Alkylidenesilacyclopropanes Derived from Allenes: Applications to the Selective Synthesis of Triols and Homoallylic Alcohols

Kay M. Buchner, Timothy B. Clark, Janice M. N. Loy, Thong X. Nguyen, and K. A. Woerpel* Department of Chemistry, University of California, Irvine, California 92697-2025

Supporting Information

Contents:

I.	Syntheses of Allenes	S-2
II.	Silver-Catalyzed Synthesis of Alkylidenesilacyclopropanes	S-9
III.	Thermal vs. Copper-Catalyzed Carbonyl Insertion Reactions	S-13
IV.	Two-Step, One-Flask Reactions to Form Oxasilacyclopentanes	S-16
V.	Functionalization of Oxasilacyclopentanes	S-19
VI.	Synthesis of an Enantiopure Homoallylic Alcohol	S-20
VII.	Regiochemistry of Alkylidenesilacyclopropanes	S-24
VIII.	Regiochemistry of Oxasilacyclopentanes	S-27
IX.	X-ray Crystallographic Data	S-32
X.	Selected Spectra	S-74

Experimental Section

General Procedures. ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature using Bruker DRX 400 (400 and 100 MHz, respectively) or DRX 500 (500 and 125 MHz, respectively) spectrometers, as indicated. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (appar = apparent, br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, m = multiplet), coupling constants (Hz), and integration. Due to difficulties with purification for certain products, only distinctive peaks are listed in tabulated ¹H NMR spectral data as indicated, and the structures were assigned using a combination of COSY, HMQC, HMBC, NOESY, and NOE experiments. ²⁹Si NMR spectra were recorded at ambient temperature using a Bruker DRX 500 (99.3 MHz) spectrometer relative to an external tetramethylsilane standard on the δ scale. NMR yields were determined relative to a known concentration of internal standard (PhSiMe₃). Melting points were obtained using a Büchi 510 melting point apparatus and were reported uncorrected. Infrared (IR) spectra were obtained using Perkin Elmer Paragon 1000PC FT-IR or Mattson Galaxy FT-IR 5000 spectrometers. Optical rotations were measured using a Jasco DIP-370 Digital Polarimeter. Gas chromatography–mass spectrometry (GC-MS) was performed with

a Thermo-Finnigan Trace Mass Spectrometer Plus quadrupole system with a fused silica capillary column (30 m \times 0.32 mm \times 0.25 μ m) wall-coated with DB-5 (J & W Scientific) using electron ionization (70 eV). High and low resolution mass spectra (HRMS/LRMS) were acquired on a Waters LCT Premier quadrupole time-of-flight spectrometer and were obtained by peak matching. HPLC determination of enantiopurity was performed with Mettler Toledo supercritical CO₂ fluid chromatography (SFC) using a Daicel Chiralpak AD column calibrated with a sample of the racemate. Air-sensitive microanalyses were performed by Columbia Analytical Services Inc., Tucson, AZ. All other microanalyses were performed by Atlantic Microlab Inc., Norcross, GA. Analytical thin layer chromatography was performed on EM reagents 0.25 mm Liquid chromatography was performed using forced flow (flash silica gel 60–F plates. chromatography) of the indicated solvent system on Sorbent Technologies silica gel (SiO₂) 60 Metal salts and silacvclopropanes were stored and manipulated in an (230–400 mesh). Innovative Technologies nitrogen-atmosphere dry box. All reactions were performed under an atmosphere of nitrogen in glassware that had been flame-dried under vacuum. Solvents were distilled or filtered before use. Unless otherwise noted, all reagents and substrates were commercially available.

I. Syntheses of Allenes

Allene 1a. A procedure reported by Jamison¹ was used to prepare allene 1a. To a cooled (-15 °C) solution of PPh₃ (11.8 g, 45.1 mmol) in 63 mL of anhydrous THF was added diethyl azodicarboxylate (7.1 mL, 45 mmol). The resulting reaction mixture was stirred for 10 min, and then a solution of 2-nonyn-1-ol (4.19 g, 29.9 mmol) in 63 mL of anhydrous THF was added. After 10 min, a solution of *o*-nitrobenzylsulfonylhydrazine² (4.58 g, 21.1 mmol) in 40 mL of anhydrous THF was added. The reaction mixture was stirred at -15 °C for 2 h then slowly warmed to 22 °C over 18 h. The reaction mixture was cooled to 0 °C and diluted with 400 mL of pentane. The organic layer was washed with ice-cold H₂O (10 × 200 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purification by column chromatography (pentane) gave allene 1a as a colorless oil (1.32 g, 35%). The spectral data are consistent with the data reported:^{3 1}H NMR (500 MHz, C₆D₆) δ 5.08 (quint, *J* = 6.8, 1H), 4.64 (dtd, *J* = 6.7, 3.2, 0.5, 2H), 1.93 (qt, *J* = 7.2, 3.4, 2H), 1.35 (quint, *J* = 7.3, 2H), 1.23 (m, 6H), 0.87 (t, *J* = 7.0, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 209.4, 90.8, 75.2, 32.4, 29.8, 29.5, 29.0, 23.4, 14.6.

Allene 1b. A procedure reported by $Price^4$ was adapted to prepare 1b. CuI (9.52 g, 50.0 mmol) was added in small portions to a solution of paraformaldehyde (7.5 g, 250 mmol), propargyl alcohol (5.82 mL, 100 mmol), and *i*-Pr₂NH (30 mL, 200 mmol) in THF (192 mL). The reaction mixture was heated at reflux for 15 h, then cooled off and vacuum-filtered through Celite, and

concentrated *in vacuo*. The resulting brown oil was diluted with H₂O (50 mL) and Et₂O (70 mL) and the aqueous layer was acidified using 3 M HCl (50 mL). The mixture was vacuum-filtered to remove solids and the layers were separated. The aqueous layer was extracted with Et₂O (4 × 25 mL). The combined organic layers were washed with H₂O (3 × 30 mL) and brine (70 mL), dried over MgSO₄, and concentrated *in vacuo* to give an orange-red oil. The oil was dissolved in DMF (10 mL), and imidazole (2.87 g, 42.1 mmol) was added. The reaction mixture was cooled to 0 °C and *t*-BuMe₂SiCl (6.35 g, 42.1 mmol) was added. After 1.5 h at 0 °C, the reaction mixture was warmed to 22 °C and stirred for an additional 16 h. The mixture was diluted with pentane (60 mL), washed with H₂O (3 × 30 mL), dried over MgSO₄, and concentrated *in vacuo*. Purification by column chromatography (pentane) gave allene **1b** (1.105 g, 6%) as a colorless oil. The spectral data are consistent with the data reported:^{5 1}H NMR (500 MHz, CDCl₃) δ 5.15 (quint, *J* = 6.5, 1H), 4.69 (dt, *J* = 6.6, 2.8, 2H), 4.11 (dt, *J* = 6.4, 2.8, 2H), 0.83 (s, 9H), 0.01 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 208.3, 91.1, 76.3, 61.6, 26.1, 18.6, -4.9.

D-1

Alkene D-1. To a cooled (0 °C) solution of cinnamyl alcohol (5.33 g, 39.7 mmol) and imidazole (5.45 g, 80.0 mmol) in DMF (13 mL) was added *i*-Pr₃SiCl (8.99 mL, 42.0 mmol). After 3 h at 0 °C, the reaction mixture was warmed to 22 °C and stirred for an additional 20 h. The reaction mixture was diluted with H₂O (50 mL) and extracted with Et₂O (3 × 40 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (15:85 CH₂Cl₂/hexanes) gave alkene **D-1** (9.95 g, 82%) as a colorless oil. The spectral data are consistent with the data reported:⁶ ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 7.5, 2H), 7.31 (t, *J* = 7.4, 2H), 7.21 (t, *J* = 7.3, 1H), 6.64 (d, *J* = 15.9, 1H), 6.30 (dt, *J* = 15.8, 4.8, 1H), 4.43 (dd, *J* = 4.8, 1.7, 2H), 1.16 (m, 3H), 1.10 (d, *J* = 6.4, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 137.5, 129.6, 129.3, 128.7, 127.4, 126.6, 64.1, 18.3, 12.3; IR (thin film) 3026, 2942, 2865, 1460, 1131 cm⁻¹; LRMS (APCI) calcd for C₉H₉O (M – C₉H₂₁Si)⁺ 133, found 133; *m* / *z* calcd for C₉H₉ (M – C₉H₂₁OSi)⁺ 117, found 117.

Dibromocyclopropane D-2. A procedure reported by Tanino⁷ was adapted to prepare **D-2**. To a cooled (0 °C) solution of alkene **D-1**⁶ (3.46 g, 11.3 mmol), BnNEt₃Cl (0.257 g, 1.13 mmol), CHBr₃ (4.93 mL, 56.5 mmol), and ethanol (0.050 mL) in 11.3 mL of CH₂Cl₂ was added a 50% aqueous NaOH solution (11.3 mL). The reaction mixture was stirred vigorously and allowed to slowly warm to 22 °C. After 16 h, the reaction mixture was cooled to 0 °C, and ethanol (0.50 mL) and 50% aqueous NaOH (3.0 mL) were added. After 5 h, the reaction mixture was diluted with H₂O (200 mL) and extracted with Et₂O (3×75 mL). The combined organic layers were washed with saturated aqueous sodium potassium tartrate (100 mL) and brine (150 mL), dried over MgSO₄ and concentrated *in vacuo* to give a brown oil. Purification by column chromatography (10:90 CH₂Cl₂/hexanes) gave dibromocyclopropane **D-2** as a yellow oil (4.34 g, 83%): ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.26 (m, 5H), 4.08 (dd, J = 10.9, 6.9, 1H), 3.98 (dd, J= 10.9, 5.8, 1H, 2.69 (d, J = 8.4, 1H), 2.20 (ddd, J = 8.4, 6.8, 6.0, 1H), 1.17–1.07 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 136.3, 129.1, 128.5, 127.8, 65.4, 39.7, 37.3, 34.8, 18.3, 12.2; IR (thin film) 3026, 2942, 2865, 1459, 1103 cm⁻¹; HRMS (ESI) m / z calcd for C₁₉H₃₀Br₂NaOSi (M + Na)⁺ 483.0331, found 483.0330. Anal. Calcd for $C_{19}H_{30}Br_2OSi$; C, 49.36; H, 6.54. Found; C, 49.16: H. 6.41.

