Emission Mechanism of Doubly ortho-Linked

Quinoxaline/Diphenylfluorene or cis-Stilbene/Fluorene

Hybrid Compounds Based on the Transient Absorption and Emission Measurements during the Pulse Radiolysis

Yi Wei, ${ }^{\dagger,}{ }^{\dagger}$ Shingo Samori, ${ }^{\ddagger}$ Sachiko Tojo, ${ }^{\ddagger}$ Mamoru Fujitsuka, ${ }^{\ddagger}$ Jin-Sheng Lin, ${ }^{\dagger}$ Chien-Tien Chen, ${ }^{*, \dagger}$ and Tetsuro Majima ${ }^{\text {, }}$,
Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan 11650 and the Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.

SUPPORTING INFORMATION

Experimental details, spectral data of compounds 1-4 and OLED device measurements for 1a-e, 2a, 3d, 3f, and $\mathbf{4 f}$ (25 pages).

Table of Content

General S3
Experimental procedures and characterization for compounds 1-4 S3-S10
CV spectra for 1a-e, 2a, 3d, 3f, and $\mathbf{4 f}$ S10
Stacked plots of emission spectra of $\mathbf{1 e}$ (a) and $\mathbf{3 f}$ (b) by steady-state at $10^{-5} \mathrm{M}$ (green) and pulseradiolysis (red) measurements in Ar-saturated benzeneS10
Time-resolved transient absorption spectrum stacked plots of $\mathbf{3 d}$ S11
Decay profiles of the transient absorption spectra for $\mathbf{1 a - e}, \mathbf{2 a}, \mathbf{3 d}, \mathbf{3 f}$, and $\mathbf{4 f}$ S12
OLED device measurements for 1a-e, 3d, 3f, and $\mathbf{4 f}$ S12-S13
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{1 - 4}$ S14-S24
References S25

General. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Jeol JVM-EX400 ($400 \mathrm{MHz}{ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ ${ }^{13} \mathrm{C}$) spectrometers in deuterochloroform with chloroform as an internal reference unless otherwise stated. Chemical shifts are reported in ppm (δ). Coupling constants, J, are reported in Hz. Mass spectra were recorded on a Finnigan TCQ-700 GC/LC/MS spectrometer with an ionization voltage of 70 or 20 eV unless otherwise stated. High-resolution mass spectra were measured on a Finnigan MAT 95S spectrometer. Combustion analyses were performed on a Perkin-Elmer 2400-CHN analyzer by the Northern Instrument Center of Taiwan. Fast atom bombardment (FAB) mass spectra were recorded on a Finnigan MAT-95S spectrometer. Data are reported in the form m/e (intensity relative to base peak). Analytical TLC was performed on Merck silica gel plates with QF-254 indicator. Visualization was accomplished with UV light or with phosphomolybdic acid (PMA) and KMnO_{4} staining agents. Column (flash) chromatography was performed using 32-63 $\mu \mathrm{m}$ silica gel. All reagents were purchased from ACROS, ALDRICH, and TCI with purification in advance before use. Solvents for extraction and chromatography were reagent grade. Dichloromethane and chlorobenzene were dried over CaH_{2} before use. Diethyl ether, THF, 1,2-dimethoxyethane (DME) and toluene were dried over Na with benzophenone-ketyl intermediate as indicator. All reactions were run under argon.

