Characterization of β-B-Agostic Isomers in Zirconocene Amidoborane Complexes

Taryn D. Forster, Heikki M. Tuononen,[†] Masood Parvez, and Roland Roesler*

Contribution from the Department of Chemistry, University of Calgary, 2500 University Drive

NW, Calgary, AB, T2N 1N4 Canada, and Department of Chemistry, University of Jyväskylä,

P.O. Box 35, FIN-40014 Jyväskylä, Finland †

roesler@ucalgary.ca

- Supporting Information -

Page

Experimental details	S2
¹ H, ¹³ C and ¹¹ B NMR spectra for 1a , b , 2a , b , and 3a , b	S6
Infrared and Raman spectra for 1a,b, 2a,b, and 3a,b	S46
Powder X-ray diffraction data for 1	S52
Single crystal X-ray diffraction data for 1bI , 1bII , 2b , and 3a	S53
Computational details for 1a, 1b, 2a, 2b, 3a, 3b, 4a, and 4b	S76
References	S92

Topic

Experimental Section

General considerations. All operations were carried out with careful exclusion of air and moisture using standard Schlenk and glove box techniques. The solvents were dried and deoxygenated prior to use. Starting materials were purchased from commercial suppliers and used as received. All NMR spectra were run on either a Bruker Avance DRX-400 or a DRY-400 instrument and chemical shifts are reported in δ units (ppm) using the solvent as an internal reference: C₆D₅H (7.15 ppm, ¹H) and C₆D₆ (128.39, ¹³C); THF-d₇ (3.58 ppm, ¹H) and THF-d₈ (67.57 ppm, ¹³C); toluene-d₇ (2.09 ppm, ¹H), and toluene-d₈ (20.4 ppm, ¹³C). BF₃·Et₂O (0 ppm) was used as reference for the ¹¹B NMR measurements. The infrared spectra were recorded using KBr pellets on a Nicolet Nexus 470 CSI optics FT-IR instrument while the Raman spectra were recorded using a Bruker Vortex 70 RT-DLaTGS RAM II instrument. The powder X-ray diffraction pattern was recorded on a Rigaku multiflex diffractometer.

Synthesis of Cp₂Zr(H)NH₂BH₃, 1

THF (30 mL) was condensed over a mixture of ammonia borane (0.302 g, 9.8 mmol) and Cp_2ZrCl_2 (1.43 g, 4.9 mmol). The reactants dissolved upon warming up to room temperature and the solution was subsequently cooled to -78 °C. *n*BuLi (1.6 M in hexanes, 6.07 mL, 9.7 mmol) was added, the mixture was stirred at -78 °C for 2 hours and then allowed to warm to room temperature. The solvent was removed in vacuum, benzene (25 mL) was added to the remaining solid and the slurry was filtered. $Cp_2Zr(H)NH_2BH_3$ (0.98 g, 3.5 mmol, 71%) was isolated upon removal of benzene in vacuum. X-ray quality single crystals were obtained by cooling a saturated toluene solution to -35 °C. The solid compound could be handled in the air for short periods of time, but showed signs of hydrolysis with formation of ammonia borane after exposure to the air for a few hours.

EA: Calcd.: C 47.60, H 6.41, N, 5.55. Found: C 47.49, H 6.45, N 5.42.

IR (KBr): $v(\text{cm}^{-1}) = 3377$ (w, NH), 3305 (m, NH), 3081 (w, CH), 2376 (s, BH_{term}), 2304 (m, BH_{term}), 1899 (w, BH_{bridging}), 1824 (m, BH_{bridging}), 1553 (s, ZrH).

Raman: v(cm⁻¹)= 3115 (m, CH), 3085 (m, CH), 2380 (m, BH_{term}), 2308 (w, BH_{term}).

¹H NMR (C₆D₆, 400 MHz, 20 °C): **Isomer 1** (~50%) δ (ppm) = 0.15 (q, br, 3H, B<u>H</u>₃, ¹J_{BH} = 91.0 Hz), 0.49, (s, br, 2H, N<u>H</u>₂), 3.58 (s, 1H, Zr<u>H</u>), 5.43 (s, 10H, C₅<u>H</u>₅); **Isomer 2** (~50%) δ (ppm) =

0.10, (s, br, 2H, N<u>H</u>₂), 0.15 (q, br, 3H, B<u>H</u>₃ ${}^{1}J_{BH}$ = 91.0 Hz), 3.61 (s, 1H, Zr<u>H</u>), 5.29 (s, 10H, C₅<u>H</u>₅).

¹H NMR (THF-d₈, 400 MHz, 20 °C): **Isomer 1** (~66%) δ (ppm) = -0.44 (q, br, 3H, B<u>H</u>₃, ¹J_{BH} = 88.0 Hz), 1.41 (s, br, 2H, N<u>H</u>₂), 3.12 (s, 1H, Zr<u>H</u>), 5.71 (s, 10H, C₅<u>H</u>₅); **Isomer 2** (~33%) δ (ppm) = -0.44(q, br, 3H, B<u>H</u>₃, ¹J_{BH} = 88.0 Hz), 1.41 (s, br, 2H, N<u>H</u>₂), 3.49 (s, 1H, Zr<u>H</u>), 5.76 (s, 10H, C₅<u>H</u>₅).

¹H NMR (toluene-d₈, 400 MHz, 20 °C): **Isomer 1** (identified as **1a**) (~50%) δ (ppm) = -0.34 (q, br, 3H, B<u>H</u>₃, 0.44, (s, br, 2H, N<u>H</u>₂), 3.51 (s, 1H, Zr<u>H</u>), 5.41 (s, 10H, C₅<u>H</u>₅); **Isomer 2** (identified as **1b**) (~50%) δ (ppm) = 0.06, (s, br, 2H, N<u>H</u>₂), 0.06 (q, br, 3H, B<u>H</u>₃ ¹J_{BH} = 91.0 Hz), 3.51 (s, 1H, Zr<u>H</u>), 5.28 (s, 10H, C₅<u>H</u>₅).

¹H NMR (toluene-d₈, 400 MHz, 60 °C): **Isomer 1** (identified as **1a**) (~50%) δ (ppm) = -0.38 (q, br, 3H, B<u>H</u>₃, 0.45, (s, br, 2H, N<u>H</u>₂), 3.56 (s, 1H, Zr<u>H</u>), 5.43 (s, 10H, C₅<u>H</u>₅); **Isomer 2** (identified as **1b**) (~50%) δ (ppm) = 0.01 (q, br, 3H, B<u>H</u>₃ ¹J_{BH} = 91.0 Hz), 0.09, (s, br, 2H, N<u>H</u>₂), 3.53 (s, 1H, Zr<u>H</u>), 5.31 (s, 10H, C₅<u>H</u>₅).

¹H NMR (toluene-d₈, 400 MHz, -60 °C): **Isomer 1** (identified as **1a**) (~50%) δ (ppm) = -2.88 (q, br, 1H, B- μ <u>H</u>-Zr), 0.53, (s, br, 2H, N<u>H</u>₂), 1.11 (q, br, 3H, B<u>H</u>₂, 3.49 (s, 1H, Zr<u>H</u>), 5.36 (s, 10H, C₅<u>H</u>₅); **Isomer 2** (identified as **1b**) (~50%) δ (ppm) = 0.16, (s, br, 2H, N<u>H</u>₂), 0.26 (q, br, 3H, B<u>H</u>₃ ¹J_{BH} = 91.0 Hz), 3.40 (s, 1H, Zr<u>H</u>), 5.21 (s, 10H, C₅<u>H</u>₅).

¹¹B NMR (C₆D₆, 128.4 MHz, 20 °C): **Isomer 1** δ (ppm) = -33.9 (q, ¹J_{BH} = 91.0 Hz); **Isomer 2** δ (ppm) = -33.5 (q, ¹J_{BH} = 91.0 Hz).

¹¹B NMR (THF-d₈, 128.4 MHz, 20 °C): **Isomer 1** δ (ppm) = -34.0 (q, ¹J_{BH} = 88.0 Hz); **Isomer 2** δ (ppm) = -34.3 (q, ¹J_{BH} = 88.0 Hz).

¹¹B NMR (toluene-d₈, 128.4 MHz, 20 °C): **Isomer 1** δ (ppm) = -33.5 (q, ¹J_{BH} = 88.0 Hz); **Isomer 2** δ (ppm) = -33.9 (q, ¹J_{BH} = 88.0 Hz).

¹³C NMR (C₆D₆, 100.6 MHz, 20 °C): **Isomer 1** δ 103.88 (<u>C</u>₅H₅); **Isomer 2** δ 103.91 (<u>C</u>₅H₅).

¹³C NMR (THF-d₈, 100.6 MHz, 20 °C): **Isomer 1** δ (ppm) = 104.25 (<u>C</u>₅H₅); **Isomer 2** δ (ppm) = 104.16 (<u>C</u>₅H₅).

¹³C NMR (toluene-d₈, 100.6 MHz, 20 °C): **Isomer 1** δ (ppm) = 103.84 (<u>C</u>₅H₅); **Isomer 2** δ (ppm) = 103.87 (<u>C</u>₅H₅).

Synthesis of Cp*₂Zr(H)NH₂BH₃, 2

THF (30 mL) was condensed over a mixture of ammonia borane (0.1 g, 3.2 mmol) and $Cp*_2ZrCl_2$ (0.7 g, 1.6 mmol). The reactants dissolved upon warming up to room temperature and the solution was subsequently cooled to -78 °C. *n*BuLi (1.6 M in hexanes, 2.02 mL, 3.2mmol) was added, the mixture was stirred at -78 °C for 2 hours and then allowed to warm to room temperature. The solvent was removed in vacuum, benzene (25 mL) was added to the remaining solid and the slurry was filtered. $Cp*_2Zr(H)NH_2BH_3$ (0.52 g, 2.06 mmol, 64%) was isolated upon removal of benzene in vacuum. X-ray quality single crystals were obtained by slow evaporation of a toluene solution.

IR (KBr): $v(cm^{-1}) = 3430$ (w, NH), 3366 (w, NH), 2903 (m, CH), 2390 (m, BH_{term}), 2318 (m, BH_{term}), 1892 (w, BH_{bridging}), 1819 (w, BH_{bridging}), 1531 (m ZrH).

Raman: $v(\text{cm}^{-1}) = 2904$ (vs, CH), 2397 (w, BH_{term}), 2321 (w, BH_{term}).

¹H NMR (C₆D₆, 400 MHz, 20 °C): **Isomer 1** (~80): ¹H NMR δ (ppm) = -0.10, (s, br, 2H, N<u>H</u>₂), -0.05 (q, br, 3H, B<u>H</u>₃, ¹J_{BH} = 90 Hz), 1.76 (s, 30H, C₅(C<u>H</u>₃)₅), 4.15 (s, 1H, Zr<u>H</u>); **Isomer 2** (~20%) δ (ppm) = -0.05 (q, br, 3H, B<u>H</u>₃, ¹J_{BH} = 90 Hz), 0.40, (s, br, 2H, N<u>H</u>₂), 1.84 (s, 30H, C₅(C<u>H</u>₃)₅), 4.08 (s, 1H, Zr<u>H</u>).

¹¹B NMR (C₆D₆, 128.4 MHz, 20 °C): **Isomer 1** δ (ppm) = -29.6 (q, ¹J_{BH} = 90 Hz); **Isomer 2** δ (ppm) = -31.9 (q, ¹J_{BH} = 90 Hz).