Allene 1d. To a cooled (-78 °C) solution of dibromocyclopropane D-2 (2.28 g, 4.93 mmol) in 16 mL of Et₂O was added MeLi (4.93 mL, 7.89 mmol, 1.60 M solution in Et₂O) over 5 min. The reaction mixture was allowed to stir at -78 °C for 20 min, then was transferred to an ice-MeOH bath (-15 °C) and stirred for 20 min. The reaction mixture was diluted with phosphate buffer (30 mL, pH 7) and extracted with Et₂O (3 × 20 mL). The combined organic layers were washed with brine (30 mL), dried over MgSO₄, and concentrated *in vacuo* to give a yellow-orange oil. Purification by column chromatography (10:90 CH₂Cl₂/hexanes) gave 1d as a light yellow oil (0.810 g, 62%): ¹H NMR (500 MHz, CDCl₃) δ 7.29 (m, 4H), 7.19 (m, 1H), 6.23 (dt, *J* = 6.1, 2.6, 1H), 5.71 (q, *J* = 6.2, 1H), 4.38 (m, 2H), 1.17–1.03 (sept, *J* = 5.7, 3H and d, *J* = 6.2, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 204.7, 134.5, 128.7, 127.12, 127.05, 96.2, 96.1, 61.8, 18.2, 12.2; IR (neat) 3032, 2942, 1951, 1599, 1496 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₁₉H₃₁OSi (M + H)⁺ 303.2144, found 303.2143.

Propargylic alcohol E-1. A procedure reported by Jamison¹ was adapted to prepare **E-1**. To a cooled (0 °C) solution of CBr₄ (30 g, 100 mmol) in CH₂Cl₂ (70 mL) was added PPh₃ (50 g, 200 The reaction mixture was stirred at 0 °C for 30 min, and then mmol). cyclohexanecarboxaldehyde (6 mL, 50 mmol) was added dropwise. The reaction mixture was warmed to 22 °C and stirred for an additional 22 h. The mixture was vacuum-filtered through SiO₂ with hexanes and concentrated *in vacuo*. The resulting oil was dissolved in THF (50 mL) and cooled to -78 °C. MeLi (52 mL, 1.6 M in Et₂O, 84 mmol) was slowly added and the reaction mixture was stirred at -78 °C for 2.5 h. Acetaldehyde (6 mL, 100 mmol) was added and after 15 h at -78 °C the mixture was gradually warmed to 22 °C. The reaction mixture was diluted with H₂O (40 mL) and the layers separated. The aqueous layer was extracted with Et₂O (100 mL). The combined organic layers were washed with H_2O (4 × 50 mL) and brine (50 mL), dried over MgSO₄, and concentrated in vacuo. Purification by column chromatography (10:90 EtOAc/hexanes) gave propargylic alcohol E-1 as a yellow oil (5.42 g, 71%). The spectral data are consistent with the data reported:¹¹H NMR (400 MHz, CDCl₃) δ 4.52 (qdd, J = 6.6, 5.2, 1.7,1H), 2.37 (m, 1H), 1.89 (d, J = 5.2, 1H), 1.76 (m, 2H), 1.69 (m, 2H), 1.52 (m, 1H), 1.41 (m, 2H), 1.42 (d, J = 6.6, 3H), 1.29 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 88.8, 82.2, 58.7, 32.7, 29.0, 25.9, 24.93, 24.89; HRMS (ESI) m / z calcd for C₁₀H₁₆ONa (M + Na)⁺ 175.1099, found 175.1098.

Allene (1e). A procedure reported by Myers⁸ and adapted by Jamison¹ was used to prepare allene 1e. To a cooled (-15 °C) solution of PPh₃ (2.61 g, 9.95 mmol) in 14 mL of anhydrous THF was added diethyl azodicarboxylate (1.6 mL, 9.9 mmol). The resulting reaction mixture was stirred for 10 min, and then a solution of alcohol E-1 (1.00 g, 6.57 mmol) in 14 mL of anhydrous THF was added. After 10 min, a solution of *o*-nitrobenzylsulfonylhydrazine² (2.16 g, 9.94 mmol) in 9 mL of anhydrous THF was added. The reaction mixture was stirred at -15 °C for 2 h then slowly warmed to 22 °C over 17 h. The reaction mixture was cooled to 0 °C and diluted with 100 mL of pentane. The organic layer was washed with ice-cold H₂O (10 × 60 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purification by column chromatography

(pentane) gave allene **1e** as a colorless oil (0.471 g, 52%). The spectral data are consistent with the data reported:^{1,9} ¹H NMR (500 MHz, C₆D₆) δ 5.11 (m, 2H), 1.95 (m, 1H), 1.75 (m, 2H), 1.65 (m, 2H), 1.59 (dd, J = 6.8, 3.4, 3H), 1.54 (m, 1H), 1.15 (m, 5H); ¹³C NMR (125 MHz, C₆D₆) δ 203.9, 96.5, 86.3, 37.2, 33.1, 26.02, 26.00, 14.6.

Propargylic alcohol F-1.¹⁰ To a cooled (-78 °C) solution of LiBr (1.27 g, 14.7 mmol) and 3methyl-1-butyne (3.00 mL, 29.3 mmol) in 15 mL of THF was slowly added *n*-BuLi (12.6 mL, 2.44 M in hexanes, 30.8 mmol). After 10 min, butyraldehyde (2.64 mL, 29.3 mmol) was added. The reaction mixture was slowly warmed to 22 °C and stirred for 18 h. The reaction mixture was diluted with saturated aqueous NH₄Cl (50 mL) and extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purification by column chromatography (10:90 EtOAc/hexanes) gave **F-1** as an oil (2.26 g, 55%): ¹H NMR (400 MHz, CDCl₃) δ 4.35 (ddd, *J* = 11.7, 6.7, 1.7, 1H), 2.57 (septd, *J* = 6.9, 1.8, 1H), 1.72–1.57 (m, 3H), 1.46 (appar sext, *J* = 7.4, 2H), 1.16 (d, *J* = 6.9, 6H), 0.95 (t, *J* = 7.4, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 91.2, 80.7, 62.7, 40.6, 23.2, 20.7, 18.7, 14.0; IR (thin film) 3355, 2961, 2873, 2242, 1466, 1023 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₉H₁₆NaO (M + Na)⁺ 163.1099, found 163.1098.

Vinyl ether F-2. A procedure reported by Yamamoto¹¹ was adapted to prepare **F-2**. To a solution of propargylic alcohol **F-1** (1.00 g, 7.13 mmol) in 19 mL of ethyl vinyl ether was added $Hg(O_2CCF_3)_2$ (0.304 g, 0.713 mmol). The reaction mixture was allowed to stir for 18 h and was then diluted with 5% aqueous KOH (9 mL) and extracted with hexanes (3 × 15 mL). The

combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Purification by column chromatography (hexanes) gave **F-2** as a colorless oil (0.606 g, 51%): ¹H NMR (400 MHz, CDCl₃) δ 6.43 (dd, J = 14.1, 6.6, 1H), 4.39 (td, J = 5.9, 1.5, 1H and dd, J = 14.1, 1.6, 1H), 4.07 (dd, J = 6.6, 1.6, 1H), 2.58 (septd, J = 6.9, 1.7, 1H), 1.74 (m, 2H), 1.48 (sext, J = 7.5, 2H), 1.16 (d, J = 6.9, 6H), 0.93 (t, J = 7.4, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 92.9, 89.5, 89.5, 69.4, 38.0, 23.2, 20.7, 18.6, 13.9; IR (thin film) 2966, 2874, 2244, 1636, 1615, 1190 cm⁻¹.

Homoallenic alcohol F-3. A procedure reported by $Toste^{12}$ was adapted to prepare **F-3**. A solution of vinyl ether **F-2** (0.600 g, 3.61 mmol) and $[(Ph_3PAu)_3O]BF_4^{13}$ (0.063 g, 0.036 mmol) in 10 mL of CH₂Cl₂ was stirred at 22 °C. After 18 h, MeOH (20 mL) and NaBH₄ (0.136 g, 3.61 mmol) were added to the reaction mixture. After 1 h, the reaction mixture was diluted with H₂O (30 mL) and extracted with Et₂O (3 × 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography (70:30 CH₂Cl₂/hexanes) gave **F-3** as an oil (0.515 g, 85%): ¹H NMR (500 MHz, CDCl₃) δ 5.24 (m, 1H), 3.73 (q, *J* = 6.1, 2H), 2.23 (td, *J* = 6.1, 3.1, 2H), 2.09 (septd, *J* = 6.7, 2.3, 1H), 1.97 (q, *J* = 7.1, 2H), 1.68 (t, *J* = 6.2, 1H), 1.43 (sext, *J* = 7.3, 2H), 1.03 (d, *J* = 6.7, 3H and d, *J* = 6.7, 3H), 0.93 (t, *J* = 7.3, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 199.5, 107.8, 94.2, 61.5, 34.2, 31.9, 31.5, 22.8, 22.0, 21.8, 14.0; IR (thin film) 3338, 2960, 2930, 1957, 1045 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₁₁H₂₀ONa (M + Na)⁺ 191.1412, found 191.1409.