Spiro-fluorene-dibenzosuberene[d](1,4-dibromo-quinoxaline) (1) ${ }^{1}$

To a $50-\mathrm{mL}$, two-necked, round-bottomed flask was placed Spiro-fluorene-
 dibenzosuberan-10,11-dione ($745 \mathrm{mg}, 2 \mathrm{mmol}$), 1,2-diamino-3,6-dibromobenzene (585 $\mathrm{mg}, 2.2 \mathrm{mmol}$) and catalytic $p-\mathrm{TSA}$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The reaction mixture was stirred under reflux for 12 hours. After having been quenched with saturated aqueous NaHCO_{3} (20 mL), the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to give 1, which was further re-crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford pure $\mathbf{1}$ ($1084 \mathrm{mg}, 90 \%$): m.p. 287 ${ }^{\circ} \mathrm{C}(\mathrm{DSC})$; M.W.: $602.32 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{dd}, J=7.6,1.3,2 \mathrm{H}), 8.03(\mathrm{~s}, 2 \mathrm{H}), 7.75(\mathrm{~d}$, $J=7.6,2 \mathrm{H}), 7.47(\mathrm{td}, J=7.6,1.6,2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6,2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{t}, J=7.6,2 \mathrm{H})$, $6.76(\mathrm{~d}, J=7.6,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.31,149.39,145.86,140.02,140.00,136.99$,
134.42, 133.36, 130.19, 128.55, 128.03, 128.01, 127.64, 127.23, 124.12, 120.48, 66.54; MS (ESI) 603.4 $\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; $\operatorname{TLC~R} \mathrm{R}_{f} 0.30$ (hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 / 1$).

Spiro-fluorene-dibenzosuberene[d](1,4-bis(4-methoxyphenyl)quinoxaline) (1a) ${ }^{2}$

To a $50-\mathrm{mL}$, two-necked, round-bottomed flask was placed $1(602 \mathrm{mg}, 1 \mathrm{mmol})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol})$ in DME $(25 \mathrm{~mL})$. A solution of phenylboronic acid ($293 \mathrm{mg}, 2.4 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(318 \mathrm{mg}, 3 \mathrm{mmol})$ in degassed water $(12 \mathrm{~mL})$ was added and the whole solution was refluxed for 24 hours. The reaction mixture was quenched with water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to give 1a, which was further re-crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes to afford pure 1 a ($555 \mathrm{mg}, 93 \%$): m.p. $316{ }^{\circ} \mathrm{C}(\mathrm{DSC}) ; \mathrm{T}_{d} 361{ }^{\circ} \mathrm{C}(\mathrm{TGA}) ; \mathrm{T}_{g} 122{ }^{\circ} \mathrm{C}(\mathrm{DSC}) ;$ M.W.: 596.72 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33$ (dd, $\left.J=7.9,1.3,2 \mathrm{H}\right), 8.04(\mathrm{~s}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.2,4 \mathrm{H}), 7.75(\mathrm{~d}, J=$ $7.6,2 \mathrm{H}), 7.54(\mathrm{t}, J=7.2,4 \mathrm{H}), 7.45(\mathrm{t}, J=7.2,4 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{t}, J=$ $7.6,2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.6,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.85, 149.71, 145.50, 140.09, 139.64, $138.43,138.43,138.25,133.74,131.01,130.30,129.33,128.32,128.01,127.92,127.85,127.72,127.62$, 127.16, 120.39, 66.65; MS (ESI) $597.6\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; TLC $\mathrm{R}_{f} 0.35$ (EtOAc/hexanes, 1/12); HR-MS calcd for $\mathrm{C}_{45} \mathrm{H}_{28} \mathrm{~N}_{2}$: 596.2252, found: 596.2256; Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{28} \mathrm{~N}_{2}$: C, $90.58, \mathrm{H}, 4.73, \mathrm{~N}, 4.69$. Found: C, 90.19, H, 5.01, N, 4.52.

Spiro-fluorene-dibenzosuberene[d](1,4-bis(4-methoxyphenyl)quinoxaline) (1b)