¹³C NMR (C₆D₆, 100.6 MHz, 20 °C): **Isomer 1** δ (ppm) = 11.76 (C₅(<u>C</u>H₃)₅), 114.06 (<u>C₅(CH₃)₅</u>); **Isomer 2** δ (ppm) = 12.26 (C₅(<u>C</u>H₃)₅), 115.09 (<u>C₅(CH₃)₅</u>).

Synthesis of Cp₂Zr(Cl)NH₂BH₃, 3

THF (30 mL) was condensed over a mixture of ammonia borane (0.3 g, 9.7 mmol) and Cp₂ZrCl₂ (2.84 g, 9.7 mmol). The reactants dissolved upon warming up to room temperature and the solution was subsequently cooled to -78 °C. *n*BuLi (1.6 M in hexanes, 6.07 mL, 9.7 mmol) was added, the mixture was stirred at -78 °C for 2 hours and then allowed to warm to room temperature. The solvent was removed in vacuum, benzene (25 mL) was added to the remaining solid and the slurry was filtered. Cp₂Zr(Cl)NH₂BH₃ (1.48 g, 5.9 mmol, 60%) was isolated upon removal of benzene in vacuum. X-ray quality single crystals were obtained by cooling a saturated toluene solution to -35 °C.

EA: Calcd.: C 41.88, H 5.28, N, 4.89. Found: C 41.92, H 5.34, N 3.95.

IR (KBr): $v(cm^{-1}) = 3384$ (m, NH), 3280 (s, NH), 3097 (m, CH), 2393 (s, BH_{term}), 2320 (m, BH_{term}), 1868 (m, BH_{bridging}), 1792 (m, BH_{bridging}).

Raman: $v(cm^{-1}) = 3115$ (m, CH), 3091 (m, CH), 2395 (s, BH_{term}), 2323 (m, BH_{term}).

¹H NMR (C₆D₆, 400 MHz, 20 °C): **Isomer 1** (~80%) δ (ppm) = 0.36 (q, br, 3H, B<u>H</u>₃, ¹J_{BH} = 93.7 Hz), 1.46, (s, br, 2H, N<u>H</u>₂), 5.61 (s, 10H, C₅<u>H</u>₅); **Isomer 2** (~20%) δ (ppm) = 0.36 (q, br, 3H, B<u>H</u>₃, ¹J_{BH} = 93.7 Hz), 1.46, (s, br, 2H, N<u>H</u>₂), 6.01 (s, 10H, C₅<u>H</u>₅).

¹H NMR (THF-d₈, 400 MHz, 20 °C): **Isomer 1** (~85%) ¹H NMR δ (ppm) = 0.20 (q, br, 3H, BH₃, ¹J_{BH} = 94.4 Hz), 2.76, (s, br, 2H, NH₂), 6.08 (s, 10H, C₅H₅); **Isomer 2** (~15%) δ (ppm) = 0.20 (q, br, 3H, BH₃, ¹J_{BH} = 94.4 Hz), 2.76, (s, br, 2H, NH₂), 6.37 (s, 10H, C₅H₅);

¹¹B NMR (C₆D₆, 128.4 MHz, 20 °C): **Isomer 1** δ (ppm) = -22.6 (q, ¹J_{BH} = 93.7 Hz); **Isomer 2** δ (ppm) = -21.2 (q, ¹J_{BH} = 93.7 Hz).

¹¹B NMR (THF-d₈, 128.4 MHz, 20 °C): **Isomer 1** δ (ppm) = -23.0 (q, ¹J_{BH} = 94.4 Hz); **Isomer 2** δ (ppm) = -22.4 (q, ¹J_{BH} = 94.4 Hz).

¹³C NMR (C₆D₆, 100.6 MHz, 20 °C): **Isomer 1** δ (ppm) = 111.72 (<u>C</u>₅H₅); **Isomer 2** δ (ppm) = 114.50 (<u>C</u>₅H₅).

¹³C NMR (THF-d₈, 100.6 MHz, 20 °C): **Isomer 1** δ (ppm) = 112.20 (<u>C</u>₅H₅); δ (ppm) = 115.07 (<u>C</u>₅H₅).

Cp₂ZrCl₂ – NH₃BH₃ 1 :1 mixture, ¹H NMR in THF-d₈, 20 °C

 $Cp_2ZrCl_2 - NH_3BH_3$ 1 :1 mixture, ¹¹B NMR in THF-d₈, 20 °C

15 mg $Cp_2Zr(H)NH_2BH_3$, 1, ¹¹B NMR in C_6D_6

Cp_2Zr(H)NH_2BH_3, 1, 1 H NMR in THF-d_8, 20 °C

Cp₂Zr(H)NH₂BH₃, **1**, ¹¹B{¹H} NMR in THF-d₈, 20 °C

Cp_2Zr(H)NH_2BH_3, 1, $^{13}\text{C}\{^1\text{H}\}$ NMR in THF-d_8, 20 °C

15 mg Cp₂Zr(H)NH₂BH₃, 1, 11 B NMR in tol-d₈, 20 °C

$Cp_2Zr(H)NH_2BH_3,\,\textbf{1},\,{}^1H\{{}^{11}B\}\,NMR\text{ in tol-d}_8,\,60\ {}^\circ C$

 $Cp_2Zr(H)NH_2BH_3,\,\textbf{1},\,{}^1H\{{}^{11}B\}\,NMR\text{ in tol-d}_8,\,40\ ^\circ C$

 $Cp_2Zr(H)NH_2BH_3,\,\textbf{1},\,{}^1H\{{}^{11}B\}\,NMR\text{ in tol-d}_8,\,25\ {}^\circC$

Cp₂Zr(H)NH₂BH₃, 1, 1 H{ 11 B} NMR in tol-d₈, 0 °C

Cp₂Zr(H)NH₂BH₃, 1, ¹H NMR in tol-d₈, -20 °C

Cp₂Zr(H)NH₂BH₃, 1, 1 H{ 11 B} NMR in tol-d₈, -20 °C

Cp₂Zr(H)NH₂BH₃, 1, 1 H{ 11 B} NMR in tol-d₈, -60 °C

 $Cp_2Zr(H)NH_2BH_3,\,\textbf{1},\,COSY\{^{11}B\}\text{ in tol-d}_8,\,60\ ^\circ C$

 $Cp_2Zr(H)NH_2BH_3,\,\textbf{1},\,COSY\{^{11}B\}\text{ in tol-}d_8,\,-60\ ^\circ C$

 $Cp_2Zr(H)NH_2BH_3$, 1, $COSY\{^{11}B\}$ in tol-d₈, -60 °C, detail

$Cp*_{2}Zr(H)NH_{2}BH_{3}, \textbf{2}, \ ^{1}H \ NMR \ in \ C_{6}D_{6}, \ 20 \ ^{\circ}C \ (\$ \ indicates \ Cp*_{2}ZrCl_{2} \ impurity)$

 $Cp_{2}^{*}Zr(H)NH_{2}BH_{3}$, **2**, ¹¹B{¹H} NMR in C₆D₆, 20 °C

Cp*₂Zr(H)NH₂BH₃, **2**, ¹³C{¹H} NMR in C₆D₆, 20 °C (\$ indicates Cp*₂ZrCl₂ impurity)

Cp_2Zr(Cl)NH_2BH_3, **3**, ¹H NMR in C₆D₆, 20 °C

 $Cp_2Zr(Cl)NH_2BH_3,$ 3, ^{11}B NMR in $C_6D_6,$ 20 $^\circ C$

 $Cp_2Zr(Cl)NH_2BH_3,$ 3, $^{11}B\{^1H\}$ NMR in $C_6D_6,$ 20 $^{\circ}C$

Cp_2Zr(Cl)NH_2BH_3, ${\bf 3},\,^{11}C$ NMR in C_6D_6, 20 °C

 $Cp_2Zr(CI)NH_2BH_3$, **3**, ¹H NMR in THF-d₈, 20 °C

 $Cp_2Zr(CI)NH_2BH_3,$ 3, ^{11}B NMR in THF-d_8, 20 $^\circ C$

S44

Cp_2Zr(Cl)NH_2BH_3, $\boldsymbol{3},\ ^{13}C\{^1H\}$ NMR in THF-d_8, 20 °C

Cp₂Zr(H)NH₂BH₃, 1, powder X-ray pattern

Single crystal X-ray diffraction data for Cp₂Zr(H)NH₂BH₃, **1bII**

A colorless needle crystal of **1bII**, was coated with Paratone 8277 oil (Exxon) and mounted on a glass fiber. All measurements were made on a Nonius KappaCCD diffractometer with graphite monochromated Mo- K_{α} radiation. Details of crystal data, data collection^{1,2} and structure refinement have been provided in Table 1. The data were corrected for Lorentz and polarization effects and for absorption using multi-scan method¹.

The structure was solved by the direct methods³ and expanded using Fourier techniques⁴. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms on nitrogen, boron, and zirconium were refined isotropically, and the cyclopentadienyl hydrogen atoms were included at geometrically idealized positions and were not refined. The final cycle of full-matrix least-squares refinement using SHELXL97⁵ converged with unweighted and weighted agreement factors, R = 0.0323 and wR = 0.0665 (all data), respectively, and goodness of fit, S = 1.048. The weighting scheme was based on counting statistics and the final difference map had no chemically significant features.

Table 1. Crystal data and structure refinement for C	² p ₂ Zr(H)NH ₂ BH ₃ , 1bII .	
Identification code	tf840	
Empirical formula	$C_{20}H_{32}B_2N_2Zr_2$	
Formula weight	504.54	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 1 2/c 1	
Unit cell dimensions	a = 16.4630(6) Å	α=90°.
	b = 15.4550(5) Å	β=123.341(2)°.
	c = 10.1380(3) Å	$\gamma = 90^{\circ}$.
Volume	2154.92(12) Å ³	
Ζ	4	
Density (calculated)	1.555 Mg/m ³	
Absorption coefficient	0.973 mm ⁻¹	
F(000)	1024	
Crystal size	0.14 x 0.08 x 0.07 mm ³	
Theta range for data collection	2.41 to 27.48°.	
Index ranges	-21<=h<=21, -19<=k<=20, -13	3<=1<=13
Reflections collected	9977	
Independent reflections	2459 [R(int) = 0.0682]	
Completeness to theta = 27.48°	99.6 %	
Absorption correction	'Multi-scan'	
Max. and min. transmission	0.9350 and 0.8758	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2459 / 0 / 143	
Goodness-of-fit on F ²	1.048	
Final R indices [I>2sigma(I)]	R1 = 0.0268, wR2 = 0.0640	
R indices (all data)	R1 = 0.0323, wR2 = 0.0665	
Extinction coefficient	0.0025(4)	
Largest diff. peak and hole	0.484 and -0.524 e.Å ⁻³	

	Х	У	Z	U(eq)
C(6)	3955(2)	1574(2)	8690(4)	48(1)
C(7)	3671(2)	1094(2)	7319(3)	41(1)
C(8)	3620(2)	227(2)	7650(3)	35(1)
C(9)	3842(2)	181(2)	9192(3)	39(1)
C(10)	4054(2)	1013(2)	9824(3)	45(1)
N(1)	1460(1)	-61(1)	5894(2)	23(1)
B(1)	1337(2)	-445(2)	7166(3)	27(1)
C(1)	1032(2)	1875(2)	5284(3)	39(1)
C(2)	626(2)	1690(2)	6162(3)	38(1)
C(3)	1154(2)	2154(2)	7591(3)	33(1)
C(4)	1898(2)	2605(2)	7610(3)	33(1)
C(5)	1814(2)	2441(2)	6174(3)	37(1)
Zr(1)	2288(1)	1031(1)	7653(1)	19(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Cp₂Zr(H)NH₂BH₃, **1bII**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Figure 1. Solid-state molecular structures of 1bII with thermal ellipsoids at 50% probability.