1f

Allene 1f. To a cooled (0 °C) solution of homoallenic alcohol **F-3** (0.380 g, 2.26 mmol) and imidazole (0.307 g, 4.52 mmol) in 0.8 mL of DMF was slowly added ClSi(*i*-Pr)₃ (0.51 mL, 2.4 mmol). The reaction mixture was slowly warmed to 22 °C and stirred for 18 h. The reaction mixture was diluted with H₂O (10 mL) and extracted with Et₂O (3 × 20 mL). The combined organic layers were washed with 1 M aqueous HCl (50 mL) and brine (50 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purification by column chromatography (hexanes) gave 1f as a colorless oil (0.644 g, 88%): ¹H NMR (500 MHz, CDCl₃) δ 5.11 (m, 1H), 3.73 (t, *J* = 7.7, 2H), 2.22 (td, *J* = 7.7, 2.8, 2H), 2.09 (septd, *J* = 6.8, 2.2, 1H), 1.91 (q, *J* = 7.2, 2H), 1.40 (sext, *J* = 7.3, 2H), 1.12–1.03 (sept, *J* = 4.2, 3H and d, *J* = 4.8, 18H), 1.00 (d, *J* = 6.7, 3H and d, *J* = 6.7, 3H), 0.92 (t, *J* = 7.4, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 200.1, 107.3, 93.1, 63.1, 34.4, 31.9, 31.6, 22.8, 22.1, 21.9, 18.2, 14.0, 12.3; IR (thin film) 2960, 2867, 1958, 1464, 1100, 882 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₀H₄₁OSi (M + H)⁺ 325.2927, found 325.2924. Anal. Calcd for C₂₀H₄₀OSi: C, 74.00; H, 12.42. Found: C, 73.83; H, 12.58.

Propargylic alcohol H-1. A procedure reported by Hailes¹⁴ was adapted to prepare **H-1**. To a cooled (-78 °C) solution of 1-hexyne (9.20 mL, 80.0 mmol) in THF (40 mL) was slowly added *n*-BuLi (31 mL, 2.9 M in hexanes, 90 mmol). After 10 min, valeraldehyde (8.50 mL, 80.0 mmol) was added. The reaction mixture remained at -78 °C for 15 min, then was slowly warmed to 22 °C and stirred for an additional 1 h. The reaction mixture was quenched with saturated NH₄Cl (50 mL), diluted with EtOAc, and the layers were separated. The organic layer was washed with brine (100 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purification by column chromatography (20:80 Et₂O/hexanes) gave alcohol **H-1** as a light yellow oil (11.76 g, 87%). The spectral data are consistent with the data reported:^{14 1}H NMR (500 MHz, CDCl₃) δ 4.36 (m, 1H), 2.22 (td, *J* = 7.0, 2.0, 2H), 1.74–1.62 (m, 2H), 1.69 (d, *J* = 5.3, 1H), 1.53–1.32 (m, 8H), 0.924 (t, *J* = 7.2, 3H), 0.918 (t, *J* = 7.3, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 85.5, 81.4, 62.8, 38.0, 30.8, 27.4, 22.4, 22.0, 18.4, 14.1, 13.6; HRMS (ESI) *m* / *z* calcd for C₁₁H₂₀ONa (M + Na)⁺ 191.1412, found 191.1411.

Allene 1h. A procedure reported by Myers¹⁷ and adapted by Jamison¹⁸ was used to prepare 1h. To a cooled (-10 °C) solution of PPh₃ (7.11 g, 27.1 mmol) in 36 mL of THF was added diethyl azodicarboxylate (4.3 mL, 27 mmol). The resulting reaction mixture was allowed to stir for 10 min, then a solution of alcohol H-1 (3.04 g, 18.1 mmol) in 27 mL of THF was added. After 10 min, *o*-nitrobenzylsulfonylhydrazine² (5.89 g, 27.1 mmol) in 36 mL of THF was added. The resulting reaction mixture was kept below 0 °C for 1.5 h and was slowly warmed to 22 °C over 15 h. The reaction mixture was cooled to 0 °C and diluted with pentane (400 mL) and the layers were separated. The organic layer was washed with ice-cold H₂O (10 × 100 mL), dried with Na₂SO₄, and concentrated *in vacuo* at 0 °C to give an orange liquid. Purification by column chromatography (pentane) gave **1h** as a colorless liquid (1.88 g, 68%). The spectral data are consistent with the data reported:^{14 1}H NMR (500 MHz, CDCl₃) δ 5.06 (m, 2H), 1.98 (m, 4H), 1.36 (m, 8H), 0.90 (t, *J* = 7.0, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 204.0, 91.1, 31.6, 28.9, 22.4, 14.2.

II. Silver-Catalyzed Synthesis of Alkylidenesilacyclopropanes

Representative Procedure for the silver-catalyzed silacyclopropanation of allenes:

Alkylidenesilacyclopropanes 3a and 3a'. To a flask containing allene 1a (0.300 mL, 0.048 mmol, 0.160 M of the allene and 0.0386 M solution of PhSiMe₃ in C_6D_6) and cyclohexenesilacyclopropane 2 (0.200 mL, 0.100 mmol, 0.500 M solution of 2 and 0.0386 M solution of PhSiMe₃ in C₆D₆) was added AgO₂CCF₃ (0.005 mL, 0.0005 mmol, 0.096 M in C_6D_6). The progress of the reaction was monitored using ¹H NMR spectroscopy. After 1 h, alkylidenesilacyclopropanes 3a and 3a' were formed in 77% combined yield (71% and 6%, respectively) with $\geq 95:5$ regioselectivity and 93:7 diastereoselectivity, as determined by ¹H NMR spectroscopy (compared to the PhSiMe₃ internal standard) using a single scan. Full characterization is provided for an isolated sample of **3a** (see below).

Procedure for the isolation of alkylidenesilacyclopropane 3a: Cyclohexenesilacyclopropane $2^{15,16}$ (0.816 g, 3.64 mmol) was added to a solution of allene 1a (0.373 g, 3.00 mmol) in anhydrous toluene (13 mL). The mixture was cooled to $-19 \text{ }^{\circ}\text{C}$ followed by the addition of Ag₃PO₄ (0.087 g, 0.21 mmol). The resulting reaction mixture remained at -19 °C for 30 min, then was slowly warmed to 22 °C. After 20 h, the reaction mixture was filtered through Celite and concentrated in vacuo. Kugelrohr distillation under vacuum (0.3 mm Hg) at 95 °C yielded alkylidenesilacyclopropane **3a** as a colorless oil (0.51 g, 63%): ¹H NMR (500 MHz, C_6D_6) δ 6.50 (tt, J = 6.9, 3.2, 1H), 2.43 (qt, J = 6.6, 1.6, 2H), 1.52 (quint, J = 7.4, 2H), 1.40-1.34 (m, 2H), 1.33-1.25 (m, 4H), 1.16 (dt, J = 3.1, 1.7, 2H), 1.11 (s, 18H), 0.90 (t, J = 7.0, 1.11) 3H); ¹³C NMR (125 MHz, C₆D₆) δ 138.5, 133.2, 32.8, 31.9, 29.4, 29.1, 29.0, 22.8, 18.3, 14.0, 4.5; ²⁹Si NMR (99.3 MHz, C₆D₆) δ -45.4; IR (thin film) 2956, 2931, 2858, 1471, 1363, 823 cm⁻ ¹; HRMS (APCI) m / z calcd for C₁₃H₂₅Si (M – C₄H₉)⁺ 209.1726, found 209.1722.

Alkvlidenesilacvclopropanes 3b and 3b'. The representative procedure for silver-catalyzed silacyclopropanation was followed using 1b (0.250 mL, 0.125 mmol, 0.500 M of the allene and 0.0465 M solution of PhSiMe₃ in C_6D_6), cyclohexenesilacyclopropane 2 (0.300 mL, 0.150 mmol, 0.500 M solution of 2 and 0.0465 M solution of PhSiMe₃ in C_6D_6) and Ag₃PO₄ (0.003 g, 0.006 mmol). After 34 h, alkylidenesilacyclopropanes 3b and 3b' were formed in 74% combined yield (61% and 13%, respectively) with \geq 95:5 regioselectivity and 83:17 diastereoselectivity, as determined by ¹H NMR spectroscopy (compared to the PhSiMe₃ internal standard) using a single scan. Major isomer **3b**: ¹H NMR (400 MHz, C₆D₆) δ 6.68 (tt, *J* = 5.8, 3.1, 1H), 4.52 (dt, *J* = 5.8, 1.9, 2H), 1.10 (m, 2H), 1.05 (s, 18H), 1.02 (s, 9H), 0.13 (s, 6H); ¹³C NMR (125 MHz, C₆D₆) δ 138.5, 135.0, 64.5, 29.6, 26.6, 18.98, 18.95, 5.2, -4.4; ²⁹Si NMR (99.3 MHz, C₆D₆) δ -47.0, 19.5.

t-Bu _ t-Bu Si Me SiMe₃ **3c**

Alkylidenesilacyclopropane 3c. The representative procedure for silver-catalyzed silacyclopropanation was followed using 3-(trimethylsilyl)-1,2-butadiene 1c (0.250 mL, 0.125 mmol, 0.500 M of the allene and 0.0465 M solution of PhSiMe₃ in C₆D₆), cyclohexenesilacyclopropane $2^{15,16}$ (0.300 mL, 0.150 mmol, 0.500 M solution of 2 and 0.0465 M solution of PhSiMe₃ in C₆D₆) and Ag₃PO₄ (0.003 g, 0.006 mmol). After 2.5 h, alkylidenesilacyclopropane 3c was formed in 87% yield with \geq 95:5 regioselectivity and \geq 95:5 diastereoselectivity, as determined by ¹H NMR spectroscopy. Full characterization is provided for an isolated sample of 3c (see below).

