4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	Area $\%$
1	0.348	BV	0.0493	5.58121	1.65513	0.1385
2	0.516	VB	0.1011	12.56408	1.80846	0.3119
3	5.291		0.1550	4010.66528	399.90155	99.5496
Total	s :			4028.81058	403.36513	

Compound 42: N-(3-Chlorophenyl)- N-((7,8-difluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-1-methyl-1H-imidazole-5-carboxamide

42

Compound 43: N-(3-Chlorophenyl)- N-((7,8-difluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-3,5-dimethylisoxazole-4-carboxamide

Compound 44: N-(3-Chlorophenyl)- N-((3,8-difluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

Compound 45: N-(3-Chlorophenyl)- N-((7,8-difluoro-2-oxo-2H-chromen-4-yl)methyl)-4-methylthiazole-5-carboxamide

Compound 46: N-(3-Chlorophenyl)- N-((7,8-difluoroisoquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide

==1
$\begin{array}{lll}\text { Sorted By } & : & \text { Signa } \\ \text { Multiplier } & : & 1.0000\end{array}$
Dilution : 1.0000
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,16 Ref=360,100

Pea $\#$	$\begin{aligned} & \text { RetTime } \\ & {[\text { [min] }} \end{aligned}$	ype	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	5.768	BV	0.1225	75.00073	9.07174	5.0770
2	6.206	VB	0.1347	1402.25647	156.24416	94.9230
Totals						

Compound 47: 4-((N-(3-Chlorophenyl)-4-methylthiazole-5-carboxamido)methyl)-7,8-

 difluoroisoquinoline 2-oxide

$\begin{array}{lll}\text { Sorted BY } & : & \text { Signal } \\ \text { Multiplier } & : & 1.0000\end{array}$
Dilution : 1.0000
Use Multiplier \& Dilution Factor with ISTDs
Signal 1: DADI B, Sig=254,16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	$\underset{\%}{\text { Area }}$
----1	6.138	BB	0.1322	4564.39355	510.85843	99.7648
2	7.849	BV	0.1494	10.76014	1.12715	0.2352
Total	s :			4575.15370	511.98558	

Compound \#	MF	MW	ESI+ Exact m/z	ESI+ Measured m/z	ESI+ Mass Defect (ppm)	ESI- Exact m/z	ESI- Measured m / z	ESI- Mass Defect (ppm)
7	C21H16N2O3	344.1161	345.1239	345.1239	0.00	343.1083	343.1085	0.58
8	C21H15N2O3F	362.1067	363.1145	363.1141	-1.10	361.0989	361.0985	-1.11
9	C21H17N3O2S	375.1041	376.1119	376.1121	0.53	374.0963	374.0959	-1.07
10	C21H16N3O2FS	393.0947	394.1025	394.1026	0.25	392.0869	392.0870	0.26
11	C21H15N3O2FSCl	427.0558	428.0636	428.0641	1.17	426.0480		
12	C21H15N3O2FSCl	427.0558	428.0636	428.0641	1.17	426.0480	426.0486	1.41
13	C21H15N3O2FSCl	427.0558	428.0636			426.0480	426.0478	-0.47
14	C21H15N3O2F2S	411.0853	412.0931	412.0923	-1.94	410.0775	410.0771	-0.98
15	C22H15N4O2FS	418.09	419.0978	419.0971	-1.67	417.0822	417.0821	-0.24
16	C22H18N3O2FS	407.1104	408.1182	408.1176	-1.47	406.1026	406.1027	0.25
17	C22H18N3O3FS	423.1053	424.1131	424.1125	-1.41	422.0975	422.0974	-0.24
18	C20H13N3O2FSCl	413.0401	414.0479	414.0472	-1.69	412.0323	412.0323	0.00
19	C23H17N3O2FCl	421.0993	422.1071			420.0915	420.0919	0.95
20	C23H17N3O2FCl	421.0993	422.1071			420.0915	420.0915	0.00
21	C23H17N3O2FCl	421.0993	422.1071			420.0915	420.0919	0.95
22	C23H17N3O2FCl	421.0993	422.1071			420.0915	420.0919	0.95
23	C21H16N4O2FCl	410.0946	411.1024	411.1019	-1.22	409.0868	409.0863	-1.22
24	C22H17N3O3FCl	425.0942	426.1020	426.1028	1.88	424.0864	424.0865	0.24
25	C22H20N2O2FCl	398.1197	399.1275	399.1274	-0.25	397.1119	397.1122	0.76
26	C20H18N2O2FCl	372.1041	373.1119	373.1118	-0.27	371.0963	371.0957	-1.62