Figure 2. Optimized molecular structures of 1a (left) and 1b (right).

N(1)-Zr(1)	2.2843(18)	N(1)-B(1)	1.531(3)
N(1)-H(4)	0.86(3)	N(1)-H(5)	0.84(3)
B(1)-Zr(1)	2.657(2)	B(1)-H(3)	1.11(3)
B(1)-H(1)	1.24(2)	B(1)-H(2)	1.11(3)
C-C	1.376(4) - 1.409(4)	C-Zr	2.480(2) - 2.524(2)
B(1)-N(1)-Zr(1)	85.86(12)	H(4)-N(1)-H(5)	111(2)
B(1)-N(1)-H(4)	116.5(16)	B(1)-N(1)-H(5)	112.7(17)
Zr(1)-N(1)-H(4)	116.7(17)	Zr(1)-N(1)-H(5)	112.6(17)
N(1)-B(1)-Zr(1)	59.05(10)	Zr(1)-B(1)-H(1)	45.0(11)
Zr(1)-B(1)-H(3)	117.0(13)	Zr(1)-B(1)-H(2)	124.8(17)
N(1)-B(1)-H(1)	103.9(11)	N(1)-B(1)-H(2)	115.3(16)
H(1)-B(1)-H(2)	104(2)	N(1)-B(1)-H(3)	112.9(12)
H(1)-B(1)-H(3)	104.6(17)	H(2)-B(1)-H(3)	115(2)
N(1)-Zr(1)-B(1)	35.09(7)	N(1)-Zr(1)-H(1)	61.4(7)
B(1)-Zr(1)-H(1)	26.3(7)	N(1)-Zr(1)-H(6)	123.0(8)
B(1)-Zr(1)-H(6)	87.9(8)	H(1)-Zr(1)-H(6)	61.8(10)
C-C-C	107.5(2) - 108.3(2)		

Table 3. Bond lengths [Å] and angles [°] for $Cp_2Zr(H)NH_2BH_3$, **1bII**.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(6)	30(1)	40(1)	79(2)	-19(1)	32(1)	-15(1)
C(7)	34(1)	57(2)	46(1)	14(1)	31(1)	7(1)
C(8)	20(1)	41(1)	44(1)	-13(1)	18(1)	1(1)
C(9)	22(1)	51(2)	44(1)	19(1)	19(1)	11(1)
C(10)	18(1)	81(2)	29(1)	-16(1)	8(1)	-3(1)
N(1)	20(1)	26(1)	22(1)	-5(1)	12(1)	0(1)
B(1)	25(1)	27(1)	29(1)	-4(1)	16(1)	-4(1)
C(1)	46(2)	34(1)	23(1)	2(1)	10(1)	16(1)
C(2)	25(1)	29(1)	44(1)	-3(1)	10(1)	6(1)
C(3)	34(1)	29(1)	39(1)	-1(1)	23(1)	10(1)
C(4)	41(1)	24(1)	33(1)	-4(1)	18(1)	2(1)
C(5)	51(2)	27(1)	36(1)	7(1)	27(1)	9(1)
Zr(1)	18(1)	21(1)	17(1)	-2(1)	10(1)	0(1)

Table 4. Anisotropic displacement parameters (Å²x 10³)for Cp₂Zr(H)NH₂BH₃, **1bII**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

	х	У	Z	U(eq)
H(12)	4060	2182	8810	58
H(13)	3538	1319	6348	49
H(14)	3462	-247	6953	42
H(15)	3847	-330	9718	46
H(16)	4236	1167	10860	55
H(1)	1810(18)	52(16)	8310(30)	32(6)
H(2)	1690(20)	-1084(18)	7630(40)	49(9)
H(3)	577(19)	-399(16)	6860(30)	31(6)
H(4)	1779(19)	-367(16)	5620(30)	27(6)
H(5)	932(19)	105(16)	5100(30)	25(6)
H(6)	2450(20)	1082(15)	9500(30)	32(7)
H(7)	815	1655	4266	47
H(8)	90	1318	5847	45
H(9)	1027	2159	8399	39
H(10)	2376	2960	8445	40
H(11)	2218	2674	5862	44

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for Cp₂Zr(H)NH₂BH₃, **1bII**.

Single crystal X-ray diffraction data for Cp₂Zr(H)NH₂BH₃, **1bI**

A colorless needle crystal of **1bI**, was coated with Paratone 8277 oil (Exxon) and mounted on a glass fiber. All measurements were made on a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation. Details of crystal data, data collection^{1,2} and structure refinement have been provided in Table 6. The data were corrected for Lorentz and polarization effects and for absorption using multi-scan method¹.

The structure was solved by the direct methods³ and expanded using Fourier techniques⁴. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were refined isoropically. The final cycle of full-matrix least-squares refinement using SHELXL97⁵ converged with unweighted and weighted agreement factors, R = 0.0819 and wR = 0.0841 (all data), respectively, and goodness of fit, S = 1.144. The weighting scheme was based on counting statistics and the final difference map had no chemically significant features.

5	12 () 2 3)	
Identification code	tf903	
Empirical formula	C ₁₀ H ₁₆ B N Zr	
Formula weight	252.27	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 2 ₁ /c 1	
Unit cell dimensions	a = 7.9840(5) Å	$\alpha = 90.000(3)^{\circ}$.
	b = 14.8370(5) Å	β=117.830(3)°
	c = 10.3050(5) Å	$\gamma = 90.000(2)^{\circ}.$
Volume	1079.52(9) Å ³	
Z	4	
Density (calculated)	1.552 Mg/m ³	
Absorption coefficient	0.971 mm ⁻¹	
F(000)	512	
Crystal size	0.06 x 0.02 x 0.02 mm ³	
Theta range for data collection	2.62 to 27.58°.	
Index ranges	-10<=h<=10, -19<=k<=	19, -13<=l<=13
Reflections collected	16239	
Independent reflections	2488 [R(int) = 0.1289]	
Completeness to theta = 27.58°	99.3 %	
Absorption correction	Multi-scan	
Max. and min. transmission	0.9808 and 0.9440	
Refinement method	Full-matrix least-squares	s on F ²
Data / restraints / parameters	2488 / 0 / 182	
Goodness-of-fit on F ²	1.144	
Final R indices [I>2sigma(I)]	R1 = 0.0536, wR2 = 0.07	762
R indices (all data)	R1 = 0.0819, wR2 = 0.08	841
Largest diff. peak and hole	0.636 and -0.648 e.Å ⁻³	

Table 6. Crystal data and structure refinement for $Cp_2Zr(H)NH_2BH_3$, **1bI**.

	Х	у	Z	U(eq)
C(1)	3168(7)	2210(4)	2651(7)	41(1)
C(2)	3272(7)	1302(4)	2956(6)	43(1)
C(3)	2701(7)	836(4)	1637(7)	38(1)
C(4)	2258(6)	1465(4)	540(5)	36(1)
C(5)	2557(7)	2319(4)	1172(6)	38(1)
C(6)	7233(9)	238(4)	3802(7)	47(2)
C(7)	8607(8)	908(4)	4308(6)	39(1)
C(8)	9119(8)	1079(4)	3217(6)	39(1)
C(9)	8087(8)	513(4)	2029(7)	45(2)
C(10)	6913(9)	7(4)	2396(7)	50(2)
B(1)	7095(9)	3225(4)	2207(6)	33(1)
N(1)	7161(6)	2822(3)	3607(5)	27(1)
Zr(1)	5760(1)	1579(1)	2210(1)	20(1)

Table 7. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Cp₂Zr(H)NH₂BH₃, **1bI**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Figure 3. Solid-state molecular structures of 1bI (left) and 1bII (right) with thermal ellipsoids at 50% probability.

Figure 4. Optimized molecular structures of 1a (left) and 1b (right).

	$F_1 = 0$) 2 3)		
B(1)-N(1)	1.539(7)	N(1)-Zr(1)	2.286(4)	
B(1)-Zr(1)	2.665(5)	B(1)-H(1)	1.22(4)	
N(1)-H(4)	0.81(5)	B(1)-H(2)	1.09(5)	
N(1)-H(5)	0.81(6)	B(1)-H(3)	1.10(4)	
Zr(1)-H(6)	1.71(4)	Zr(1)-H(1)	2.02(4)	
C-Zr	2.477(5) - 2.517(5)	C-C	1.375(8) - 1.398(8)	
N(1)-Zr(1)-H(1)	60.9(13)	B(1)-Zr(1)-H(1)	25.7(13)	
N(1)-Zr(1)-H(6)	125.1(14)	B(1)-Zr(1)-H(6)	90.0(14)	
B(1)-N(1)-Zr(1)	86.0(3)	H(1)-Zr(1)-H(6)	64.4(19)	
H(1)-B(1)-H(3)	104(3)	H(2)-B(1)-H(3)	111(3)	
Zr(1)-N(1)-H(4)	116(3)	Zr(1)-N(1)-H(5)	119(4)	
B(1)-N(1)-H(4)	115(3)	H(4)-N(1)-H(5)	110(5)	
B(1)-N(1)-H(5)	108(4)	N(1)-B(1)-Zr(1)	58.8(2)	
Zr(1)-B(1)-H(1)	46(2)	Zr(1)-B(1)-H(3)	122(2)	
Zr(1)-B(1)-H(2)	125(3)	H(1)-B(1)-H(2)	109(3)	
N(1)-B(1)-H(1)	105(2)	N(1)-B(1)-H(3)	115(2)	
N(1)-B(1)-H(2)	112(3)	C(10)-C(9)-C(8)	106.6(6) - 109.4(6)	

Table 8. Bond lengths [Å] and angles $[\circ]$ for $Cp_2Zr(H)NH_2BH_3$, **1bI**.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	21(3)	59(4)	48(4)	-24(3)	20(3)	-3(2)
C(2)	24(3)	78(4)	32(3)	18(3)	17(2)	5(3)
C(3)	30(3)	30(3)	59(4)	3(3)	24(3)	1(2)
C(4)	19(2)	59(4)	26(3)	-8(3)	7(2)	-2(2)
C(5)	23(3)	34(3)	51(4)	9(3)	14(2)	7(2)
C(6)	43(4)	41(3)	61(4)	30(3)	26(3)	18(3)
C(7)	36(3)	44(3)	33(3)	3(3)	12(3)	19(2)
C(8)	27(3)	41(3)	52(4)	1(3)	20(3)	5(2)
C(9)	46(4)	50(4)	42(3)	0(3)	24(3)	25(3)
C(10)	42(4)	26(3)	57(4)	-6(3)	2(3)	3(3)
B(1)	38(3)	28(3)	30(3)	-4(2)	13(3)	-5(2)
N(1)	23(2)	32(2)	27(2)	-7(2)	12(2)	1(2)
Zr(1)	19(1)	24(1)	19(1)	1(1)	9(1)	1(1)

Table 9. Anisotropic displacement parameters (Å²x 10³) for Cp₂Zr(H)NH₂BH₃, **1bI**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(1)	6370(60)	2640(30)	1280(50)	35(13)
H(2)	8510(70)	3370(30)	2340(50)	50(15)
H(3)	6160(60)	3810(30)	1750(50)	34(13)
H(4)	6550(70)	3090(30)	3930(50)	34(15)
H(5)	8260(80)	2790(40)	4230(60)	54(19)
H(6)	5330(60)	1430(30)	430(50)	35(13)
H(7)	3360(80)	2600(40)	3230(60)	52(19)
H(8)	3650(70)	1010(30)	3830(50)	38(14)
H(9)	2520(60)	240(30)	1480(50)	27(13)
H(10)	1790(60)	1340(30)	-400(50)	32(13)
H(11)	2410(70)	2830(30)	720(50)	41(15)
H(12)	6700(90)	50(40)	4300(70)	90(30)
H(13)	9070(70)	1160(30)	5140(50)	34(15)
H(14)	9970(70)	1480(40)	3270(50)	49(16)
H(15)	8200(90)	510(40)	1220(70)	70(20)
H(16)	6210(70)	-350(30)	1880(50)	32(15)

Table 10. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for Cp₂Zr(H)NH₂BH₃, **1bI**.