Procedure for the isolation of alkylidenesilacyclopropane 3c:

To a vessel fitted with an air-free seal containing a cooled ($-26 \,^{\circ}$ C) solution of 3-(trimethylsilyl)-1,2-butadiene **1c** (0.500 mL, 3.00 mmol) and cyclohexenesilacyclopropane **2**^{15,16} (0.808 g, 3.60 mmol) in 13 mL of toluene was added Ag₃PO₄ (0.063 g, 0.15 mmol). The reaction mixture was kept at $-26 \,^{\circ}$ C for 30 min and then was allowed to warm to 22 °C. After 3.5 h, the reaction mixture was filtered through a pad of Celite with hexanes under N₂ in the dry box and concentrated *in vacuo* to give a light brown oil. Kugelrohr distillation under vacuum (0.3 mm Hg) at 40 °C gave **3c** as a colorless oil (0.360 g, 45%): ¹H NMR (400 MHz, C₆D₆) δ 2.06 (t, *J* = 2.6, 3H), 1.27 (q, *J* = 2.6, 2H), 1.08 (s, 18H), 0.27 (s, 9H); ¹³C NMR (125 MHz, C₆D₆) δ 149.0, 146.8, 30.0, 28.1, 18.9, 8.5, -0.3; ²⁹Si NMR (99.3 MHz, C₆D₆) δ -51.4, -6.4; IR (neat) 2959, 2857, 1646, 1471, 1246, 834 cm⁻¹. Anal. Calcd for C₁₅H₃₂Si₂: C, 67.08; H, 12.01. Found: C, 66.82; H, 11.97.

Alkylidenesilacyclopropanes 3d and 3d'. The representative procedure for silver-catalyzed silacyclopropanation was followed using 1-(triisopropylsilyloxy)-4-phenyl-2,3-butadiene 1d (0.250 mL, 0.125 mmol, 0.500 M of the allene and 0.0581 M solution of PhSiMe₃ in C₆D₆), cyclohexenesilacyclopropane $2^{15,16}$ (0.300 mL, 0.150 mmol, 0.500 M solution of 2 and 0.0465 M solution of PhSiMe₃ in C₆D₆) and Ag₃PO₄ (0.003 g, 0.006 mmol). After 1.5 h, a mixture of alkylidenesilacyclopropane 3d and regioisomer alkylidenesilacyclopropane 3d' was formed in 82% yield with 79:21 regioselectivity, as determined by ¹H NMR spectroscopy. Both 3d and

3d' were each formed with \geq 95:5 diastereoselectivity, as determined by ¹H NMR spectroscopy: ¹H NMR (500 MHz, C_6D_6) δ 7.63 (dd, J = 8.3, 0.6, 0.6H), 7.44 (m, 0.6H), 7.27–7.18 (m, 4H), 7.06 (m, 0.3H), 6.97 (m, 1H), 6.93 (ddd, J = 6.5, 5.5, 3.2, 1H), 4.70–4.62 (dd, J = 10.4, 7.8, 0.3Hand ddd, J = 12.8, 5.5, 2.4, 1H, 4.48 (ddd, J = 12.9, 6.3, 1.7, 1H), 3.75 (dd, J = 10.7, 9.8, 0.3H), 3.14 (m, 1H), 2.55 (ddd, J = 9.7, 7.8, 3.4, 0.3H), 1.27 (s, 3H), 1.16 (s, 3H), 1.15-1.07 (s, 9H; d, J= 2.7, 18H; m, 3H; d, J = 2.7, 5.4 H; m, 0.9H), 0.92 (s, 9H); ¹³C NMR (125 MHz, C₆D₆) δ 142.6, 141.6, 141.5, 139.9, 136.2, 135.5, 129.0, 128.9, 128.5, 124.3, 30.6, 30.5, 30.2, 29.8, 29.4, 28.6, 21.6, 20.7, 20.1, 19.9, 18.78, 18.75, 18.67, 12.8; ²⁹Si NMR (99.3 MHz, C₆D₆) δ -54.2 (minor), -47.6 (major), 12.4 (minor), 13.5 (major).

The representative procedure for silver-catalyzed Alkylidenesilacyclopropane 3e.¹⁷ silacyclopropanation was followed using allene 1e (0.250 mL, 0.125 mmol, 0.500 M solution of the allene and 0.0465 M solution of PhSiMe₃ in C₆D₆), cyclohexenesilacyclopropane $2^{15,16}$ (0.300 mL, 0.150 mmol, 0.500 M solution of 2 and 0.465 M solution of PhSiMe₃ in C₆D₆) and AgO_2CCF_3 (0.050 mL, 0.0013 mmol, 0.026 M solution in C_6D_6). After 2.5 h, alkylidenesilacyclopropane 3e was formed in 70% yield with 95:5 regioselectivity and 95:5 diastereoselectivity. Full characterization is provided for an isolated sample of **3e** (see below).

Procedure for the isolation of alkylidenesilacyclopropane 3e: Cyclohexenesilacyclopropane $2^{15,16}$ (0.514 g, 2.29 mmol) was added to a solution of allene 1e (0.217 g, 1.59 mmol) in anhydrous toluene (8 mL). The mixture was cooled to -18 °C followed by the addition of Ag_3PO_4 (0.037 g, 0.090 mmol). The resulting reaction mixture remained at -18 °C for 30 min, then was slowly warmed to 22 °C. After 19 h, the reaction mixture was filtered through Celite and concentrated in vacuo. Kugelrohr distillation under vacuum (0.3 mm Hg) at 95 °C yielded alkylidenesilacyclopropane **3e** as a colorless oil (0.31 g, 69%): ¹H NMR (400 MHz, C_6D_6) δ 6.27 (dd, J = 8.7, 3.3, 1H), 2.53 (m, 1H), 1.88 (m, 2H), 1.71 (m, 3H), 1.63 (m, 1H), 1.58 (d, J = 7.0, 3H), 1.30 (m, 5H), 1.18 (s, 9H), 1.10 (s, 9H); ¹³C NMR (125 MHz, C₆D₆) δ 143.3, 137.6, 42.2, 33.9, 33.0, 30.2, 29.3, 26.2, 20.1, 18.9, 16.2, 15.2; ²⁹Si NMR (99.3 MHz, C₆D₆) δ –47.0; IR (thin film) 2929, 2856, 1676, 1473, 1363, 843 cm⁻¹; LRMS (APCI) m/zcalcd for C₁₈H₃₅Si (M + H)⁺ 279, found 279; m / z calcd for C₁₈H₃₅OSi (M + OH)⁺ 295; found 295; m/z calcd for C₁₈H₃₇OSi (M + H₃O)⁺ 297, found 297. Anal. Calcd for C₁₈H₃₄Si: C, 77.61; H, 12.30. Found: C, 76.54; H, 12.17 (Anal. passed for H, not for C).

Alkylidenesilacyclopropanes 3f and 3f'. The representative procedure for silver-catalyzed silacyclopropanation was followed using allene 1f (0.250 mL, 0.0635 mmol, 0.254 M solution of the allene and 0.465 M solution of PhSiMe₃ in C₆D₆), cyclohexenesilacyclopropane $2^{15,16}$ (0.152) mL, 0.0762 mmol, 0.500 M solution of 2 and 0.465 M solution of PhSiMe₃ in C₆D₆), and AgO_2CCF_3 (0.0300 mL, 0.000678 mol, 0.0226 M solution in C_6D_6). The reaction mixture was diluted with additional C_6D_6 (0.150 mL) before addition of AgO₂CCF₃. After 25 h. alkylidenesilacyclopropanes 3f and 3f' were formed in quantitative yield with $\geq 95:5$ regioselectivity and with 78:22 diastereoselectivity, as determined by ¹H NMR spectroscopy: ¹H NMR (500 MHz, C_6D_6) δ 4.12–4.00 (dt, J = 16.7, 9.2, 1H and dt, J = 16.4, 9.2, 1H), 3.91 (td, J =9.5, 6.1, 0.3H), 3.06 (sept, J = 7.0, 1H), 2.85 (m, 0.3H), 2.73 (ddd, J = 12.4, 9.4, 6.2, 0.3H), 2.63 (appart, J = 9.2, 2H), 2.53 (sept, J = 6.8, 0.3H), 2.26 (m, 0.3 H), 2.14 (m, 1H), 1.51 (m, 5H), 1.26–1.02 (m, 60H), 1.00 (t, J = 7.3, 3H), 0.28 (s, 0.3H); ¹³C NMR (125 MHz, C₆D₆) δ 150.8, 150.6, 133.3, 132.9, 65.5, 63.8, 38.1, 37.9, 37.8, 35.7, 33.1, 32.4, 31.0, 30.9, 30.4, 30.3, 27.5, 27.4, 23.3, 23.0, 22.8, 22.6, 22.4, 21.8, 20.6, 20.5, 19.7, 19.5, 18.8, 18.7, 14.71, 14.68, 12.9, 12.8; ²⁹Si NMR (99.3 MHz, C₆D₆) δ –47.7 (minor), –47.4 (major), 12.1 (major), 12.2 (minor).

3g

Alkylidenesilacyclopropane 3g. The representative procedure for silver-catalyzed silacyclopropanation was followed using tetramethylallene 1g (0.250 mL, 0.125 mmol, 0.500 M solution of the allene and 0.0465 M solution of PhSiMe₃ in C₆D₆), cyclohexenesilacyclopropane $2^{15,16}$ (0.300 mL, 0.150 mmol, 0.500 M solution of 2 and 0.0465 M solution of PhSiMe₃ in C₆D₆), and AgO₂CCF₃ (0.003 g, 0.01 mmol). After 34 h, alkylidenesilacyclopropane 3g was formed in 79% yield, as determined by ¹H NMR spectroscopy. Full characterization is provided for an isolated sample of 3g (see below).