27	C17H14N3O2SCl	359.0495	360.0573	360.0576	0.83	358.0417	358.0417	0.00
28	C21H20N3O2SCl	413.0965	414.1043	414.1046	0.72	412.0887	412.0889	0.49
29	C 21 H 14 N 2 O 3 FSCl	428.0398	429.0476	429.0470	-1.40	427.0320	427.0321	0.23
30	C22H17N3O2FSCl	441.0714	442.0792	442.0785	-1.58	440.0636	440.0640	0.91
31	C 22 H 17 N 3 O 2 FSCl	441.0714	442.0792	442.0789	-0.68	440.0636		
32	C21H15N3OFSCl	411.0608	412.0686	412.0681	-1.21	410.0530	410.0533	0.73
33	C21H15N3OFSCl	411.0608	412.0686	412.0682	-0.97	410.0530		
34	C21H15N3O2FSCl	427.0558	428.0636	428.0644	1.87	426.0480	426.0486	1.41
35	C21H16N3O2SCl	409.0652	410.0730	410.0733	0.73	408.0574	408.0568	-1.47
36	C21H15N3O2SCl2	443.0262	444.0340			442.0184	442.0186	0.45
37	C21H15N3O2FSCl	427.0558	428.0636	428.0641	1.17	426.0480	426.0482	0.47
38	C21H15N3O2FSCl	427.0558	428.0636	428.0628	-1.87	426.0480	426.0472	-1.88
39	C21H15N3O2FSCl	427.0558	428.0636			426.0480	426.0487	1.64
40	C21H14N3O2F2SCl	445.0463	446.0541	446.0537	-0.90	444.0385	444.0381	-0.90
41	C 23 H 16 N 3 O 2 F 2 Cl	439.0899	440.0977	440.0974	-0.68	438.0821	438.0820	-0.23
42	C 21 H 15 N 4 O 2 F 2 Cl	428.0852	429.0930	429.0922	-1.86	427.0774	427.0773	-0.23
43	C 22 H 16 N 3 O 3 F 2 Cl	443.0848	444.0926			442.0770	442.0767	-0.68
44	C21H14N3O2F2SCl	445.0463	446.0541			444.0385	444.0380	-1.13
45	C21H13N2O3F2SCl	446.0303	447.0381	447.0375	-1.34	445.0225	445.0220	-1.12
46	C21H14N3OF2SCl	429.0514	430.0592	430.0585	-1.63	428.0436		
47	C21H14N3O2F2SCl	445.0463	446.0541	446.0542	0.22	444.0385	444.0382	-0.68

Table 1. Crystal data and structure refinement for Cpd 12.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole

Cpd 12
C21 H15 Cl F N3 O2 S
427.87

100(2) K
0.71073 A

Triclinic
P-1
$\mathrm{a}=8.8921(13) \AA \quad \alpha=72.680(2)^{\circ}$
$b=17.982(3) \AA \quad \beta=82.543(2)^{\circ}$
$\mathrm{c}=18.935(3) \AA \quad \gamma=77.465(2)^{\circ}$
2814.5(7) \AA^{3}

6
$1.515 \mathrm{~g} / \mathrm{cm}^{3}$
$0.349 \mathrm{~mm}^{-1}$
1320
$0.22 \times 0.08 \times 0.04 \mathrm{~mm}^{3}$
1.87 to 25.00°
$-10<=\mathrm{h}<=9,-21<=\mathrm{k}<=21,-22<=\mathrm{l}<=22$
16620
$9455[\mathrm{R}(\mathrm{int})=0.0512]$
98.2 \%