Single crystal X-ray diffraction data for Cp*₂Zr(H)NH₂BH₃, 2

Severe disorder of the Cp* groups prevented the location of the hydrogen atoms on the Fourier map and the structure was not included in this study.

Table 11. Crystal data and structure refinement for	$Cp*_2Zr(H)NH_2BH_3$, 2 .	
Identification code	tf909	
Empirical formula	$C_{20} H_{35} B N Zr$	
Formula weight	391.52	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 2 ₁ 2 ₁ 2 ₁	
Unit cell dimensions	a = 8.1330(2) Å	α=90°.
	b = 11.1820(4) Å	β= 90°.
	c = 22.3460(9) Å	$\gamma = 90^{\circ}$.
Volume	2032.22(12) Å ³	
Z	8	
Density (calculated)	2.559 Mg/m ³	
Absorption coefficient	1.082 mm ⁻¹	
F(000)	1656	

Figure 5. Optimized molecular structures of 2a (left) and 2b (right).

Single crystal X-ray diffraction data for Cp₂Zr(Cl)NH₂BH₃, **3a**

A colorless needle crystal of **3a** was coated with Paratone 8277 oil (Exxon) and mounted on a glass fiber. All measurements were made on a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation. Details of crystal data, data collection^{1,2} and structure refinement have been provided in Table 12. The data were corrected for Lorentz and polarization effects and for absorption using multi-scan method¹.

The structure was solved by the direct methods³ and expanded using Fourier techniques⁴. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were refined isotropically. The final cycle of full-matrix least-squares refinement using SHELXL97⁵ converged with unweighted and weighted agreement factors, R = 0.0624 and wR = 0.0781 (all data), respectively, and goodness of fit, S = 1.042. The weighting scheme was based on counting statistics and the final difference map had no chemically significant features.

5	12 () 2 3)	
Identification code	tf823	
Empirical formula	$\mathrm{C}_{10}\mathrm{H}_{15}\mathrm{B}\mathrm{Cl}\mathrm{N}\mathrm{Zr}$	
Formula weight	286.71	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 2 ₁ /c 1	
Unit cell dimensions	a = 8.1000(4) Å	<i>α</i> = 90°.
	b = 10.7920(6) Å	β=119.120(3)°.
	c = 15.0870(6) Å	$\gamma = 90^{\circ}$.
Volume	1152.14(10) Å ³	
Z	4	
Density (calculated)	1.653 Mg/m ³	
Absorption coefficient	1.145 mm ⁻¹	
F(000)	576	
Crystal size	0.10 x 0.05 x 0.04 mm ³	
Theta range for data collection	3.03 to 27.45°.	
Index ranges	-9<=h<=10, -14<=k<=	13, -19<=l<=19
Reflections collected	10749	
Independent reflections	2626 [R(int) = 0.0704]	
Completeness to theta = 27.45°	99.7 %	
Absorption correction	Multi-scan	
Max. and min. transmission	0.9556 and 0.8941	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	2626 / 0 / 188	
Goodness-of-fit on F ²	1.042	
Final R indices [I>2sigma(I)]	R1 = 0.0354, wR2 = 0.0354	0691
R indices (all data)	R1 = 0.0624, wR2 = 0.0624, w	0781
Extinction coefficient	0.0071(9)	
Largest diff. peak and hole	0.636 and -0.983 e.Å ⁻³	

Table 12. Crystal data and structure refinement for $Cp_2Zr(Cl)NH_2BH_3$, **3a**.

	X	у	Z	U(eq)
C(1)	7946(5)	7732(4)	2618(2)	37(1)
C(2)	7050(5)	6591(4)	2246(3)	37(1)
C(3)	5192(5)	6823(4)	1499(3)	36(1)
C(4)	4943(5)	8119(4)	1394(3)	34(1)
C(5)	6633(5)	8668(3)	2110(3)	35(1)
C(6)	9866(5)	7423(3)	324(3)	31(1)
C(7)	8834(5)	6332(3)	27(3)	33(1)
C(8)	9099(6)	5706(3)	906(3)	40(1)
C(9)	10348(5)	6405(4)	1748(3)	43(1)
C(10)	10789(5)	7469(4)	1394(3)	35(1)
B(1)	4322(6)	6884(4)	-894(3)	32(1)
N(1)	5165(4)	8177(3)	-755(2)	31(1)
Zr(1)	7344(1)	7608(1)	839(1)	21(1)
Cl(1)	8244(1)	9890(1)	810(1)	31(1)

Table 13. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Cp₂Zr(Cl)NH₂BH₃, **3a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Figure 6. Solid-state molecular structures of 3a with thermal ellipsoids at 50% probability.

Figure 7. Optimized molecular structures of 3a (left) and 3b (right).

B(1)-Zr(1)	2.685(4)	B(1)-N(1)	1.523(5)
N(1)-Zr(1)	2.268(3)	Zr(1)-Cl(1)	2.5742(8)
N(1)-H(4)	0.98(4)	B(1)-H(1)	1.24(3)
N(1)-H(5)	0.93(5)	B(1)-H(3)	1.13(3)
Zr(1)-H(1)	2.02(3)	B(1)-H(2)	1.09(4)
C(6)-C(10)	1.384(5) - 1.412(5)	C(3)-Zr(1)	2.471(3) - 2.537(3)
N(1)-B(1)-Zr(1)	57.59(15)	B(1)-N(1)-Zr(1)	87.89(19)
N(1)-B(1)-H(1)	102.8(15)	N(1)-B(1)-H(3)	113(2)
Zr(1)-B(1)-H(1)	45.6(15)	Zr(1)-B(1)-H(3)	117.5(16)
H(1)-B(1)-H(3)	107(2)	Zr(1)-B(1)-H(2)	122.6(18)
N(1)-B(1)-H(2)	114.8(19)	H(1)-B(1)-H(2)	101(2)
H(3)-B(1)-H(2)	116(3)	Zr(1)-N(1)-H(4)	112(2)
B(1)-N(1)-H(4)	118(2)	B(1)-N(1)-H(5)	114(3)
Zr(1)-N(1)-H(5)	110(3)	N(1)-Zr(1)-Cl(1)	78.68(8)
H(4)-N(1)-H(5)	112(4)	N(1)-Zr(1)-H(1)	60.4(9)
Cl(1)-Zr(1)-H(1)	139.1(9)	C(7)-C(6)-C(10)	107.4(3) - 108.7(3)

_

Table 14. Bond lengths [Å] and angles [°] for $Cp_2Zr(Cl)NH_2BH_3$, **3a**
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	26(2)	66(3)	18(2)	-2(2)	10(1)	-3(2)
C(2)	45(2)	42(2)	35(2)	17(2)	28(2)	12(2)
C(3)	33(2)	45(2)	37(2)	-5(2)	23(2)	-12(2)
C(4)	27(2)	48(2)	33(2)	7(2)	19(2)	7(2)
C(5)	51(2)	35(2)	39(2)	-7(2)	37(2)	-5(2)
C(6)	27(2)	40(2)	31(2)	4(2)	19(1)	7(2)
C(7)	37(2)	37(2)	33(2)	-6(2)	23(2)	6(2)
C(8)	45(2)	28(2)	60(3)	14(2)	36(2)	17(2)
C(9)	35(2)	62(3)	32(2)	18(2)	16(2)	29(2)
C(10)	20(2)	53(2)	30(2)	-6(2)	10(1)	5(2)
B(1)	29(2)	33(2)	24(2)	1(2)	4(2)	0(2)
N(1)	28(2)	36(2)	25(1)	2(1)	9(1)	1(1)
Zr(1)	18(1)	25(1)	19(1)	1(1)	9(1)	2(1)
Cl(1)	33(1)	26(1)	34(1)	-1(1)	17(1)	-2(1)

Table 15. Anisotropic displacement parameters (Å²x 10³)for Cp₂Zr(Cl)NH₂BH₃, **3a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

	Х	y	Z	U(eq)
H(6)	9110(50)	7820(30)	3080(30)	34(10)
H(7)	7570(40)	5830(30)	2450(20)	21(8)
H(8)	4280(50)	6280(30)	1140(30)	35(10)
H(9)	3910(50)	8500(40)	980(30)	47(11)
H(10)	6880(50)	9510(30)	2220(20)	34(9)
H(11)	9840(50)	8040(40)	-140(30)	46(11)
H(12)	8050(40)	6090(30)	-650(20)	21(8)
H(13)	8490(40)	5020(30)	880(20)	19(8)
H(14)	10690(60)	6180(40)	2420(30)	60(12)
H(15)	11490(50)	8050(40)	1770(30)	46(12)
H(1)	5450(40)	6350(30)	-100(20)	36(9)
H(3)	2910(50)	6880(30)	-910(20)	37(9)
H(2)	4440(50)	6310(30)	-1460(30)	48(10)
H(4)	5750(50)	8410(40)	-1170(30)	47(11)
H(5)	4400(60)	8810(50)	-730(30)	72(15)

Table 16. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for Cp₂Zr(Cl)NH₂BH₃, **3a**.

Cp*₂Zr(Cl)NH₂BH₃, 4a and 4b

These compounds were not observed experimentally.

Figure 8. Optimized molecular structures of Cp*₂Zr(Cl)NH₂BH₃, **4a** (left) and **4b** (right). These compounds were not observed experimentally.