Procedure for the isolation of 3g:

Cyclohexenesilacyclopropane $2^{15,16}$ was added to a solution of tetramethylallene **1g** (0.061 g, 0.64 mmol) in toluene (6 mL) followed by the addition of AgO₂CCF₃ (0.72 mL, 0.014 M in toluene, 0.010 mmol). The reaction had gone to completion after 14 h, and the mixture was filtered through Celite and concentrated *in vacuo*. Kugelrohr distillation under vacuum (0.3 mm Hg) at 60 °C yielded alkylidenesilacyclopropane **3g** as a colorless oil (0.050 g, 32%): ¹H NMR (400 MHz, C₆D₆) δ 1.88 (s, 3H), 1.86 (s, 3H), 1.61 (s, 6H), 1.20 (s, 18H); ¹³C NMR (125 MHz, C₆D₆) δ 139.3, 139.1, 31.3, 28.0, 25.5, 21.8, 21.8, 21.0; ²⁹Si NMR (99.3 MHz, C₆D₆) –54.8.

Alkylidenesilacyclopropane 3h. The representative procedure for silver-catalyzed silacyclopropanation was followed using allene 3h (0.250 mL, 0.125 mmol, 0.500 M solution of the allene and 0.0465 M solution of PhSiMe₃, the internal standard in C₆D₆), cyclohexenesilacyclopropane $2^{15,16}$ (0.300 mL, 0.150 mmol, 0.500 M solution of 2 and 0.0465 M solution of PhSiMe₃ in C₆D₆), and Ag₃PO₄ (0.003 g, 0.006 mmol). After 2.5 h at 22 °C, alkylidenesilacyclopropane 3h was formed in 86% yield with 94:6 diastereoselectivity, as determined by ¹H NMR spectroscopy. Full characterization is provided for an isolated sample of 3h (see below).

Procedure for the isolation of 3h:

Cyclohexenesilacyclopropane $2^{15,16}$ (1.1 g, 4.8 mmol) was added to a solution of allene **1h** (0.61 g, 4.0 mmol) in anhydrous toluene (17 mL). The mixture was cooled to -20 °C followed by the addition of Ag₃PO₄ (0.08 g, 0.2 mmol). The resulting reaction mixture remained at -20 °C for 30 min, then slowly warmed to 22 °C. After 5 h, the reaction mixture was filtered through Celite and concentrated *in vacuo*. Kugelrohr distillation under vacuum (0.3 mm Hg) at 95 °C yielded alkylidenesilacyclopropane **3h** as a colorless oil (0.88 g, 74%): ¹H NMR (400 MHz, C₆D₆) δ 6.38 (td, J = 7.0, 3.4, 1H), 2.41 (m, 2H), 2.27 (m, 1H), 1.76 (m, 1H), 1.65 (m, 1H), 1.45 (m, 8H), 1.19 (s, 9H), 1.12 (s, 9H), 0.97 (t, J = 7.2, 3H), 0.93 (t, J = 7.1, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 139.6, 137.8, 36.6, 33.6, 32.9, 30.9, 30.4, 30.2, 25.5, 23.34, 23.27, 20.8, 19.6, 14.9, 14.7; ²⁹Si NMR (99.3 MHz, C₆D₆) δ -46.2; IR (thin film) 2854, 1673, 1471, 1363, 823 cm⁻¹; HRMS (APCI) m / z calcd for C₁₉H₃₉OSi (M + OH)⁺ 311.2770, found 311.2782; Anal. Calcd for C₁₉H₃₈Si: C, 77.46; H, 13.00. Found: C, 77.51; H, 13.09.

III. Thermal vs. Copper-Catalyzed Carbonyl Insertion Reactions

Representative procedure for the synthesis of oxasilacyclopentanes using a pure sample of alkylidenesilacyclopropane:

Oxasilacyclopentane 4a (thermolysis). To a J. Young NMR tube containing alkylidenesilacyclopropane **3h** (0.550 mL, 0.127 mmol, 0.231 M solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe₃, the internal standard, in C₆D₆) was added benzaldehyde (0.039 mL, 0.38 mmol). The reaction mixture was left at 22 °C and the progress of the reaction was monitored using ¹H NMR spectroscopy. After 1.5 h,

oxasilacyclopentane **4a** was formed in 82% yield, as determined by ¹H NMR spectroscopy (compared to the PhSiMe₃ internal standard) using a single scan. The reaction mixture was concentrated *in vacuo* and a GC–MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane **4a** was formed with 93:7 diastereoselectivity: ¹H NMR (400 MHz, C₆D₆, distinctive peaks) δ 5.94 (td, J = 6.7, 3.0, 1H), 4.98 (d, J = 7.9, 1H), 2.87 (m, 1H), 2.14 (m, 2H), 1.22 (s, 9H), 1.18 (s, 9H). Full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

Oxasilacyclopentane 4a (copper-catalysis). The representative procedure for carbonyl insertion was followed using alkylidenesilacyclopropane **3h** (0.550 mL, 0.127 mmol, 0.231 M solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe₃, the internal standard, in C₆D₆), benzaldehyde (0.039 mL, 0.38 mmol), and CuI (0.002 g, 0.01 mmol). The reaction mixture was left at 22 °C and after 30 min, oxasilacyclopentane **4a** was formed in 90% yield, as determined by ¹H NMR spectroscopy. The reaction mixture was concentrated *in vacuo* and a GC–MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane **4a** was formed with 90:10 diastereoselectivity. Distinctive peaks were consistent with those reported for the thermolysis-derived product (see above) and full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

Oxasilacyclopentane 4b (thermolysis). The representative procedure for thermal carbonyl insertion was followed using alkylidenesilacyclopropane **3h** (0.550 mL, 0.127 mmol, 0.231 M solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe₃, the internal standard, in C₆D₆) and *n*-butyraldehyde (0.034 mL, 0.38 mmol). The reaction mixture was left at 22 °C for 2 h and was then heated at 60 °C. After 15 h at 60 °C, oxasilacyclopentane **4b** was formed in 82% yield, as determined by ¹H NMR spectroscopy. The reaction mixture was concentrated *in vacuo* and a GC–MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane **4b** was formed with >99:1 diastereoselectivity: ¹H NMR (400 MHz, C₆D₆, distinctive peaks) δ 5.88 (td, *J* = 6.6, 2.8, 1H), 4.04 (m, 1H), 2.37 (m, 1H), 2.14 (m, 2H), 1.17 (s, 9H), 1.15 (s, 9H). Full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

Oxasilacyclopentane 4b (copper-catalysis). The representative procedure for carbonyl insertion was followed using alkylidenesilacyclopropane **3h** (0.550 mL, 0.127 mmol, 0.231 M solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe₃, the internal standard, in C₆D₆), *n*-butyraldehyde (0.034 mL, 0.38 mmol), and CuI (0.002 g, 0.01 mmol). The reaction mixture was left at 22 °C and after 30 min oxasilacyclopentane **4b** was formed in 89% yield, as determined by ¹H NMR spectroscopy. The reaction mixture was concentrated *in vacuo* and a GC–MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane **4b** was formed with >99:1 diastereoselectivity. Distinctive peaks were consistent with those reported for the thermolysis-derived product (see above) and full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

Oxasilacyclopentane 5 (thermolysis). The representative procedure for thermal carbonyl insertion was followed using alkylidenesilacyclopropane **3h** (0.550 mL, 0.127 mmol, 0.231 M solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe₃, the internal standard, in C₆D₆) and ethyl formate (0.031 mL, 0.38 mmol). The reaction mixture was left at 22 °C for 2 h and was then heated at 60 °C for 15 h, but no reaction was observed. After the reaction mixture was heated at 100 °C for 7 d, oxasilacyclopentane **5** was formed in 82% yield, as determined by ¹H NMR spectroscopy. The reaction mixture was concentrated *in vacuo* and a GC–MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane **5** was formed with >95:5 diastereoselectivity: ¹H NMR (400 MHz, C₆D₆, distinctive peaks) δ 5.87 (td, *J* = 6.9, 2.4, 1H), 5.12 (d, *J* = 0.9, 1H), 3.96 (dq, *J* = 9.5, 7.1, 1H), 3.43 (dq, *J* = 9.5, 7.1, 1H), 2.82 (m, 1H), 2.08 (m, 2H), 1.22 (s, 9H), 1.17 (s, 9H). Full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

Oxasilacyclopentane 5 (copper-catalysis). The representative procedure for thermal carbonyl insertion was followed using alkylidenesilacyclopropane **3h** (0.550 mL, 0.127 mmol, 0.231 M solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe₃, the internal standard, in C₆D₆), ethyl formate (0.031 mL, 0.38 mmol), and CuI (0.002 g, 0.01 mmol). The

reaction mixture was left at 22 °C for 2 h and was then heated at 60 °C for 21 h, forming oxasilacyclopentane **5** in 82% yield, as determined by ¹H NMR spectroscopy. The reaction mixture was concentrated *in vacuo* and a GC–MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane **5** was formed with 95:5 diastereoselectivity. Distinctive peaks were consistent with those reported for the thermolysis-derived product (see above) and full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