To a $50-\mathrm{mL}$, two-necked, round-bottomed flask was placed $1(602 \mathrm{mg}, 1$ mmol) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol})$ in DME (25 mL). A solution of 4fluorophenylboronic acid ($336 \mathrm{mg}, 2.4 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(318 \mathrm{mg}, 3 \mathrm{mmol})$ in degassed water (12 mL) was added and the whole solution was refluxed for 24 hours. The reaction mixture was quenched with water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to give $\mathbf{1 b}$, which was further re-crystallized from
$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to afford pure 1b (854 mg, 90%): m.p. $298{ }^{\circ} \mathrm{C}(\mathrm{DSC}) ; \mathrm{T}_{d} 362{ }^{\circ} \mathrm{C}(\mathrm{TGA}) ; \mathrm{T}_{g} 161$ ${ }^{\circ} \mathrm{C}(\mathrm{DSC})$; M.W.: $632.70 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{~d}, J=7.5,2 \mathrm{H}), 7.97(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=$ $8.7,5.5,4 \mathrm{H}), 7.75(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 8 \mathrm{H}), 7.07(\mathrm{t}, J=7.6,2 \mathrm{H}), 6.80(\mathrm{~d}$, $J=7.3,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.86,161.41,151.97,145.30,149.60,145.44,140.08$, $139.48,139.06,138.04,134.20,133.57,132.51,130.01,129.45,128.36,127.94,127.72,127.12,120.42$, 114.93, 66.58; MS (FAB) $633.07\left(\mathrm{M}^{+}, 5\right)$; $\mathrm{TLC}_{f} 0.32$ (EtOAc/hexanes, 1/12); HR-MS calcd for $\mathrm{C}_{45} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~F}_{2}$: 632.2064, found: 632.2060; Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~F}_{2}$: C, 85.42, H, 4.14, N, 4.43. Found: C, 85.15, H, 4.34, N, 4.53.

Spiro-fluorene-dibenzosuberene[d](1,4-bis(4-t-butylphenyl)Quinoxaline) (1c)

To a $50-\mathrm{mL}$, two-necked, round-bottomed flask was placed $\mathbf{1}$ ($602 \mathrm{mg}, 1$

 $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol})$ in DME $(25 \mathrm{~mL})$. A solution of 4-t-butylphenylboronic acid ($427 \mathrm{mg}, 2.4 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(318 \mathrm{mg}, 3 \mathrm{mmol})$ in degassed water (12 mL) was added and the resulting mixture was refluxed for 24 hours. The reaction mixture was cooled to ambient temperature and quenched with water (20 $\mathrm{mL})$. The whole mixture was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to give 1c, which was further re-crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes to afford pure $\mathbf{1 c}(631 \mathrm{mg}, 89 \%)$: m.p. $402{ }^{\circ} \mathrm{C}(\mathrm{DSC}) ; \mathrm{T}_{d} 395{ }^{\circ} \mathrm{C}(\mathrm{TGA}) ; \mathrm{T}_{g} 181{ }^{\circ} \mathrm{C}(\mathrm{DSC}) ;$ M.W.: 708.93 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~d}, J=7.6,2 \mathrm{H}), 8.01(\mathrm{~s}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4,4 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6$, $2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4,4 \mathrm{H}), 7.36(\mathrm{td}, J=7.6,2.2,2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6,2 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{bd}$, 2 H), $6.80(\mathrm{bd}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.64,150.45,149.59,145.35$, $140.02,139.72,139.55,138.31,135.48,133.69,130.58,130.24,129.19,128.27,127.83,127.69,127.10$, 124.98, 120.28, 66.56, 34.63, 31.40; MS (ESI) $709.7\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; TLC R $\mathrm{R}_{f} 0.30$ (EtOAc/hexanes, 1/12).

Spiro-fluorene-dibenzosuberene[d](1,4-bis(4-methoxyphenyl)quinoxaline) (1d)

To a $50-\mathrm{mL}$, two-necked, round-bottomed flask was placed 1 ($602 \mathrm{mg}, 1$
 $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\operatorname{DME}(25 \mathrm{~mL})$. A solution of 4methoxyphenylboronic acid ($365 \mathrm{mg}, 2.4 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(318 \mathrm{mg}, 3 \mathrm{mmol})$ in degassed water (12 mL) was added and the whole solution was refluxed for 24 hours. The reaction mixture was quenched with water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to give 1d, which was further re-crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to afford pure $\mathbf{1 d}(624 \mathrm{mg}, 95 \%)$: m.p. $344{ }^{\circ} \mathrm{C}(\mathrm{DSC}) ; \mathrm{T}_{d} 372{ }^{\circ} \mathrm{C}(\mathrm{TGA}) ; \mathrm{T}_{g} 160$ ${ }^{\circ} \mathrm{C}(\mathrm{DSC})$; M.W.: $656.77 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32$ (d, $J=7.6,2 \mathrm{H}$), $7.97(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $8.8,4 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{bd}, 2 \mathrm{H}), 7.06$ (d, $J=8.8$, 4H), $6.82(\mathrm{bd}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.27, 151.51, 149.66, 145.30, 140.05, $139.65,139.04,138.30,133.66,132.07,130.90,129.81,129.21,128.26,127.86,127.69,127.11,120.33$, 113.50, 66.59, 55.33; MS (ESI) $657.7\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; TLC R $_{f} 0.32$ (EtOAc/hexanes, 1/10).