Computational Details

Molecular Structures were optimized using density functional theory. ThePBE1PBE hybrid functional⁶ was used in together with the def2-TZVP basis set.⁷ Frequency calculations were performed on the optimized structures to ensure that they represent stable minima on the potential energy surface. All calculations were performed with the Gaussian 03 program package.⁸

Optimized coordinates of 1a in mol2 format (Figure 2 and 4):

```
@<TRIPOS>MOLECULE
 Molden generated mol2
                    1
    29
           36
 SMALL
 NO CHARGES
 * * * *
 * * * *
@<TRIPOS>ATOM
     1
        С
               7.7865
                          8.2849
                                      1.3131
                                              C.3
                                                     1 RES1
                                                                0.0000
     2
        С
                          7.6625
                                      0.0730
                                               C.3
                                                                0.0000
               7.5218
                                                     1 RES1
     3
        С
                          6.3792
                                      0.3272
                                               C.3
                                                     1 RES1
                                                                0.0000
               6.9875
     4
        С
                          6.2147
                                      1.7214
                                               C.3
                                                     1 RES1
                                                                0.0000
               6.8984
     5
       С
                          7.3945
                                      2.3325 C.3
                                                     1 RES1
               7.3892
                                                                0.0000
     6 ZR
               5.2897
                          8.0486
                                      1.1565 ZR
                                                     1 RES1
                                                                0.0000
     7
                                              C.3
        С
               3.8235
                          9.1466
                                      2.8762
                                                     1 RES1
                                                                0.0000
     8
                                               C.3
       С
               4.3669
                          7.9897
                                      3.4717
                                                     1 RES1
                                                                0.0000
     9
       С
                          6.8580
                                      2.8056
                                               C.3
                                                     1 RES1
                                                                0.0000
               3.8341
    10 C
               2.9617
                          7.3181
                                      1.8016
                                               C.3
                                                     1 RES1
                                                                0.0000
        С
                          8.7295
                                      1.8326
                                               C.3
    11
               2.9664
                                                     1 RES1
                                                                0.0000
                          9.8035
                                      1.4234
    12
               5.7782
                                                     1 RES1
                                                                0.0000
        Η
                                               Η
    13
        Ν
               4.7907
                          9.1356
                                     -0.8016
                                               N.4
                                                     1 RES1
                                                                0.0000
    14
        В
               4.3019
                          7.7803
                                     -1.3113
                                               В
                                                     1 RES1
                                                                0.0000
    15
        Η
               5.0518
                          7.9711
                                      4.3062
                                               Η
                                                     1 RES1
                                                                0.0000
    16
        Η
               4.0383
                          5.8245
                                      3.0423
                                               Η
                                                     1 RES1
                                                                0.0000
                                      1.1087
                                                     1 RES1
                                                                0.0000
    17
        Н
               2.4058
                          6.7052
                                               Η
              2.3960
                          9.3755
                                                     1 RES1
                                                                0.0000
    18
        Η
                                      1.1814
                                              Η
                         10.1647
    19
        Η
                                      3.1717
                                               Η
                                                     1 RES1
                                                                0.0000
               4.0170
    20
        Н
               7.7107
                          8.0817
                                     -0.9044
                                               Η
                                                     1 RES1
                                                                0.0000
    21
        Η
               6.6824
                          5.6646
                                     -0.4217
                                               Η
                                                     1 RES1
                                                                0.0000
               6.5386
                          5.3350
                                      2.2338
                                                                0.0000
    22 Н
                                               Η
                                                     1 RES1
    23
        Η
               7.4701
                          7.5743
                                      3.3940
                                               Η
                                                     1 RES1
                                                                0.0000
                                      1.4564
                                                                0.0000
    24
        Η
               8.2223
                          9.2602
                                               Η
                                                     1 RES1
                                     -0.3292
    25
               4.4865
                          6.9431
                                                     1 RES1
                                                                0.0000
        Η
                                              Η
                          7.7325
                                     -1.4895
                                                                0.0000
    26
        Η
               3.1078
                                               Η
                                                     1 RES1
    27
        Η
               4.9867
                          7.3193
                                     -2.1936
                                               Н
                                                     1 RES1
                                                                0.0000
                                     -1.2575
    28
        Н
               5.5963
                          9.5351
                                              Η
                                                     1 RES1
                                                                0.0000
    29
               4.1001
                          9.8625
                                     -0.6958 H
                                                     1 RES1
                                                                0.0000
        Η
@<TRIPOS>BOND
     1
            1
                    2
                           1
     2
            1
                    5
                           1
     3
            1
                    б
                           1
     4
            1
                   24
                           1
     5
             2
                    3
                           1
     6
             2
                           1
                    6
```

7	2	20	1
8	3	4	1
9	3	6	1
10	3	21	1
11	4	5	1
12	4	6	1
13	4	22	1
14	5	6	1
15	5	23	1
16	6	7	1
17	6	8	1
18	6	9	1
19	6	10	1
20	6	11	1
21	7	8	1
22	7	11	1
23	7	19	1
24	8	9	1
25	8	15	1
26	9	10	1
27	9	16	1
28	10	11	1
29	10	17	1
30	11	18	1
31	13	14	1
32	13	28	1
33	13	29	1
34	14	25	1
35	14	26	1
36	14	27	1
@ <tripos>S</tripos>	SUBSTR	UCTURE	
1 RE	IS1	1	

Optimized coordinates of 1b in mol2 format (Figure 2 and 4):

@ <trip(< th=""><th>)S>M</th><th>OLECULE</th><th></th><th></th><th></th><th></th><th></th></trip(<>)S>M	OLECULE					
Molder	n ge	nerated mol2					
29		36 1					
SMALL							
NO_CHA	ARGE	S					
* * * *							
* * * *							
@ <trip(< td=""><td>)S>A</td><td>TOM</td><td></td><td></td><td></td><td></td><td></td></trip(<>)S>A	TOM					
1	С	-0.4420	3.6675	4.9696	C.3	1 RES1	0.0000
2	С	-1.3960	2.7939	4.4190	C.3	1 RES1	0.0000
3	С	-2.4577	2.6599	5.3444	C.3	1 RES1	0.0000
4	С	-2.1677	3.4739	6.4609	C.3	1 RES1	0.0000
5	С	-0.9159	4.0842	6.2363	C.3	1 RES1	0.0000
6	ZR	-0.4594	1.6356	6.4580	ZR	1 RES1	0.0000
7	С	2.0362	1.9174	6.3688	C.3	1 RES1	0.0000
8	С	1.8154	0.5291	6.4018	C.3	1 RES1	0.0000
9	С	1.2267	0.2032	7.6438	C.3	1 RES1	0.0000
10	С	1.1110	1.3935	8.3971	C.3	1 RES1	0.0000
11	С	1.5997	2.4533	7.6053	C.3	1 RES1	0.0000
12	Ν	-0.8334	-0.1455	5.0563	N.4	1 RES1	0.0000

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7941 0612 9155 7280 6515 4838 3279 3350 3350 4175 4798 4175 4798 4200 9520 7599 2799	$\begin{array}{c} -0.6269\\ -0.1645\\ -0.7804\\ 1.4733\\ 3.4907\\ 2.4700\\ 2.3187\\ 2.0417\\ 3.6081\\ 4.7673\\ 3.9786\\ -1.6404\\ -0.6277\\ 0.2601\\ 0.0560\\ -0.7640\end{array}$	6.1646 5.6114 7.9627 9.4011 7.9002 5.5561 3.4515 5.2240 7.3276 6.9077 4.5006 6.7054 5.8196 7.1156 4.1751 4.8777	В Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H	RES1 RES1 RES1 RES1 RES1 RES1 RES1 RES1	0.0000 0.0000
29	н –1	.2924	1.8177	8.0696	Н	1 H	RES1	0.0000
@ <tripc< td=""><td>)S>BOND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripc<>)S>BOND							
1	1	2	1					
2	1	5	1					
3	1	6	1					
4	1	23	1					
5	2	3	1					
6	2	б	1					
7	2	19	1					
8	3	4	1					
9	3	б	1					
10	3	20	1					
11	4	5	1					
12	4	6	1					
13	4	21	1					
14	5	6	1					
15	5	22	1					
16	6	7	1					
17	6	8	1					
18	6	9	1					
19	6	10	1					
20	6	11	1					
21	7	8	1					
22	7	11	1					
23	7	18	1					
24	8	9	1					
25	8	14	1					
26	9	10	1					
27	9	15	1					
28	10	11	1					
29	10	16	1					
30	11	17	1					
31	12	13	1					
32	12	27	1					
33	12	28	1					
34	13	24	1					
35	13	25	1					
36	13	26	1					
@ <tripc< td=""><td>US>SUBSTR</td><td>UCTURE</td><td></td><td></td><td></td><td></td><td></td><td></td></tripc<>	US>SUBSTR	UCTURE						
1	L RESI	1						

Optimized coordinates of 2a in mol2 format (Figure 5):

@<TRIPOS>MOLECULE Molden generated mol2 59 66 1 SMALL USER_CHARGES * * * * **** @<TRIPOS>ATOM С -0.6762 -0.4963 C.3 1 RES1 0.0387 1 -2.4815С 0.1347 2 0.5368 -1.1628C.3 1 RES1 -2.1510С 1.4800 C.3 3 -0.17751 RES1 -0.0026 -1.7663С C.3 4 -1.85870.8513 1.0986 1 RES1 0.0167 5 С -2.3258-0.46920.8993 C.3 1 RES1 0.0806 6 ZR 0.0086 -0.3416 -0.1723 ZR 1 RES1 -0.09477 С C.3 1.7482 1.1343 0.9696 1 RES1 0.0192 8 С 1.8143 1.4279 -0.4220C.3 1 RES1 0.0487 0.1681 9 С 2.3007 0.2764 -1.0919 C.3 1 RES1 С C.3 10 2.5205 -0.7314-0.1215 1 RES1 -0.0820 11 С 2.1733 -0.2034 1.1548 C.3 1 RES1 0.1272 12 Ν 0.0951 -2.5235 -0.8652N.4 1 RES1 -0.372313 В -0.0152 -2.9092 0.6104 В 1 RES1 -0.1983 14 Η 0.0400 -0.2824-2.0075 Η 1 RES1 -0.0689 15 -0.4171C.3 С -1.59932.9441 1 RES1 -0.4407-0.4399 С -1.79382.4296 C.3 16 1.5267 1 RES1 17 С -2.7707C.3 -1.3862 1.9875 1 RES1 -0.3956 С 18 -3.0681 -1.8887-1.1406 C.3 1 RES1 -0.5052 19 С -2.39020.8367 -2.6050 C.3 1 RES1 -0.4214 20 С 2.7043 0.2177 -2.5272 C.3 1 RES1 -0.4292 21 С 3.2056 -2.0352 -0.3659 C.3 1 RES1 -0.448822 С 2.4086 -0.8813 2.4639 C.3 1 RES1 -0.4281 23 С 1.5328 2.1270 2.0630 C.3 1 RES1 -0.446024 С 2.7690 C.3 -0.46321.6724 -1.0624 1 RES1 25 -0.0688 -1.79411.2671 1 RES1 0.0949 Η Η 26 Η -1.0508 -3.4687 0.8794 1 RES1 -0.0486 Η 27 -3.4616 1.0570 Η 0.9628 Η 1 RES1 -0.040928 Η 0.9572 -2.7620 -1.3318 Η 1 RES1 0.2463 29 Η -0.6721-2.7964-1.4601Η 1 RES1 0.2515 30 Η 2.7729 -2.84730.2209 1 RES1 Η 0.1667 Η -2.31521 RES1 31 3.1724 -1.4214Η 0.1231 32 Η 4.2648 -1.9649-0.0958 Η 1 RES1 0.1392 33 Η 2.5738 -0.7795-2.9486 Η 1 RES1 0.1309 34 Η 2.1143 0.9038 -3.1344 Η 1 RES1 0.1368 35 Η 3.7607 0.4899 -2.6398 Η 1 RES1 0.1335 36 Η 1.7451 -0.5031 3.2435 1 RES1 0.1228 Η 37 2.2520 -1.95792.3899 1 RES1 0.1573 Η Η -0.7138 38 Η 3.4375 2.8028 Η 1 RES1 0.1350 39 2.9565 1 RES1 Η 1.1032 1.6731 Η 0.1343 40 Η 2.5733 2.3569 1 RES1 2.4896 Н 0.1452 41 Η 0.8800 2.9448 1.7567 Η 1 RES1 0.1154 42 Η 1.1520 3.4791 -0.4218 Η 1 RES1 0.1289 0.1437 43 3.1907 -1.27731 RES1 Η 2.6608 Η 44 1 RES1 0.1407 Η 1.1340 2.7180 -2.0116 Η 45 Η -3.8076 -1.1592 2.2615 Η 1 RES1 0.1335 46 Η -2.7212-2.4316 1.6879 Η 1 RES1 0.1400 -1.2749 47 Η -2.1631 2.8869 Η 1 RES1 0.1317