None
0.9862 and 0.9272

Full-matrix least-squares on F^{2}
9455 / 0 / 794
1.011
$R 1=0.0584, w R 2=0.1363$
$R 1=0.1099, w R 2=0.1593$
0.837 and $-0.406 \mathrm{e}^{\AA^{-3}}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$)for Cpd 12 . U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
$\mathrm{Cl}\left(1{ }^{\prime \prime}\right)$	15733(1)	1875(1)	-4548(1)	40(1)
$\mathrm{Cl}\left(1^{\prime}\right)$	7275(2)	129(1)	4646(1)	34(1)
$\mathrm{Cl}\left(2^{\prime}\right)$	7634(6)	2718(3)	2227(3)	38(2)
$\mathrm{Cl}(1)$	-591(1)	6491(1)	2212(1)	40(1)
$F\left(1^{\prime \prime}\right)$	9436(3)	-1324(1)	724(1)	32(1)
F(1')	3760(3)	2140(1)	-858(1)	34(1)
$\mathrm{F}(1)$	7590(3)	4120(1)	-774(1)	34(1)
S(1')	3114(1)	2472(1)	4075(1)	30(1)
$S\left(1^{\prime \prime}\right)$	9455(2)	1661(1)	-5145(1)	39(1)
S(1)	3886(1)	5846(1)	4048(1)	33(1)
$\mathrm{O}\left(1^{\prime}\right)$	6577(3)	-148(2)	825(2)	31(1)
$\mathrm{O}\left(1^{\prime \prime}\right)$	6706(3)	967(2)	-1006(1)	29(1)
$\mathrm{O}(1)$	9523(3)	5310(2)	791(2)	29(1)
$\mathrm{O}\left(2^{\prime}\right)$	424(4)	2050(2)	2883(2)	36(1)
$\mathrm{O}\left(2^{\prime \prime}\right)$	9226(4)	459(2)	-3675(2)	45(1)
$\mathrm{O}(2)$	6936(4)	4254(2)	3388(2)	35(1)
N(1")	8461(4)	-126(2)	-492(2)	24(1)
$\mathrm{N}\left(1^{\prime}\right)$	4837(4)	966(2)	345(2)	26(1)
N(1)	8103(4)	4660(2)	349(2)	25(1)
$\mathrm{N}\left(2^{\prime}\right)$	1854(4)	3907(2)	3441(2)	30(1)
N(2")	9220(4)	3036(2)	-4959(2)	39(1)
N(2)	6244(5)	5937(2)	4643(2)	34(1)
N(3')	2974(4)	1470(2)	2834(2)	26(1)
N(3")	10935(4)	833(2)	-3131(2)	24(1)
N(3)	4964(4)	5036(2)	2717(2)	25(1)
C(1")	10276(5)	-1303(2)	66(2)	25(1)
$\mathrm{C}\left(1^{\prime}\right)$	2995(5)	2140(3)	-188(2)	29(1)
C(1)	6562(5)	4034(2)	-174(2)	26(1)
C(2")	11541(5)	-1881(2)	35(2)	28(1)
C(2^{\prime})	1719(5)	2719(3)	-144(2)	29(1)
C(2)	5325(5)	3698(2)	-159(2)	26(1)
C(3')	12379(5)	-1847(3)	-650(2)	29(1)
C(3')	961(5)	2698(3)	559(2)	33(1)

C(3)	4282(5)	3622(2)	474(2)	30(1)
C(4')	1498(5)	2123(3)	1178(2)	30(1)
C(4")	11930(5)	-1245(2)	-1266(2)	26(1)
C(4)	4521(5)	3888(2)	1049(2)	28(1)
C(5")	10625(5)	-650(2)	-1226(2)	22(1)
C(5')	2810(5)	1534(2)	1129(2)	27(1)
C(5)	5795(5)	4238(2)	1031(2)	22(1)
C(6")	10120(5)	16(2)	-1855(2)	23(1)
C(6')	3437(5)	904(2)	1762(2)	25(1)
C(6)	6080(5)	4559(2)	1608(2)	21(1)
C(7")	8844(5)	548(2)	-1781(2)	25(1)
$\mathrm{C}\left(7^{\prime}\right)$	4654(5)	350(2)	1648(2)	27(1)
C (7)	7293(5)	4926(2)	1517(2)	26(1)
$\mathrm{C}\left(8^{\prime \prime}\right)$	7916(5)	491(2)	-1087(2)	24(1)
C(8')	5446(5)	358(3)	924(2)	26(1)
C(8)	8385(5)	4987(2)	873(2)	25(1)
$\mathrm{C}\left(9^{\prime}\right)$	3564(5)	1548(2)	425(2)	26(1)
$\mathrm{C}\left(9{ }^{\prime \prime}\right)$	9776(5)	-686(2)	-549(2)	22(1)
$\mathrm{C}(9)$	6840(5)	4314(2)	401(2)	22(1)
$\mathrm{C}\left(10^{\prime}\right)$	2676(5)	846(3)	2537(2)	30(1)
$\mathrm{C}\left(10{ }^{\prime \prime}\right)$	11106(5)	52(2)	-2575(2)	28(1)
$\mathrm{C}(10)$	5035(5)	4446(2)	2316(2)	26(1)
$\mathrm{C}\left(11^{\prime}\right)$	4521(5)	1425(3)	3012(2)	26(1)
$\mathrm{C}\left(11{ }^{\prime \prime}\right)$	12176(5)	1247(2)	-3168(2)	27(1)
$\mathrm{C}(11)$	3925(5)	5780(2)	2462(2)	25(1)
C(12")	13188(5)	1383(2)	-3789(2)	27(1)
$\mathrm{C}\left(12{ }^{\prime}\right)$	5101(5)	839(3)	3637(2)	30(1)
C(12)	2356(5)	5774(3)	2486(2)	25(1)
C(13")	14414(5)	1737(3)	-3775(2)	28(1)
$\mathrm{C}\left(13{ }^{\prime}\right)$	6532(5)	845(2)	3848(2)	29(1)
C(13)	1365(5)	6485(3)	2209(2)	28(1)
C(14')	7372(5)	1418(3)	3448(2)	34(1)
C(14")	14675(5)	1947(3)	-3162(2)	34(1)
C(14)	1908(6)	7192(3)	1938(2)	33(1)
C(15")	13661(6)	1790(3)	-2539(2)	36(1)
$\mathrm{C}(15$)	6806(5)	1988(3)	2819(2)	32(1)
C(15)	3452(5)	7193(3)	1922(2)	32(1)
C(16")	12420(5)	1442(3)	-2535(2)	31(1)