Spiro-fluorene-dibenzosuberene[d](1-(4-(N,N-diphenylamino)-phenyl)-quinoxaline) (1e)

To a $50-\mathrm{mL}$, two-necked, round-bottomed flask was placed $\mathbf{1}$ (602 mg , $1 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\operatorname{DME}(25 \mathrm{~mL})$. A solution of 4-(N,N-diphenylamino)phenylboronic acid ($694 \mathrm{mg}, 2.4 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(318 \mathrm{mg}, 3 \mathrm{mmol})$ in degassed water $(12 \mathrm{~mL})$ was added and the whole solution was refluxed for 24 hours. The reaction mixture was quenched with water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to give $\mathbf{1 e}$, which was further re-crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to afford pure $\mathbf{1 e}(857 \mathrm{mg}, 92 \%)$: m.p. $351{ }^{\circ} \mathrm{C}(\mathrm{DSC})$; $\mathrm{T}_{d} 412{ }^{\circ} \mathrm{C}(\mathrm{TGA}) ; \mathrm{T}_{g} 186{ }^{\circ} \mathrm{C}(\mathrm{DSC}) ; \mathrm{M} . \mathrm{W} .: ~ 931.13 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35(\mathrm{~d}, J=7.3,2 \mathrm{H})$, $7.98(\mathrm{~s}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.7,4 \mathrm{H}), 7.72(\mathrm{~d}, J=7.4,2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 12 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 16 \mathrm{H}), 7.04(\mathrm{t}$,
$J=7.2,6 \mathrm{H}), 6.79(\mathrm{~d}, J=7.1,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5,149.7,147.8,147.4,145.4$, 140.1, 139.7, 139.1, 138.3, 133.7, 132.3, 131.7, 129.8, 129.3, 128.3, 127.9, 127.2, 124.7, 123.0, 122.7, 120.4, 66.6; MS (FAB) $931.4\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; TLC R ${ }_{f} 0.38\left(\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 3\right)$.

5H-dibenzosuberene[d](1,4-bis(4-methoxyphenyl)quinoxaline) (2a)

To a $50-\mathrm{mL}$, two-necked, round-bottomed flask was placed $\mathbf{5 H}$ -dibenzo[a,d]cycloheptene-10,11-dione ${ }^{3}$ ($444 \mathrm{mg}, 2 \mathrm{mmol}$), $\left[1,1^{\prime} ; 4^{\prime}, 1^{\prime \prime}\right]$ terphenyl$2^{\prime}, 3^{\prime}-$ diamine ${ }^{4}(573 \mathrm{mg}, 2.2 \mathrm{mmol})$ and catalytic $p-\mathrm{TSA}$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The reaction mixture was stirred under reflux for 12 hours. After having been quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to give $\mathbf{2 a}$, which was further re-crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford pure 2a (813 mg, 91%): m.p. $298{ }^{\circ} \mathrm{C}(\mathrm{DSC}) ; \mathrm{T}_{d} 377{ }^{\circ} \mathrm{C}(\mathrm{TGA}) ; \mathrm{T}_{g} 98^{\circ} \mathrm{C}(\mathrm{DSC}) ;$ M.W.: $446.54 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=7.2,2 \mathrm{H}), 7.96(\mathrm{~s}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=7.4,4 \mathrm{H}), 7.54(\mathrm{t}, J=7.6,4 \mathrm{H}), 7.45(\mathrm{t}, J$ $=7.4,2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 6 \mathrm{H}), 4.00(\mathrm{~d}, J=13.5,1 \mathrm{H}), 3.75(\mathrm{~d}, J=13.5,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 150.76,142.24,139.99,139.42,138.44,136.55,131.28,130.94,130.15,129.81,127.96$, 127.54, 127.08, 126.90, 40.34; MS (ESI) $447.7\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; $\mathrm{TLC} \mathrm{R}_{f} 0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, $\left.1 / 3\right)$; HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{~N}_{2}$: 446.5412, found: 446.1788.