48	Н	-2	.8052	1.7540	2.7857	Н	1 RES1	0.1418
49	Н	-1	.3230	0.9024	3.1920	Η	1 RES1	0.1339
50	Η	-1	.2496	2.4692	2.3893	Η	1 RES1	0.1270
51	Η	-4	.1615	-1.8265	-1.1682	Η	1 RES1	0.1406
52	Η	-2	.7328	-1.9962	-2.1750	Η	1 RES1	0.1392
53	Н	-2	.8118	-2.8016	-0.5983	Η	1 RES1	0.1671
54	Η	-3	.4076	1.2186	-2.7526	Η	1 RES1	0.1314
55	Н	-1	.6960	1.5881	-2.9820	Η	1 RES1	0.1315
56	Н	-2	.2724	-0.0516	-3.2255	Η	1 RES1	0.1343
57	Н	-2	.5789	3.4358	-0.4232	Η	1 RES1	0.1428
58	Н	-1	.0064	3.4277	0.3600	Η	1 RES1	0.1150
59	Н	-1	.1281	3.1560	-1.3770	Η	1 RES1	0.1364
@ <tripc< td=""><td>S>BC</td><td>OND</td><td></td><td></td><td></td><td></td><td></td><td></td></tripc<>	S>BC	OND						
1		1	2	1				
2		1	5	1				
3		1	6	1				
4		1	18	1				
5		2	3	1				
6		2	6	1				
7		2	19	1				
8		3	4	1				
9		3	6	1				
10		3	15	1				
11		4	5	1				
12		4	6	1				
13		4	16	1				
14		5	б	1				
15		5	17	1				
16		6	7	1				
17		6	8	1				
18		6	9	1				
19		6	10	1				
20		6	11	1				
21		7	8	1				
22		7	11	1				
23		7	23	1				
24		8	9	1				
25		8	24	1				
26		9	10	1				
27		9	20	1				
28		10	11	1				
29		10	21	1				
30		11	22	1				
31		12	13	1				
32		12	28	1				
33		12	29	1				
34		13	25	1				
35		13	26	1				
36		⊥3 1 -	27	1				
37		15 15	57	1				
38		15	58	1				
39		15	59	1				
40		16 16	48	1				
41		16 16	49	1				
42		16	50	1				
43		17	45	1				
44		Τ./	46	T				

45	17	47	1
46	18	51	1
47	18	52	1
48	18	53	1
49	19	54	1
50	19	55	1
51	19	56	1
52	20	33	1
53	20	34	1
54	20	35	1
55	21	30	1
56	21	31	1
57	21	32	1
58	22	36	1
59	22	37	1
60	22	38	1
61	23	39	1
62	23	40	1
63	23	41	1
64	24	42	1
65	24	43	1
66	24	44	1
@ <tripos>S</tripos>	UBST	RUCTURE	
1 RE	S1	1	

Optimized coordinates of 2b in mol2 format (Figure 5):

@ <trip(Molder 59 SMALL NO_CH4 ****</trip()S>M 1 ge ARGE	OLECULE enerated mol2 66 1 S						
* * * *								
@ <tripc< td=""><td>)S>A</td><td>TOM</td><td></td><td></td><td></td><td></td><td></td><td></td></tripc<>)S>A	TOM						
1	С	-1.7021	1.4268	0.4758	C.3	1	RES1	0.0000
2	С	-1.9171	0.2769	1.2894	C.3	1	RES1	0.0000
3	С	-2.4326	-0.7474	0.4520	C.3	1	RES1	0.0000
4	С	-2.4742	-0.2605	-0.8753	C.3	1	RES1	0.0000
5	С	-2.0245	1.0869	-0.8612	C.3	1	RES1	0.0000
6	ZR	0.0000	-0.3194	-0.2585	ZR	1	RES1	0.0000
7	С	1.8377	1.4264	-0.4070	C.3	1	RES1	0.0000
8	С	1.7568	1.0790	0.9695	C.3	1	RES1	0.0000
9	С	2.1532	-0.2733	1.1020	C.3	1	RES1	0.0000
10	С	2.5106	-0.7558	-0.1880	C.3	1	RES1	0.0000
11	С	2.3103	0.2931	-1.1185	C.3	1	RES1	0.0000
12	Ν	0.0231	-2.4523	0.5699	N.4	1	RES1	0.0000
13	В	-0.0768	-2.8798	-0.9091	В	1	RES1	0.0000
14	С	-3.0009	-2.0465	0.9160	C.3	1	RES1	0.0000
15	С	-3.0202	-0.9793	-2.0624	C.3	1	RES1	0.0000
16	С	-2.0853	2.0351	-2.0114	C.3	1	RES1	0.0000
17	С	-1.5042	2.8225	0.9685	C.3	1	RES1	0.0000
18	С	-1.8372	0.2129	2.7809	C.3	1	RES1	0.0000
19	С	2.3579	-0.9774	2.4033	C.3	1	RES1	0.0000
20	С	3.1846	-2.0537	-0.4860	C.3	1	RES1	0.0000
21	С	2.6954	0.2672	-2.5596	C.3	1	RES1	0.0000
22	С	1.6561	2.7811	-1.0085	C.3	1	RES1	0.0000

23	С	1.	5840	2.010	2	2.12	36 C	1.3	1	RES1	C	.0	000
24	Н	-1.	1528	-3.358	34	-1.18	56 H	I	1	RES1	C	.0	000
25	Н	Ο.	8590	-3.538	57	-1.29	26 H	[1	RES1	C	.0	000
26	Н	-0.	0030	-1.802	1	-1.62	15 H	I	1	RES1	C	.0	000
27	н	Ο.	8745	-2.731	.9	1.03	30 H	I	1	RES1	C	.0	000
28	н	-0.	7535	-2.744	4	1.14	39 H	[1	RES1	C	.0	000
29	н	-0.	0126	0.059	3	-2.04	98 H	ſ	1	RES1	C	. 0	000
30	н	-2.	4774	3.320)7	1.04	58 F	ſ	1	RES1	C	. 0	000
31	н	-1.	0501	2.856	3	1.95	74 F	ſ	1	RES1	C	. 0	000
32	н	-0	8958	3 424	6	0 29	, <u>-</u> -: 31 ⊨	- r	1	RES1	C	0	000
22	н	-2	8329	0 272	.0	3 23	31 1. 45 ⊮	r T	1	RES1	C C	0	000
34	ч	_1	3804	-0 716	3	3.25	10 II 28 ⊑	r T	1	REG1	C C	0	000
35	ч	_1	2512	1 037	13	3 18	20 I. 85 E	r T	1	REG1	C C	0	000
36	н	-4	0947	-1 996	1	0 92	31 ⊨	r T	1	RES1	C C	0	000
37	и И	-2	7243	-2 878	2	0.26	35 Ľ	r T	1	REG1	C C	0	000
38	и П	_2.	6954	-2.070	0	1 93	90 E	L T	1	DEG1		.0	000
30	и П	_4	0700	_0 739	10	-2 20	60 Ľ	L T	1	DEG1		.0	000
10	п u	- -	1995	-0.739	1	-2.20	20 L	L r	⊥ 1	RESI DFC1		.0	000
+0 /11	п u	-2. -2	03U0 7007	-2.060	10	-2.97	30 г. 11 г.	L r	⊥ 1	RESI DFC1		.0	000
41	п 11	-2. 2	9300	-2.000	1	-1.95	10 T	L T	1	RESI DEC1		.0	
42	п	-3. 1	0037 220E	2.520) <u>1</u>) O	-2.05	40 E	L T	1	RESI DEC1		.0	
43	п	-⊥. 1	3305	2.010) О) Л	-1.93		L T	1	RESI DEC1		.0	
44	H	-⊥. 2	9260 1476	1.519	'4 51	-2.95		1	1	RESI		.0	
45	H	∠.	14/0	1.018) <u>1</u>	-3.12	40 F	1	1	RESI		.0	
40	H	3.	1009	0.469	14 2	-2.0/	48 F.	1	1	RESI		.0	
4 /	H	2.	4884	-0.701	. 3	-3.UI	60 E	1	1	RESI		.0	
48	H	3.	0427	-2.352	: L	-1.52	38 E	l	1	RESI	C	.0	000
49	H	4.	2619	-1.966	/8 \	-0.30	50 E	l	1	RESI	C	.0	000
50	H	۷.	8223	-2.8/8	5	0.13		l	1	RESI	C	.0	000
51	Н	⊥.	0507	2.744	:5	-1.91	72 H	L	T	RESI	C	.0	000
52	Н	1.	1816	3.475	,6	-0.31	56 H	[1	RESI	C	.0	000
53	Н	2.	6246	3.212	:9	-1.28	28 H	[1	RESI	C	.0	000
54	H	2.	5190	-2.048	8	2.26	82 E	[1	RESI	C	.0	000
55	Н	3.	2467	-0.593	6	2.91	68 H	[1	RESI	C	.0	000
56	Н	1.	5137	-0.849	12	3.08	58 E	Ι	1	RES1	C	.0	000
57	H	1.	1481	2.961	.9	1.82	60 H	Ι	1	RES1	C	.0	000
58	Н	0.	9663	1.587	3	2.91	88 H	Ι	1	RES1	C	.0	000
59	Н	2.	5623	2.228	5	2.56	72 H	Ι	1	RES1	C	.0	000
@ <tripo< td=""><td>S>BON</td><td>ID</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<>	S>BON	ID											
1		1	2	1									
2		1	5	1									
3		1	6	1									
4		1	17	1									
5		2	3	1									
6		2	6	1									
7		2	18	1									
8		3	4	1									
9		3	6	1									
10		3	14	1									
11		4	5	1									
12		4	б	1									
13		4	15	1									
14		5	6	1									
15		5	16	1									
16		6	7	1									
17		6	8	1									
18		6	9	1									
19		6	10	1									

20	6	11	1
21	·/	8	1
22	/ 7	11 22	1
23	/ 8	22	⊥ 1
25	8	23	1
26	9	10	1
27	9	19	1
28	10	11	1
29	10	20	1
30	11	21	1
31	12	13	1
32	12	27	1
33	12	28	1
34	13	24	1
35	13	25	1
36	13	26	1
37	14	36	1
38	14	37	1
39	14	38	1
40	15 16	39	1
4⊥ 40	15	40 41	1
42	16	41 42	⊥ 1
44	16	43	1
45	16	44	1
46	17	30	1
47	17	31	1
48	17	32	1
49	18	33	1
50	18	34	1
51	18	35	1
52	19	54	1
53	19	55	1
54	19	56	1
55	20	48	1
56	20	49	1
57	20	50	1
58	21	45	1
59	∠⊥ 21	40	1
61	2⊥ 22	47 51	⊥ 1
62	22	52	1
63	22	52	1
64	23	57	1
65	23	58	1
66	23	59	1
@ <tripos></tripos>	SUBSTRU	JCTURE	_
1 R	ES1	1	

Optimized coordinates of 3a in mol2 format (Figure 7):