IV. Two-Step, One-Flask Reactions to Form Oxasilacyclopentanes

Oxasilacyclopentane 4a. To a cooled solution (-26 °C) of undeca-5,6-diene **1h** (0.152 g, 1.00 mmol) and 2 (0.269 g, 1.20 mmol) in 4 mL of toluene was added Ag_3PO_4 (0.021 g, 0.050 mmol). The reaction flask was kept at -26 °C for 30 min and was then allowed to warm to 22 °C. After 3 h, the reaction mixture was cooled to -26 °C. Benzaldehyde (0.30 mL, 3.0 mmol) was added, followed by ZnBr₂ (0.023 g, 0.10 mmol). The reaction mixture was kept at -26 °C for 1 h and was then allowed to warm to 22 °C. After 1 h, the reaction mixture was filtered through Celite with CH₂Cl₂ and concentrated *in vacuo* to give a colorless oil (87:13 mixture of diastereomers by GC-MS). Purification by column chromatography ($0:100 - 20:80 \text{ CH}_2\text{Cl}_2/\text{hexanes}$) gave 4a as a colorless oil (0.263 g, 66%): ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 7.2, 2H), 7.33 (t, J = 7.3, 2H), 7.25 (tt, J = 7.2, 1.2, 1H), 5.88 (td, J = 6.8, 3.2, 1H), 4.78 (d, J = 8.4, 1H), 2.68 (m, 1H), 2.17 (m, 2H), 1.72 (m, 1H), 1.50 (m, 1H), 1.33 (m, 8H), 1.10 (s, 9H), 1.08 (s, 9H), 0.91 (t, J = 7.3, 3H), 0.85 (t, J = 6.9, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.2, 140.7, 140.4, 128.4, 127.6, 127.2, 85.2, 51.6, 31.9, 31.3, 30.9, 28.5, 28.2, 28.1, 23.4, 22.8, 21.9, 20.8, 14.2; IR (thin film) 3029, 2958, 2360, 1625, 1472, 1024 cm⁻¹; HRMS (ESI) m/z calcd for C₂₆H₄₄NaOSi (M + Na)⁺ 423.3059, found 423.3068. Anal. Calcd for C₂₆H₄₄OSi: C, 77.93; H, 11.07. Found: C, 77.75; H, 11.10.

4b

Oxasilacyclopentane 4b. To a solution of undeca-5,6-diene **1h** (0.152 g, 1.00 mmol) and **2** (0.269 g, 1.20 mmol) in 4 mL of toluene was added AgO₂CCF₃ (0.002 g, 0.01 mmol). After 15 min, butyraldehyde (0.27 mL, 3.0 mmol) was added, followed by CuI (0.019 g, 0.10 mmol). After 25 min, the reaction mixture was filtered through Celite with CH₂Cl₂ and concentrated *in vacuo* to give a colorless oil (93:7 mixture of diastereomers by GC-MS). Purification by column chromatography (0:100 – 5:95 CH₂Cl₂/hexanes) gave **4b** as a colorless oil (0.297 g, 81%): ¹H NMR (500 MHz, CDCl₃) δ 5.78 (td, *J* = 7.1, 2.7, 1H), 3.87 (dt, *J* = 7.9, 4.5, 1H), 2.28 (m, 1H),

2.12 (q, J = 6.8, 2H), 1.57–1.20 (m, 14H), 1.02 (s, 9H), 0.99 (s, 9H), 0.95–0.87 (t, J = 5.5, 3H; t, J = 5.7, 3H; t, J = 7.2, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.0, 140.6, 84.2, 49.1, 42.3, 35.6, 31.9, 30.9, 30.5, 28.5, 28.3, 23.2, 22.8, 21.0, 20.3, 19.7, 14.4, 14.3, 14.2; IR (thin film) 2958, 1627, 1471, 1362, 1093, 822 cm⁻¹; HRMS (ESI) m / z calcd for C₂₃H₄₇OSi (M + H)⁺ 367.3396, found 367.3400. Anal. Calcd for C₂₃H₄₆OSi: C, 75.33; H, 12.64. Found: C, 75.46; H, 12.80.

Oxasilacyclopentane 5. A solution of undeca-5,6-diene **1h** (0.457 g, 3.00 mmol) and **2** (0.808 g, 3.60 mmol) in 13 mL of toluene was prepared in a vessel fitted with an air-free seal. The reaction mixture was cooled to -26 °C and AgO₂CCF₃ (0.60 mL, 0.015 mmol, 0.025 M) was added. The reaction flask was kept at -26 °C for 45 min. Ethyl formate (0.73 mL, 9.0 mmol) was added, followed by CuI (0.057 g, 0.30 mmol). The reaction mixture was heated at 60 °C for 19 h. After the reaction mixture was cooled to 22 °C, it was vacuum-filtered through a pad of Celite with CH₂Cl₂ and concentrated in vacuo to give a colorless oil (97:3 mixture of Purification by column chromatography (0:100 - 10:90 diastereomers by GC-MS). CH₂Cl₂/hexanes) gave 5 as a colorless oil (0.996 g, 90%): ¹H NMR (500 MHz, CDCl₃) δ 5.79 (td, J = 6.9, 2.4, 1H), 4.94 (d, J = 0.8, 1H), 3.82 (dq, J = 9.6, 7.1, 1H), 3.46 (dq, J = 9.6, 7.1, 1H),2.53 (m, 1H), 2.11 (q, J = 6.9, 2H), 1.37 (m, 10H), 1.19 (t, J = 7.1, 3H), 1.03 (s, 9H), 1.02 (s, 9H), 0.90 (t, J = 7.3, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 141.0, 140.0, 108.0, 62.6, 50.5, 34.3, 31.9, 31.2, 30.9, 28.3, 28.2, 22.9, 22.8, 20.41, 20.36, 15.3, 14.32, 14.28; IR (thin film) 2959, 1631, 1473, 1363, 1114 cm⁻¹; HRMS (ESI) m / z calcd for C₂₂H₄₄NaO₂Si (M + Na)⁺ 391.3008, found 391.2998. Anal. Calcd for C₂₂H₄₄O₂Si: C, 71.67; H, 12.03. Found: C, 71.85; H, 12.09.

Oxasilacyclopentane 6. To a cooled (-18 °C) solution of allene **1e** (0.14 g, 1.0 mmol) and **2** (0.28 g, 1.3 mmol) in 4.5 mL of toluene was added AgO₂CCF₃ (0.010 g, 0.05 mmol). The reaction mixture was kept at -18 °C for 30 min and was then slowly warmed to 22 C. After 2 h, the reaction mixture was cooled to -18 °C. Isobutyraldehyde (0.27 mL, 3.0 mmol) was added, followed by CuI (0.030 g, 0.16 mmol). The reaction mixture was kept at -18 °C for 30 min and then slowly warmed to 22 °C over 15 h. The reaction mixture was filtered through Celite with Et₂O and concentrated *in vacuo* to give a colorless oil (96:3:1 mixture of diastereomers by GC-MS). Purification by column chromatography (10:90 CH₂Cl₂/hexanes) gave **6** as a colorless oil (0.256 g, 70%) that solidified upon storage (-20 °C): mp 54–55 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.12 (qd, J = 6.7, 1.8, 1H), 3.60 (dd, J = 9.5, 1.2, 1H), 2.38 (m, 1H), 1.90 (m, 1H), 1.74 (m, 3H and d, J = 6.7, 3H), 1.64 (m, 1H), 1.45 (m, 2H), 1.15 (m, 3H), 1.04 (s, 9H), 1.02 (s, 9H), 0.99 (d, 10.256 minimum contents and the storage (-20 °C) is the storage of the storage (-20 s) of th

J = 6.6, 3H), 0.94 (m, 1H), 0.89 (d, J = 6.6, 3H and m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 140.1, 137.6, 88.9, 51.1, 43.0, 34.7, 33.9, 31.3, 29.0, 28.8, 27.4, 27.3, 27.0, 20.8, 20.6, 19.6, 18.7; IR (thin film) 2930, 2855, 1629, 1474, 1039, 821 cm⁻¹; HRMS (APCI) *m* / *z* calcd for C₂₂H₄₃OSi (M + H)⁺ 351.3083, found 351.3073. Anal. Calcd for C₂₂H₄₂OSi: C, 75.36; H, 12.07. Found: C, 75.15; H, 12.09.

Oxasilacyclopentane 7.¹⁸ To a cooled (-26 °C) solution of 3-(trimethylsilyl)-1,2-butadiene 1c (0.17 mL, 1.0 mmol) and 2 (0.269 g, 1.20 mmol) in 4 mL of toluene was added Ag₃PO₄ (0.021 g, 0.050 mmol). The reaction mixture was kept at -26 °C for 30 min and was then allowed to warm to 22 °C. After 2 h, the reaction mixture was cooled to -26 °C. Acetophenone (0.35 mL, 3.0 mmol) was added, followed by Cu(OTf)₂ (0.036 g, 0.10 mmol). After 5 d, the reaction mixture was filtered through silica gel with Et₂O and concentrated in vacuo to give a vellow oil (95:5 mixture of diastereomers by GC-MS). Purification by column chromatography (20:80 CH₂Cl₂/hexanes) gave 7 as a light vellow oil (0.281 g, 72%) that solidified upon storage (-20 Crystallization by slow evaporation of pentane afforded crystals suitable for X-ray °C). crystallographic analysis: mp 73-75 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (m, 2H), 7.27 (m, 2H), 7.20 (m, 1H), 1.98 (dq, J = 17.6, 1.2, 1H), 1.88 (s, 3H), 1.71 (dq, J = 17.6, 2.7, 1H), 1.60 $(dd, J = 2.7, 1.2, 3H), 1.05 (s, 9H), 0.72 (s, 9H), 0.25 (s, 9H); {}^{13}C NMR (125 MHz, CDCl₃) \delta$ 153.5, 146.2, 130.1, 128.0, 126.9, 126.7, 87.5, 31.8, 28.2, 28.0, 21.1, 20.7, 19.9, 17.6, 0.4; IR (thin film) 3060, 2932, 2360, 1472, 1249, 1028 cm⁻¹; HRMS (ESI) m/z calcd for C₂₃H₄₀NaOSi₂ $(M + Na)^+$ 411.2516, found 411.2522. Anal. Calcd for C₂₃H₄₀OSi₂: C, 71.06; H, 10.37. Found: C, 71.35; H, 10.48. Details of the X-ray crystallographic study are described in Section IX.