3,7-Dibromo-5,5-spirofluorenyl-5H-dibenzo[a,d]cycloheptene (3) ${ }^{5}$

To a $250-\mathrm{mL}$, three-necked, round-bottomed flask was placed a solution of 2-
 bromobiphenyl ($3497 \mathrm{mg}, 15 \mathrm{mmol}$) in THF (50 mL). The reaction flask was cooled to $-78{ }^{\circ} \mathrm{C}$ and $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $6 \mathrm{~mL}, 15 \mathrm{mmol}$) was added dropwise. The whole solution was stirred at this temperature for 30 minutes followed by adding a solution of 3,7-Dibromo-dibenzo[a,d]cyclohepten-5-one ($3640 \mathrm{mg}, 10 \mathrm{mmol}$) in THF (30 mL). The resulting mixture was gradually warmed to ambient temperature and then quenched with saturated, aqueous NaHCO_{3} (30 $\mathrm{mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated under reduced pressure. The crude residue dissolved in acetic acid
(15 mL) was placed in another $100-\mathrm{mL}$, two-necked, round-bottomed flask. Catalytic amount of aqueous $\mathrm{HCl}(12 \mathrm{~N}, 5 \mathrm{~mol} \%)$ was then added and the whole mixture was refluxed for 30 minutes. After having been cooled to ambient temperature, the whole mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to give 3, which was further re-crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to afford 4852 mg of pure $\mathbf{3}$ (97%): m.p. $283{ }^{\circ} \mathrm{C}$ (DSC); M.W.: 500.22; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=7.7,2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5,2 \mathrm{H}), 7.32(\mathrm{dd}, J=8.2,2.0$, $2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2,2 \mathrm{H}), 6.98(\mathrm{dd}, J=1.9,2 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5,143.4,138.9,135.2,133.5,132.7,131.9,130.5,128.6,127.9,126.7,122.8,120.6$, 65.2; MS(EI, 20eV) $500.0\left(\mathrm{M}^{+}, 28\right)$; TLC $\mathrm{R}_{f} 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, $\left.1 / 5\right)$.

3,7-Bis(N,N-diphenylamino)-5,5-spirofluorenyl-5H-dibenzo[a,d]cycloheptene (3d)

To a $25-\mathrm{mL}$, two-necked, round-bottomed flask was placed $\mathbf{3}$ ($500 \mathrm{mg}, 1$
 mmol) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol})$ in DME $(25 \mathrm{~mL})$. A solution of 4-methoxyphenylboronic acid ($365 \mathrm{mg}, 2.4 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(318 \mathrm{mg}, 3$ mmol) in degassed water (12 mL) was added and the whole solution was refluxed for 24 hours. The reaction mixture was quenched with water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to give 3d, which was further re-crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to afford pure $\mathbf{3 d}(460 \mathrm{mg}, 83 \%)$: m.p. $242{ }^{\circ} \mathrm{C}(\mathrm{DSC}) ; \mathrm{T}_{d} 411{ }^{\circ} \mathrm{C}(\mathrm{TGA}) ; \mathrm{T}_{g} 118$ ${ }^{\circ} \mathrm{C}(\mathrm{DSC}) ;$ M.W.: $554.22 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=7.7,2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.6,2 \mathrm{H})$, $7.40-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{t}, J=7.6,2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7,4 \mathrm{H}), 7.19(\mathrm{~d}, J=2.2,2 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~d}$, $J=8.8,4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,153.0,142.0,140.2,139.0,135.0,133.0,132.8$, 132.6, 128.0, 127.6, 127.4, 127.4, 127.0, 125.1, 120.4, 114.1, 66.3, 55.3; MS (ESI) 554.2 ($\mathrm{M}^{+}, 100$); TLC $\mathrm{R}_{f} 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, $\left.1 / 4\right)$; HR-MS calcd for $\mathrm{C}_{69} \mathrm{H}_{46} \mathrm{~N}_{4}$: 554.2246, found: 554.2248; Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{30} \mathrm{O}_{2}$: C, 88.78, H, 5.45. Found: C, 88.43, H, 5.46.