$\mathrm{C}\left(1^{\prime}\right)$	$5371(5)$	$1990(3)$	$2599(2)$	$30(1)$
$\mathrm{C}(16)$	$4486(5)$	$6476(3)$	$2175(2)$	$29(1)$
$\mathrm{C}\left(17^{\prime \prime}\right)$	$9987(5)$	$962(3)$	$-3686(2)$	$31(1)$
$\mathrm{C}\left(17^{\prime}\right)$	$1766(5)$	$2028(3)$	$3004(2)$	$29(1)$
$\mathrm{C}(17)$	$5924(5)$	$4855(3)$	$3277(2)$	$27(1)$
$\mathrm{C}\left(18^{\prime \prime}\right)$	$9828(5)$	$1717(3)$	$-4287(2)$	$30(1)$
$\mathrm{C}\left(18^{\prime}\right)$	$2118(5)$	$2643(2)$	$3306(2)$	$24(1)$
$\mathrm{C}(18)$	$5692(5)$	$5387(2)$	$3770(2)$	$27(1)$
$\mathrm{C}\left(19^{\prime}\right)$	$2660(5)$	$3473(3)$	$3998(2)$	$30(1)$
$\mathrm{C}\left(19^{\prime \prime}\right)$	$9106(5)$	$2669(3)$	$-5440(2)$	$39(1)$
$\mathrm{C}(19)$	$4747(6)$	$6133(3)$	$4647(2)$	$37(1)$
$\mathrm{C}\left(20^{\prime}\right)$	$1530(5)$	$3436(3)$	$3043(2)$	$27(1)$
$\left.\mathrm{C}(20)^{\prime \prime}\right)$	$9648(5)$	$2491(3)$	$-4288(2)$	$35(1)$
$\mathrm{C}(20)$	$6805(5)$	$5482(2)$	$4153(2)$	$31(1)$
$\mathrm{C}\left(21^{\prime}\right)$	$557(5)$	$3831(3)$	$2401(2)$	$36(1)$
$\mathrm{C}\left(21^{\prime \prime}\right)$	$9882(6)$	$2804(3)$	$-3679(2)$	$42(1)$
$\mathrm{C}(21)$	$8487(5)$	$5150(3)$	$4110(3)$	$40(1)$

${ }^{\text {i }}$ Isler, O.; Gutmann, H.; Straub, O.; Fust, B.; Bohni, E.; Studer, A. Chemotherapy of experimental tuberculosis. II. Isonicotinic acid hydrazides substituted in the nucleus, Helv. Chim. Acta., 1955, 38, 1033-1046.
ii Quin, L. D.; Russell, J, W.; Prince, R. D.; Shook, H. E. Double-bond migration in 1-methyl-4(carbethoxymethylene)phosphorinane. J. Org. Chem. 1971, 36 (11), 1495-1499.
${ }^{\text {iii }}$ Li, H.-Y.; McMillen, W. T.; Heap, C. R.; McCann, D. J.; Yan, L.; Campbell, R. M.; Mundla, S. R.; King, C.-H. R.; Dierks, E. A.; Anderson, B. D.; Britt, K. S.; Huss, K. L.; Voss, M. D.; Wang, Y.; Clawson, D. K.; Yingling, J. M.; Sawyer, J. S. Optimization of a dihydropyrrolopyrazole series of transforming growth factor- β type I receptor kinase domain inhibitors: discovery of an orally bioavailable transforming growth factor- β receptor type I inhibitor as antitumor agent. J. Med. Chem. 2008, 51(7), 2302-2306.