@<TRIPOS>MOLECULE
Molden generated mol2
29 36 1
SMALL
NO_CHARGES

*	*	*	*	

* * * *
* * * *
@ <tripos>ATOM</tripos>

1	CL N	6.06	575 739	10.635	52	1. -0.	0575	CL N.4	1	1 1	RES1 RES1	0.0000
3	В	4.14	139	7.421	9	-1.	1507	В		1	RES1	0.0000
4	ZR	5.34	149	8.221	3	1.	1090	ZR		1	RES1	0.0000
- 5	С	4.49	993	8.389	98	3.	4588	C. 3	3	1	RES1	0.0000
6	C	3.10)65	7.379	9	1.	9556	C	3	1	RES1	0.0000
7	C	4 05	529	7 136	52	2	9645	C 1	3	1	RESI	0 0000
, 8	C	2 97	756	8 781	1	1	8083	C 1	3	1	RESI	0 0000
q	C	7 78	255	8 014	- - 15		4404	с.: С	2	1	REG1	0 0000
10	C	7 16	507	6 842	5	_0	0067	с.: с :	2	1 1	REG1	0.0000
11	C	3 81	121	9 398	30	2	7597	C 1	3	1	RESI	0 0000
12	C	6 71	182	6 110	33	1	1290	с.:	2	1	REG1	0 0000
13	C	7 10	189	6 840	16	2	2762	с.: с :	2	1 1	REG1	0.0000
14	C	7.10	116	8 024	17	1	8557	с.: с :	2	1 1	REG1	0.0000
15	с н	5 22	208	8 546	58	1. 4	2471	ч		1 1	REG1	0.0000
16	и Ц	2.22 4 36	579	6 163	27	יד. ג	3119	и И		1 1	REG1	0.0000
17	и и	2 59	249	6 635	50	1	3758	и и		1 1	DEG1	0.0000
18	и и	2.50)))))))	0.0J	52 51	1	1113	и и		⊥ 1	DEG1	0.0000
10	и и	3 95	517	10 459	2 Q	2	8865	и и		⊥ 1	DEG1	0.0000
20	и и	S.J. 8 10)10	8 801	4	_0	1765	и и		⊥ 1	DEG1	0.0000
20	и и		005	6 551	5	_1	0330	и и		⊥ 1	DEG1	0.0000
21	и и	6 20	115	5 171	3	1	1114	и и		⊥ 1	REDI DFC1	0.0000
22	п u	6 93	261	5.171	-5	1. 2	3003	п U		⊥ 1	NESI DFC1	0.0000
23	п u	Q 10	204	Q Q10	14	ງ. ວ	1003	п U		⊥ 1	NESI DFC1	0.0000
24	п u	1 15	760	6 916	50 50	_0	0427	п U		⊥ 1	NESI DFC1	0.0000
25	п u	2 02	200	7 2/0	2	-0.	1622	п U		⊥ 1	NESI DFC1	0.0000
20	п u	4.93))))	6 770	20 21	-⊥. 1	0022	п u		⊥ 1	RESI DEC1	0.0000
27	п	±./2	555 517	0.170) Q	-⊥. 1	5723	п u		⊥ 1	RESI DEC1	0.0000
∠o 20	п	2.43)⊥4)71	9.130	19	-1.	0520	п		⊥ 1	RESI DEC1	0.0000
עב מעד סייי <i>ב</i> ש	ת מסקסטא	4.00)/1	9.595	1	-0.	9000	п		Ŧ	KEOT	0.0000
@\IKIP(1	72×POI	1	1	1								
1 2		⊥ 2	2	1								
2		2	1	⊥ 1								
4		2	- 28	1								
5		2	20	1								
5		3	2.) A	1								
0 7		3	- 25	1								
, 8		2	25	1								
q		2	20	1								
10		4	5	1								
11		4	6	1								
12		4	7	1								
13		4	, 8	1								
14		4	9	1								
15		4	10	1								
16		4	11	1								
17		- 5		1								
18		5	11	1								
19		5	15	1								
20		6		1								
21		6	, 8	1								
21		6	17	1								
22		7	16	1								
24		8	11	1								
				-								

25	8	18					
26	9	10					
27	9	14					
28	9	20					
29	10	12					
30	10	21					
31	11	19					
32	12	13					
33	12	22					
34	13	14					
35	13	23					
36	14	24					
@ <tripos>SUBSTRUCTURE</tripos>							
1	RES1	1					

Optimized coordinates of 3b in mol2 format (Figure 7):

@<TRIPOS>MOLECULE Molden generated mol2 29 36 1 SMALL NO CHARGES * * * * * * * * @<TRIPOS>ATOM С 0.8764 C.3 0.0000 1 -0.19420.0155 1 RES1 C.3 2 С 0.6316 0.1986 2.0035 1 RES1 0.0000 3 C.3 С 1.9766 0.0889 1.5735 1 RES1 0.0000 4 С 1.9761 -0.1384 0.1907 C.3 1 RES1 0.0000 5 С 0.6340 -0.1683 -0.2486 C.3 1 RES1 0.0000 6 ZR 1.0337 2.2043 0.5161 ZR 1 RES1 0.0000 7 С -0.90843.2213 -0.7217C.3 1 RES1 0.0000 2.8584 8 С -1.41370.5450 C.3 1 RES1 0.0000 9 С -0.7830 1.5137 C.3 3.6606 1 RES1 0.0000 10 С 0.0940 4.5458 0.8391 C.3 1 RES1 0.0000 11 С 0.0064 4.2802 -0.5357 C.3 1 RES1 0.0000 12 2.5135 N.4 Ν 1.9195 2.8872 1 RES1 0.0000 13 В 3.1694 3.2933 1.6913 В 1 RES1 0.0000 14 Η 2.8594 0.1902 2.1881 1 RES1 0.0000 Η 15 Η 2.8470 -0.2141 -0.44091 RES1 0.0000 Η 16 Η 0.3100 -0.2979 -1.2695 1 RES1 0.0000 Η 17 Η -1.27280.0044 0.8766 Η 1 RES1 0.0000 18 Η 0.2916 0.3661 3.0151 Η 1 RES1 0.0000 19 Η -0.9579 3.6171 2.5786 Η 1 RES1 0.0000 20 Η 0.7397 5.2833 1.2938 Η 1 RES1 0.0000 -1.3114 21 Η 0.5876 4.7522 1 RES1 0.0000 Η 2.7718 22 -1.1665 -1.6684 1 RES1 0.0000 Η Η 23 0.7384 Η -2.16402.1081 Η 1 RES1 0.0000 24 Η 4.1331 2.6086 1.9348 1 RES1 0.0000 Η 25 Η 3.3688 4.4839 1.6922 Η 1 RES1 0.0000 26 Η 2.8864 3.0273 0.4722 Η 1 RES1 0.0000 27 Η 1.4653 3.6600 2.9759 Η 1 RES1 0.0000 28 2.0946 2.1742 3.2051 0.0000 Η Η 1 RES1 2.2629 29 CL 1.9877 -1.8011 CL 1 RES1 0.0000 @<TRIPOS>BOND 1 1 2 1 2 1 5 1

2	-	~	-				
3	1	6	1				
4	1	17	1				
5	2	3	1				
6	2	6	1				
7	2	18	1				
8	3	4	1				
9	3	6	1				
10	3	14	1				
11	4	5	1				
12	4	6	1				
13	4	15	1				
14	5	б	1				
15	5	16	1				
16	6	7	1				
17	6	8	1				
18	6	9	1				
19	б	10	1				
20	б	11	1				
21	7	8	1				
22	7	11	1				
23	7	22	1				
24	8	9	1				
25	8	23	1				
26	9	10	1				
27	9	19	1				
28	10	11	1				
29	10	20	1				
30	11	21	1				
31	12	13	1				
32	12	27	1				
33	12	28	1				
34	13	24	1				
35	13	25	1				
36	13	26	1				
@ <tripos>S</tripos>	SUBSTR	UCTURE					
1 RES1 1							

Optimized coordinates of 4a in mol2 format (Figure 8):

@ <trip(Molder</trip(DS>M(n ger	DLECULE nerated mol2					
59 SMALL		00 I					
NO_CHA	ARGES	3					

@ <trip(< td=""><td>DS>AT</td><td>ГОМ</td><td></td><td></td><td></td><td></td><td></td></trip(<>	DS>AT	ГОМ					
1	С	-1.9406	-0.0213	1.3912	C.3	1 RES1	0.0000
2	С	-2.5057	-0.6933	0.2765	C.3	1 RES1	0.0000
3	С	-2.5024	0.1902	-0.8224	C.3	1 RES1	0.0000
4	С	-1.9498	1.4320	-0.3905	C.3	1 RES1	0.0000
5	С	-1.6417	1.3084	0.9881	C.3	1 RES1	0.0000
б	ZR	-0.0073	-0.2210	-0.2725	ZR	1 RES1	0.0000
7	С	2.3388	-0.7341	0.7236	C.3	1 RES1	0.0000
8	С	1.8165	0.3730	1.4300	C.3	1 RES1	0.0000
9	С	1.7479	1.4745	0.5230	C.3	1 RES1	0.0000
10	С	2.2034	1.0290	-0.7386	C.3	1 RES1	0.0000

11	С	2.5285	-0.3511	-0.6296	C.3	1	RES1	0.0000
12	CL	-0.0706	-2.6240	0.5029	CL	1	RES1	0.0000
13	Ν	-0.0765	-1.3615	-2.2331	N.4	1	RES1	0.0000
14	В	0.0193	-0.0224	-2.9557	В	1	RES1	0.0000
15	С	1.6536	0.4208	2.9139	C.3	1	RES1	0.0000
16	С	1.6164	2.9190	0.8779	C.3	1	RES1	0.0000
17	С	2.5279	1.9345	-1.8777	C.3	1	RES1	0.0000
18	С	3.1658	-1.1935	-1.6850	C.3	1	RES1	0.0000
19	С	2.8082	-2.0019	1.3446	C.3	1	RES1	0.0000
20	С	-3.1690	-2.0258	0.3040	C.3	1	RES1	0.0000
21	С	-3.2115	-0.0628	-2.1110	C.3	1	RES1	0.0000
22	С	-1.9272	2.6943	-1.1883	C.3	1	RES1	0.0000
23	С	-1.4145	2.4487	1.9225	C.3	1	RES1	0.0000
24	С	-1.8947	-0.5624	2.7814	C.3	1	RES1	0.0000
25	Н	0.0311	0.8558	-1.9943	Н	1	RES1	0.0000
26	Н	1.0657	0.1387	-3.5305	Н	1	RES1	0.0000
27	Н	-0.9483	0.2737	-3.6079	Н	1	RES1	0.0000
28	Н	-0.9284	-1.8952	-2.3317	Н	1	RES1	0.0000
29	Н	0.7010	-2.0001	-2.3245	Н	1	RES1	0.0000
30	Н	-4.2930	-0.0757	-1.9352	Н	1	RES1	0.0000
31	Н	-3.0001	0.7055	-2.8508	Н	1	RES1	0.0000
32	Н	-2.9558	-1.0260	-2.5595	Н	1	RES1	0.0000
33	Н	-4.2396	-1.8979	0.5040	Н	1	RES1	0.0000
34	Н	-3.0749	-2.5529	-0.6468	Н	1	RES1	0.0000
35	н	-2.7502	-2.6687	1.0760	Н	1	RES1	0.0000
36	н	-2.8825	3.2243	-1.1033	Н	1	RES1	0.0000
37	н	-1.1476	3.3783	-0.8483	Н	1	RES1	0.0000
38	н	-1.7499	2.4951	-2.2459	Н	1	RES1	0.0000
39	н	-2.3786	2.7525	2.3461	Н	1	RES1	0.0000
40	н	-0.7699	2.1917	2.7626	н	1	RES1	0.0000
41	н	-0.9962	3.3201	1,4229	н	1	RES1	0.0000
42	Н	-2.8977	-0.5805	3.2217	Н	1	RES1	0.0000
43	Н	-1.5087	-1.5839	2.7948	Н	1	RES1	0.0000
44	н	-1.2653	0.0448	3.4327	Н	1	RES1	0.0000
45	н	2.6313	0.5083	3.4011	н	1	RES1	0.0000
46	Н	1.0590	1.2750	3.2368	Н	1	RES1	0.0000
47	н	1.1820	-0.4833	3.3031	Н	1	RES1	0.0000
48	н	2.6045	3.3912	0.8383	Н	1	RES1	0.0000
49	н	0.9781	3.4705	0.1849	н	1	RES1	0.0000
50	н	1.2309	3.0653	1.8844	Н	1	RES1	0.0000
51	н	3.8237	-1.8574	1.7330	Н	1	RES1	0.0000
52	Н	2.1698	-2.3140	2.1701	Н	1	RES1	0.0000
53	Н	2.8334	-2.8230	0.6298	Н	1	RES1	0.0000
54	н	4.2565	-1.0982	-1.6563	Н	1	RES1	0.0000
55	н	2.9371	-2.2527	-1.5438	Н	1	RES1	0.0000
56	н	2.8388	-0.9019	-2.6847	Н	1	RES1	0.0000
57	н	3.4695	2.4566	-1.6697	Н	1	RES1	0.0000
58	н	2.6445	1.3895	-2.8119	н	1	RES1	0.0000
59	H	1.7608	2.6948	-2.0341	H	1	RES1	0.0000
@ <tripo< td=""><td>S>BON</td><td>ID</td><td></td><td></td><td></td><td>-</td><td></td><td></td></tripo<>	S>BON	ID				-		
1		1 2	1					
2		1 5	1					
3		1 6	1					
2 4		1 24	1					
- 5		2 3	1					
6		2 6	1					
7		2 20	1					