3,7-Bis(N, N-diphenylamino)-5,5-spirofluorenyl-5H-dibenzo[a,d]cycloheptene (3f) ${ }^{6}$

To a $25-\mathrm{mL}$, two-necked, round-bottomed flask was placed $\mathbf{3}$ ($500 \mathrm{mg}, 1$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(18 \mathrm{mg}, 0.02 \mathrm{mmol})$, sodium tert-butoxide $(288 \mathrm{mg}, 3$ $\mathrm{mmol}), \mathrm{P}(t-\mathrm{Bu})_{3}(0.03 \mathrm{M}$ in toluene, $2 \mathrm{~mL}, 0.06 \mathrm{mmol})$, and diphenylamine ($372 \mathrm{mg}, 2.2 \mathrm{mmol}$) in toluene (15 mL). The whole solution was refluxed for 12 hours. The reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to give $\mathbf{3 f}$, which was further re-crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to afford 643 mg of pure $\mathbf{3 f}$ (95%): m.p. $287^{\circ} \mathrm{C}$ (DSC); $\mathrm{T}_{d} 443{ }^{\circ} \mathrm{C}$ (TGA); $\mathrm{T}_{g} 123^{\circ} \mathrm{C}(\mathrm{DSC}) ;$ M.W.: 676.84; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=7.8,2 \mathrm{H}$), $7.49(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 12 \mathrm{H}), 6.97(\mathrm{t}, J=7.3,4 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2,10 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 6.79$ $(\mathrm{t}, J=7.6,2 \mathrm{H}), 6.54(\mathrm{~d}, J=2.2,2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0,147.9,147.1,141.5,138.6$, 132.7, 130.7, 129.1, 128.8, 127.3, 127.0, 131.7, 124.8, 123.6, 123.1, 120.2, 119.7, 65.9; MS (ESI) 676.3 $\left(\mathrm{M}^{+}, 53\right) ; \mathrm{TLC} \mathrm{R}_{f} 0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane, $\left.1 / 3\right)$.

$N, N, N^{\prime}, N^{\prime}$-Tetraphenyl-5H-dibenzo[a,d]cycloheptene-3,7-diamine (4f)

To a $25-\mathrm{mL}$, two-necked, round-bottomed flask was placed 3,7-Dibromo$\mathbf{5 H}$-dibenzo[a,d]cycloheptene $(350 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(18 \mathrm{mg}, 0.02$ mmol), sodium tert-butoxide ($288 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{P}(t-\mathrm{Bu})_{3}(0.03 \mathrm{M}$ in toluene, $2 \mathrm{~mL}, 0.06 \mathrm{mmol}$), and diphenylamine ($372 \mathrm{mg}, 2.2 \mathrm{mmol}$) in anhydrous toluene (15 mL). The whole solution was stirred at reflux for 12 hours. The reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{CH} 2 \mathrm{Cl} 2(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried (MgSO4), filtered, and evaporated. The crude residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, $\left.1 / 3\right)$ to give $\mathbf{4 f}$. The product was further recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to afford 484 mg of analytically pure $\mathbf{4 f}(485 \mathrm{mg}, 92 \%)$: m.p. $228{ }^{\circ} \mathrm{C}$ (DSC); $\mathrm{T}_{d} 397{ }^{\circ} \mathrm{C}(\mathrm{TGA}) ; \mathrm{T}_{g} 101{ }^{\circ} \mathrm{C}(\mathrm{DSC}) ; \mathrm{M} . \mathrm{W} .: ~ 526.67 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{t}, J=$ $7.7,8 \mathrm{H}), 7.14(\mathrm{~d}, J=9.0,2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.7,8 \mathrm{H}), 7.02(\mathrm{t}, J=7.3,4 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{~s}$,

2H), 3.53 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.1,147.6,138.6,130.3,129.6,129.2,129.0$, 128.5, 122.9, 122.7, 121.2, 41.8; MS (ESI) $526.2(\mathrm{M}+100) ; \mathrm{TLC} \mathrm{R}_{f} 0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, $\left.1 / 3\right)$.