Oxasilacyclopentane 8. A solution of undeca-5,6-diene **1h** (0.152 g, 1.00 mmol) and **2** (0.269 g, 1.20 mmol) in 4 mL of toluene was prepared in a vessel fitted with an air-free seal. The reaction mixture was cooled to -26 °C and Ag₃PO₄ (0.021 g, 0.050 mmol) was added. The reaction flask was kept at -26 °C for 1 h and was then allowed to warm to 22 °C. After 2 h, 3-pentanone (0.32 mL, 3.0 mmol) was added, followed by ZnBr₂ (0.023 g, 0.10 mmol). The reaction mixture was heated at 50 °C for 18 h. After the reaction mixture was cooled to 22 °C, it was vacuum-filtered through a pad of Celite with CH₂Cl₂ and concentrated *in vacuo* to give a colorless oil (99:1 mixture of regioisomers by GC-MS). Purification by column chromatography (hexanes) gave **8** as a colorless oil (0.204 g, 54%): ¹H NMR (500 MHz, CDCl₃) δ 5.82 (ddd, *J* = 8.0, 5.2, 2.1, 1H), 2.46 (m, 1H), 2.11 (m, 2H), 1.66 (m, 2H), 1.54 (m, 2H), 1.34 (m, 10H), 1.03 (s, 9H), 1.02 (s, 9H), 0.94–0.87 (t, *J* = 7.0, 3H; t, *J* = 7.4, 3H; t, *J* = 7.0, 3H), 0.79 (t, *J* = 7.5, 100 mmol).

3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.1, 141.2, 85.9, 50.5, 33.6, 32.6, 32.3, 31.9, 31.2, 29.2, 29.0, 27.0, 23.6, 22.8, 20.7, 20.5, 14.4, 14.2, 9.5, 8.8; IR (thin film) 2961, 1627, 1470, 1378, 970, 821 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₄H₄₉OSi (M + H)⁺ 381.3553, found 381.3553. Anal. Calcd for C₂₄H₄₈OSi: C, 75.71; H, 12.71. Found: C, 75.73; H, 12.89.

V. Functionalization of Oxasilacyclopentanes

$$t-Bu$$

 $t-Bu$
 $Si-O$
 Me
 i
 $c-C_6H_{11}$
 g

Epoxide 9. To a cooled (0 °C) solution of *m*-chloroperoxybenzoic acid (2.42 g, 9.82 mmol) in 7 mL of CH₂Cl₂ was added a solution of oxasilacyclopentane 6 (1.15 g, 3.27 mmol) in 13 mL of CH₂Cl₂. The reaction mixture was stirred for 3 hours at 0 °C, then allowed to warm to 22 °C and stirred for 3 days. The reaction mixture was diluted with saturated aqueous NaHCO₃ (60 mL) and extracted with CH_2Cl_2 (3 × 50 mL). The combined organic layers were washed with brine (2) \times 90 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give an oil with white solids, as a 98:2 mixture of diastereomers (as determined by GC-MS). Purification by column chromatography (4:96 CH₂Cl₂/hexanes - 6:94 CH₂Cl₂/hexanes) afforded 9 as a colorless oil (0.862 g, 72%): ¹H NMR (500 MHz, CDCl₃) δ 4.05 (dd, J = 10.4, 1.6, 1H), 3.07 (g, J = 5.6, 1H), 1.86 (septd, J = 6.7, 1.5, 1H), 1.70 (m, 3H), 1.62 (m, 2H), 1.45 (m, 2H), 1.34 (d, J = 5.6, 3H), 1.32-1.12 (m, 4H), 1.08 (d, J = 6.8, 3H and m, 1H), 1.03 (s, 9H), 0.99 (s, 9H), 0.87 (d, J = 6.7, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 82.6, 59.7, 54.4, 46.5, 36.2, 33.7, 32.1, 29.8, 28.2, 28.0, 27.42, 27.37, 26.8, 22.2, 21.4, 20.3, 14.1, 12.9; IR (thin film) 2931, 2855, 1473, 1024, 848, 824 cm⁻¹: HRMS (ESI) m / z calcd for C₂₂H₄₃O₂Si (M + H)⁺ 367.3032, found 367.3023. Anal. Calcd for C₂₂H₄₂O₂Si: C, 72.07; H, 11.55. Found: C, 72.06; H, 11.67.

10

1,2,4-Triol 10. To a solution of KO*t*-Bu (0.444 g, 3.96 mmol) in 1-methyl-2-pyrrolidinone (9.4 mL) was added a solution of epoxide **9** (0.484 g, 1.32 mmol) in toluene (6.3 mL) and THF (6.3 mL), followed by a 1.0 M solution of *n*-Bu₄NF in THF (7.90 mL, 7.8 mmol). The reaction mixture was heated to 70 °C for 6 h. After the reaction mixture was cooled to 22 °C, it was diluted with H₂O (100 mL) and extracted with MTBE (4 × 40 mL). The combined organic layers were washed with H₂O (3 × 40 mL), dried with Na₂SO₄, and concentrated *in vacuo* to give a pink liquid. Purification by column chromatography (40:60 EtOAc/hexanes) did not completely remove excess *n*-Bu₄NF, so a second aqueous extraction was undertaken. The mixture was dissolved in H₂O (100 mL) and extracted with EtOAc (3 × 30 mL). The combined

organic layers were washed with brine (150 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purification by column chromatography (2:30:70 Et₃N/EtOAc/hexanes) gave triol **10** as a white solid (0.271 g, 84%). Crystallization by slow evaporation of hexanes and CH₂Cl₂ afforded crystals suitable for X-ray crystallographic analysis: mp 72–73 °C; ¹H NMR (500 MHz, CDCl₃) δ 3.96 (dq, J = 7.6, 6.3, 1H), 3.75 (dd, J = 7.7, 1.7, 1H), 3.56 (dd, J = 8.6, 2.0, 1H and br s, 1H), 2.81 (br s, 1H), 2.62 (d, J = 4.4, 1H), 2.08 (d, J = 9.1, 1H), 1.85 (septd, J = 6.7, 1.8, 1H), 1.74 (m, 2H), 1.65 (m, 2H), 1.48 (m, 2H), 1.36–1.09 (m, 5H and d, J = 6.3, 3H), 1.01 (d, J = 6.7, 3H), 0.85 (d, J = 6.7, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 78.3, 77.4, 68.8, 45.4, 37.3, 33.6, 32.1, 31.5, 27.4, 27.2, 26.7, 19.8, 19.6, 19.2; IR (thin film) 3356, 2923, 1448, 1365, 1060 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₁₄H₂₈NaO₃ (M + Na)⁺ 267.1936, found 267.1933. Anal. Calcd for C₁₄H₂₈O₃: C, 68.81; H, 11.55. Found: C, 68.43; H, 11.42. Details of the X-ray crystallographic study are described in Section IX.

11

Homoallylic alcohol 11. To a solution of KO*t*-Bu (0.303 g, 2.70 mmol) in 1-methyl-2pyrrolidinone (6.4 mL) was added a solution of oxasilacyclopentane **6** (0.316 g, 0.901 mmol) in toluene (4.3 mL) and THF (4.3 mL), followed by a 1.0 M solution of *n*-Bu₄NF in THF (5.40 mL, 5.4 mmol). The reaction mixture was heated to 70 °C for 22 h. After the reaction mixture was cooled to 22 °C, it was diluted with H₂O (50 mL) and extracted with MTBE (4 × 30 mL). The combined organic layers were washed with H₂O (3 × 30 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give a pink liquid. Purification by column chromatography (8:92 Et₂O/hexanes) gave **11** as a yellow oil (0.168 g, 89%): ¹H NMR (500 MHz, CDCl₃) δ 5.71 (dq, *J* = 11.5, 6.8, 1H), 5.35 (tq, *J* = 11.0, 1.7, 1H), 3.37 (dd, *J* = 10.4, 5.5, 1H), 2.32 (dt, *J* = 11.4, 6.1, 1H), 1.70 (m, 6H), 1.62 (dd, *J* = 6.8, 1.8, 3H), 1.43 (m, 1H), 1.30 (d, *J* = 4.3, 1H), 1.12 (m, 5H), 0.94 (d, *J* = 6.7, 3H), 0.91 (d, *J* = 6.7, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 129.0, 127.5, 76.3, 45.5, 38.9, 31.9, 30.9, 29.7, 26.9, 26.8, 20.0, 17.5, 14.0; IR (thin film) 3465, 3012, 2923, 2360, 1448 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₁₄H₂₆NaO (M + Na)⁺ 233.1881, found 233.1879. Anal. Calcd for C₁₄H₂₆O: C, 79.94; H, 12.46. Found: C, 79.66; H, 12.35.

VI. Synthesis of an Enantiopure Homoallylic Alcohol Using the Two-Step, One-Flask Silacyclopropanation/Carbonyl Insertion Reaction:

(S)-(–)-Propargylic alcohol (–)-E-1. To a flask containing 4Å molecular sieves (~50 mL) was added propargylic alcohol E-1 (4.36 g, 28.7 mmol) dissolved in anhydrous pentane (96 mL). Amano lipase AK from *pseudomonas fluorescens* (2.42 g) was added followed by vinyl acetate (7.1 mL, 77 mmol). The slurry was stirred at 22 °C for 6 h. The reaction mixture was filtered through Celite, washed with pentane, and concentrated *in vacuo*. Purification by column chromatography (10:90 EtOAc/hexanes) afforded alcohol (–)-E-1 as a colorless oil with ~98% ee (1.41 g, 64% yield based on 50% conversion). Both the % ee and the absolute configuration were assigned according to Mosher's ester analysis.^{19,20} The spectral data are consistent with the data reported,¹ and were reported for racemic E-1 (see Section I): $[\alpha]^{23}_{D}$ –24.1 (*c* 1.00, CHCl₃).