8	3	4	1
à	3	6	1
10	2	21	1
11	3	21	1
1 I.	4	5	T
12	4	6	1
13	4	22	1
14	5	б	1
15	5	23	1
16	6	7	1
17	6	8	1
18	6	9	1
10	6	10	1
20	G	11	1
20	0	11	1
21	/	8	T
22	.7	11	1
23	7	19	1
24	8	9	1
25	8	15	1
26	9	10	1
27	9	16	1
28	10	11	1
29	10	17	1
20	11	10	1
21	12	14	1
31	13	14	1
32	13	28	T
33	13	29	1
34	14	25	1
35	14	26	1
36	14	27	1
37	15	45	1
38	15	46	1
39	15	47	1
40	16	48	1
41	16	49	1
10	16		1
42		50	1
43	17	57	1
44	17	58	T
45	17	59	1
46	18	54	1
47	18	55	1
48	18	56	1
49	19	51	1
50	19	52	1
51	19	53	1
52	20	33	1
53	20	34	1
50	20	25	1
	20	20	1
55	21	30	1
56	21	31	1
57	21	32	1
58	22	36	1
59	22	37	1
60	22	38	1
61	23	39	1
62	23	40	1
63	23	41	1
64	22	40	1
JI	2 T	74	1

65	24	43	1
66	24	44	1
@ <tripos></tripos>	SUBSTR	JCTURE	
1 R	RES1	1	

Optimized coordinates of 4b in mol2 format (Figure 8):

@ <trip(Molder</trip()S>M n gei	DLECULE nerated mol2						
CMDTT		00 I						
MO CUI		C						
NO_CHA	AKGE	5						
* * * *								
@∠ T O T O (<u>ומ א</u> י	том						
	-A-60	2 4627	0 9524	0 2000	C 2	1		0 0000
1	d	2.4037	0.0524	-0.2098	C.3	1	REOI	0.0000
2	d	1.9140	0.0039	1 5072		1	RESI DEC1	0.0000
3	C	2 0426	1 2004	1.3073	C.3	1	RESI DEC1	0.0000
	d	2.0420	-1.3004	0.4313	C.3	1	REOI	0.0000
5		2.52/0	-0.4932	-0.0302		1	RESI DEC1	0.0000
0 7	ZR C	-0.0014	1 0220	-0.3015		1	RESI DEC1	0.0000
/	d	-2.1504	1.0239	1 5520	C.3	1	RESI DEC1	0.0000
8	C	-1./033	1 2270	1.5539	0.3	1	RESI DEG1	0.0000
10	C	-1.81/4	-1.23/9	0.8906	0.3	1	RESI	0.0000
10	C	-2.3816	-0.9942	-0.38/9	0.3	1	RESI	0.0000
	C	-2.5489	0.4016	-0.5461	C.3	1	RESI	0.0000
12	C	-1.5253	0.2429	3.0190	C.3	1	RESI	0.0000
13	C	-1.6492	-2.5905	1.5029	C.3	1	RESI	0.0000
14	C	-2.9132	-2.0313	-1.3190	C.3	1	RESI	0.0000
15	C	-3.1805	1.0819	-1.7128	C.3	1	RESI	0.0000
16	C	-2.3744	2.4488	1.0381	C.3	1	RESI	0.0000
17	C	1.7960	2.1087	1.9443	C.3	1	RESI	0.0000
18	C	1.4974	-0.9389	2.9066	C.3	1	RESI	0.0000
19	C	2.1410	-2.7958	0.5188	C.3	T	RESI	0.0000
20	C	3.2145	-0.9650	-1.8679	C.3	1	RESI	0.0000
21	С	3.0523	2.0095	-0.9395	C.3	1	RESI	0.0000
22	N	0.0552	-1.7964	-1.7255	N.4	1	RESI	0.0000
23	В	-0.0743	-0.8032	-2.9067	В	1	RESI	0.0000
24	Η	-1.1232	-0.9058	-3.5005	Н	1	RESI	0.0000
25	Η	0.8961	-0.7844	-3.6239	Н	1	RES1	0.0000
26	Η	-0.1147	0.3562	-2.3878	Н	1	RES1	0.0000
27	H	0.9177	-2.3175	-1.7275	H	1	RESI	0.0000
28	H	-0.7030	-2.4589	-1.6664	Н	1	RESI	0.0000
29	CL	-0.0370	2.4681	-1.0580	CL	1	RESI	0.0000
30	Η	-2.5052	0.4383	3.4693	Η	1	RES1	0.0000
31	Η	-1.1049	-0.6210	3.5288	Η	1	RES1	0.0000
32	Η	-0.9015	1.1103	3.2408	Н	1	RES1	0.0000
33	Η	-2.6232	-3.0361	1.7329	Н	1	RES1	0.0000
34	Η	-1.1283	-3.2891	0.8427	Η	1	RES1	0.0000
35	Η	-1.0909	-2.5470	2.4379	Н	1	RES1	0.0000
36	Η	-4.0073	-2.0318	-1.2813	Н	1	RES1	0.0000
37	Η	-2.6305	-1.8472	-2.3589	Н	1	RES1	0.0000
38	Η	-2.5944	-3.0376	-1.0366	Н	1	RES1	0.0000
39	Η	-4.2435	1.2666	-1.5219	Н	1	RES1	0.0000
40	Η	-2.7006	2.0408	-1.9136	Н	1	RES1	0.0000
41	Η	-3.1004	0.4767	-2.6165	Η	1	RES1	0.0000

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	H - H - H - H - H - H - H - H - H - H -	-3.2884 -1.5502 -2.4834 2.6518 4.1391 2.8566 3.1116 4.2843 2.8425 1.3288 1.2032 2.7834 2.2815 3.0086 1.2634 1.1020 0.8457	2.5357 2.8558 3.0776 2.9547 2.0174 1.9621 -0.2528 -1.0978 -1.9251 2.9247 1.9273 2.4511 -3.2608 -3.0851 -3.2502 -0.1663 -1.8108	1.6379 1.6259 0.1569 -0.5788 -0.7947 -2.0113 -2.6857 -1.6711 -2.2318 1.3886 2.8416 2.2719 -0.4591 1.1229 0.9834 3.5621 2.9700	н н н н н н н н н н н н н н н н н н н	 RES1 	$\begin{array}{c} 0.0000\\ 0.000\\ 0.0$
59	н Н	2.4692	-1.2409	3.3144	н	1 RES1	0.0000
@ <trtpa< td=""><td>S>BOND</td><td>2.1072</td><td>1.2107</td><td>5.5111</td><td></td><td>T KEDT</td><td>0.0000</td></trtpa<>	S>BOND	2.1072	1.2107	5.5111		T KEDT	0.0000
≝ \IKIFU 1	1	С	1				
2	1	5	1				
2	1 1	5	⊥ 1				
ے ۲	1	21	⊥ 1				
т 5	1 2	2	⊥ 1				
۲ ۲	2	5	⊥ 1				
ט ד	∠ ົ	0 1 7	⊥ 1				
7	2	1	1				
9	2		1				
10	2	18	1				
11	1	10	1				
12		5	1				
13	т 4	19	1				
14	т 5	19	1				
15	5	20	1				
16	5	20	1				
17	6	, 8	1				
18	6	9	1				
19	6	10	1				
20 20	5 6	11	⊥ 1				
∠∪ 21	0 7	A A	⊥ 1				
21	י ד	11	± 1				
22	י ד	16	⊥ 1				
23 24	י פ	d T O	⊥ 1				
24 05	0	ح 1 ک	⊥ 1				
40 06	d O	⊥⊿ 1∩	⊥ 1				
20 27	9	1 D	⊥ 1				
⊿ / ງຊ	لو ۱۵	11 11	⊥ 1				
∠d 20	10	⊥⊥ 1 /	⊥ 1				
29 20	1 U 1 1	⊥4 1 ⊑	⊥ 1				
3U 21	1 D	2 L D	⊥ 1				
5⊥ 20	⊥∠ 1 0	3U 21	⊥ 1				
3∠ วว	⊥∠ 1 0	5⊥ 20	⊥ 1				
55 21	12	3∠ 22	⊥ 1				
34	13	33	1				
35	13	34	1				
36	13	35	1				
37	14	36	1				
38	14	37	1				

39	14	38	1			
40	15	39	1			
41	15	40	1			
42	15	41	1			
43	16	42	1			
44	16	43	1			
45	16	44	1			
46	17	51	1			
47	17	52	1			
48	17	53	1			
49	18	57	1			
50	18	58	1			
51	18	59	1			
52	19	54	1			
53	19	55	1			
54	19	56	1			
55	20	48	1			
56	20	49	1			
57	20	50	1			
58	21	45	1			
59	21	46	1			
60	21	47	1			
61	22	23	1			
62	22	27	1			
63	22	28	1			
64	23	24	1			
65	23	25	1			
66	23	26	1			
@ <tripos>SUBSTRUCTURE</tripos>						
1 F	RES1	1				

References:

- 1. Otwinowski, Z.; Minor, W. *Methods in Enzymology*, Macromolecular Crystallograpy, Carter, Jr., C. W.; Sweet, R. M. Eds., Academic Press **1997**, *276A*, 307-326.
- 2. Hooft, R. COLLECT: Users Manual, Nonius B.V., Delft. The Netherlands, 1998.
- 3. Altomare, A., Cascarano, M., Giacovazzo, C.& Guagliardi, A. J. Appl. Cryst., **1993**, 26, 343-350.
- Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M., The *DIRDIF-94* program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, **1994**.
- 5. Sheldrick, G. M. Acta Cryst. 2008 A64, 112-122.
- (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. (b) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Rev. Lett.* 1997, 78, 1396. (c) Perdew, J. P.; Ernzerhof, M.; Burke, K. J. Chem. Phys. 1996, 105, 9982.
- 7. (a) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829. (b) Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor. Chem. Acc. 1997, 97, 119.
- Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, **2004**.