Figure S1. Stacked plots of cyclic voltammograms for (a) 1a-e, (b) 2a, (c) 3d and 3f, and (d) $\mathbf{4 f}$

Figure S2. Stacked plots of emission spectra of $\mathbf{1 e}$ (a) and $\mathbf{3 f}$ (b) by steady-state at $10^{-5} \mathrm{M}$ (green) and pulse radiolysis (red) measurements in Ar-saturated benzene.

Figure S3. Time-resolved transient absorption spectrum stacked plots of $\mathbf{3 d}$ observed at $\mathrm{t}=100 \mathrm{~ns}$ (black), 1 (red), 10 (green), and $100 \mu \mathrm{~s}$ (blue) after an electron pulse during pulse radiolysis measurements in Ar-saturated (a) DCE, (b) DMF, and (c) benzene solutions.

Figure S4. Decay profiles of the transient absorption of the triplet excited state observed during the pulse radiolysis for 1a-e, 2a, 3d, 3f, and $\mathbf{4 f}$ in Ar - and air-saturated benzene solution.

Figure S5. The stacked plots of the I-V-L characteristics [the plot of current density ($\mathrm{mA} / \mathrm{cm}^{2}$, I)/luminescence $\left(\mathrm{cd} / \mathrm{m}^{2}, \mathrm{~L}\right)$ values vs. applied voltage (V, V) obtained for each device configuration] for (a) 1a-e (Device-A), (b) 1d-e (Device-B), and (c) $\mathbf{1 e}$ (Device-C)

Figure S6. The stacked plots of the I-V-L characteristics for (a) 3d, 3f, and $\mathbf{4 f}$ (Device-D) and (b) $\mathbf{3 f}$ (Device-E)

Figure S7. Current Density-External quantum efficiency stacked diagram for (a) $\mathbf{1 a}$ and $\mathbf{1 b}$, (b) $\mathbf{1 c} \mathbf{c} \mathbf{e}$, and (c) 3d, 3f, and $\mathbf{4 f}$

Figure S8. Stacked diagram of lifetime measurements for device-A of Alq and device-C of 1e

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{1 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{1 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{1 d}$

C13 spectrum of
言

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{1 e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{2 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3}$

References and Notes

(1) Chen, C.-T.; Wei, Y.; Lin, J.-S.; Moturu, M.V. R. K.; Chao, W.-S.; Tao, Y.-T.; Chien, C.-H. J. Am. Chem. Soc. 2006, 128, 10992.
(2) Tsubata Y.; Suzuki T.; Miyashi T.; Yamashita Y. J. Org. Chem. 1992, 57, 6749.
(3) Rigaudy, P. J.; Nédélec, L. Bull. Soc. Chim. Fr.; 1959; 638, 642.
(4) Mancilha, F. S.; Neto, B. A. D.; Lopes , A. S.; Moreira, P. F.; Quina, F. H.; Gonçalves, R. S.; Dupont, J. Eur. J. Org. Chem. 2006, 21, 4924.
(5) Wei, Y.; Chen, C.-T. J. Am. Chem. Soc. 2007, 129, 7478.
(6) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852.
(7) Complete reference 5a in the manuscript: Anderson, J. D.; McDonald, E. M.; Lee, P. A.; Anderson, M. L.; Ritchie, E. L.; Hall, H. K.; Hopkins, T.; Padias, A.; Thayumanavan, S.; Barlow, S.; Marder, S. R.; Jabbour, G. E.; Shaheen, S.; Kippelen, B.; Peyghambarian, N.; Wightman, R. M.; Armstrong, N. R.; Mash, E. A.; Wang, J. J. Am. Chem. Soc. 1998, 120, 9646.