Mosher's ester analysis of alcohol (–)-**E-1:** To a solution of alcohol (–)-**E-1** (0.040 g, 0.3 mmol) in CH₂Cl₂ (2 mL) was added (*R*)-(+)- α -methoxy- α -trifluoromethylphenylacetic acid (0.084 g, 0.36 mmol), *N*,*N'*-dicyclohexylcarbodiimide (0.068 g, 0.34 mmol), and *N*,*N'*-dimethylaminopyridine (0.004 g, 0.03 mmol). After stirring for 3 d at rt, the reaction mixture was filtered through SiO₂, washed with EtOAc, and concentrated *in vacuo*. ¹H NMR spectroscopy (400 MHz, CDCl₃) of the unpurified mixture revealed a single methyl doublet at δ 1.56 ppm (Figure S1). Therefore, the 4-cyclohexyl-but-3-yn-2-ol prepared from lipase resolution was determined to have >98% ee and an absolute configuration of (*S*).^{1,19-21}

(aS)-(+)-Allene (+)-1e. A procedure reported Myers⁸ and adapted by Jamison¹ was used to prepare (+)-1e. To a cooled (-15 °C) solution of PPh₃ (3.58 g, 13.6 mmol) in 19 mL of anhydrous THF was added diethyl azodicarboxylate (2.1 mL, 13 mmol). The reaction mixture was stirred for 10 min, then a solution of alcohol (-)-E-1 (1.37 g, 9.00 mmol) in 19 mL of anhydrous THF was added. After 10 min, a solution of *o*-nitrobenzylsulfonylhydrazine² (2.92 g, 13.5 mmol) in 12 mL of anhydrous THF was added. The reaction mixture was stirred at -15 °C

for 2 h then slowly warmed to rt over 17 h. The reaction mixture was cooled to 0 °C and diluted with pentane (150 mL). The organic layer was washed with ice-cold H₂O (10 × 60 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purification by column chromatography (pentane) gave allene (+)-**1e** as a colorless oil (0.794 g, 64%). The absolute configuration was determined⁸ based on the absolute configuration of alcohol (–)-**E-1** and is consistent with the Lowe–Brewster rule.²² The spectral data are consistent with the data reported,^{1,9} and were reported for racemic **1e** (see Section I): $[\alpha]^{22}_{D}$ +70.1 (*c* 1.00, CHCl₃).

(*R*,*S*)-(–)-Oxasilacyclopentane (–)-6. Cyclohexenesilacyclopropane $2^{15,16}$ (1.44 g, 6.42 mmol) was added to a solution of allene (+)-1e (0.73 g, 5.4 mmol) in anhydrous toluene (20 mL). The mixture was cooled to -18 °C, then AgO₂CCF₃ (0.015 g, 0.068 mmol) was added. The reaction mixture remained at -18 °C for 30 min, then was slowly warmed to 22 °C. After 2 h, the mixture was cooled to -18 °C, then isobutyraldehyde (1.5 mL, 16 mmol) and CuI (0.100 g, 0.525 mmol) were added. The reaction mixture remained at -18 °C for 30 min, then was slowly warmed to 22 °C. After 15 h, the reaction mixture was filtered through Celite, washed with Et₂O, and concentrated *in vacuo*. Purification by column chromatography (10:90 CH₂Cl₂/hexanes) gave oxasilacyclopentane (–)-6 as a white solid in 96% ee (1.2 g, 65%). The % ee was determined based on the % ee of alcohol (+)-11 and assumes retention of stereochemistry upon protodesilylation.²³ The absolute configuration was assigned by X–ray crystallographic analysis after conversion to carbamate (+)-13. Full characterization data was reported for racemic 6 (see Section IV): $[\alpha]^{23}_{\rm D}$ –29.6 (*c* 1.00, CHCl₃).

(*R*,*S*)-(+)-Homoallylic alcohol (+)-11. To a solution of KOt-Bu (0.471 g, 4.20 mmol) in 23 mL of anhydrous DMSO²⁴ was added *n*-Bu₄NF (8.5 mL, 1.0 M in THF, 8.5 mmol) followed by a solution of oxasilacyclopentane (–)-6 (0.496 g, 1.41 mmol) in 5 mL of anhydrous THF. The reaction mixture was heated to 120 °C for 17 h. The reaction mixture was cooled to 22 °C, diluted with H₂O (100 mL), and extracted with MTBE (2 × 100 mL). The combined organic layers were washed with H₂O (2 × 100 mL). NEt₃ (20 mL) was added, and the solution was stirred for 1 min. The organic layer was washed with 1 M HCl (5 × 100 mL), H₂O (5 × 100 mL), and brine (100 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purification by column chromatography (4:96 Et₂O/hexanes) gave homoallylic alcohol (+)-11 as a yellow oil with 96% ee (0.236 g, 79%). The % ee was assigned after conversion²⁵ to carbamate 12 using SFC analysis (Daicel Chiralpak AD, 10:90 *i*-PrOH/CO₂, $\lambda = 220$ nm, 1.0 mL/min): t_R 13.4 min (major), 14.2 min (minor). The absolute configuration was assigned by X–ray crystallographic

analysis after conversion to carbamate (+)-13. Full characterization data was reported for racemic 11 (see Section V): $[\alpha]_{D}^{22} + 23.2$ (*c* 1.00, CHCl₃).

$$Me = \begin{bmatrix} 0 \\ 0 \\ -Pr \\ c -C_6H_{11} \\ (R, S)-12 \end{bmatrix}$$

Conversion of alcohol (+)-**11 to carbamate** (*R*,*S*)-**12 for SFC analysis:** A procedure reported by Kanai²⁵ was adapted to prepare (*R*,*S*)-**12**. Anhydrous CuCl (0.010 g, 0.10 mmol) and DMF (0.01 mL, 0.1 mmol) were added to a solution of homoallylic alcohol (+)-**11** (0.020 g, 0.10 mmol) in phenyl isocyanate (0.22 mL, 2.0 mmol). After 3 h, the solid reaction mixture was diluted with 3 mL of hexanes, filtered through Celite, and concentrated *in vacuo* to give carbamate (*R*,*S*)-**12** as a white solid (0.016 g, 56%). The structure was assigned using HMQC and HMBC experiments, and the compound was subjected to SFC analysis without further purification: mp 94–95 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 6.5, 2H), 7.32 (t, *J* = 8.0, 2H), 7.06 (t, *J* = 7.4, 1H), 6.58 (br s, 1H), 5.65 (dq, *J* = 11.1, 6.8, 1H), 5.37 (td, *J* = 10.9, 1.6, 1H), 4.90 (dd, *J* = 6.9, 4.4, 1H), 2.48 (ddd, *J* = 10.7, 7.2, 4.4, 1H), 1.89 (m, 2H), 1.71 (td, *J* = 12.3, 2.2, 3H), 1.62 (m, 4H), 1.36–1.06 (m, 4H), 1.00 (qd, *J* = 11.7, 3.4, 1H), 0.97–0.89 (m, 1H), 0.94 (d, *J* = 6.8, 3H), 0.93 (d, *J* = 6.8, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.8, 138.3, 129.1, 128.9, 126.1, 123.2, 118.6, 79.5, 44.1, 38.8, 31.6, 30.4, 30.0, 26.7, 26.61, 26.58, 19.5, 18.0, 13.7; IR (thin film) 3442, 2924, 1641, 1523, 1442, 1223 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₁H₃₁NO₂Na (M + Na)⁺ 352.2253, found 352.2257.

(+)-13

Conversion of alcohol (+)-11 **to carbamate** (+)-13 **for X–ray crystallographic analysis:** A procedure reported by Woerpel²⁶ was modified to prepare (+)-13. (*R*)-(+)-Methylbenzyl isocyanate (0.16 mL, 1.2 mmol) was added to a solution of alcohol (+)-11 (0.222 g, 1.06 mmol) in anhydrous toluene (2 mL) and 4 Å molecular sieves. The reaction flask was sealed under vacuum and heated to 100 °C. After 3 d, the reaction mixture was cooled to 22 °C and concentrated *in vacuo*. Purification by column chromatography (2:98 EtOAc/hexanes) gave carbamate (+)-13 as a white solid (0.207 g, 54%). X–ray crystallographic analysis was performed after recrystallization from EtOAc/hexanes: mp 135–136 °C; ¹H NMR (400 MHz, CDCl₃, 50 °C)²⁷ δ 7.35–7.28 (m, 4H), 7.26–7.22 (m, 1H), 5.58 (dq, *J* = 11.1, 6.8, 1H), 5.32 (tq, *J* = 10.9, 1.8, 1H)²⁸, 4.80–4.75 (m, 3H), 2.41 (ddd, *J* = 10.7, 6.8, 4.2, 1H), 1.84–1.76 (m, 2H), 1.69–1.66 (m, 3H), 1.60 (dd, *J* = 6.8, 1.7, 4H), 1.48 (d, *J* = 6.6, 3H), 1.28–1.21 (m, 1H), 1.18–1.03 (m, 3H), 1.01–0.86 (m, 8H); ¹³C NMR (125 MHz, CDCl₃) δ 156.1, 144.0, 129.1, 128.5, 127.1, 125.9, 125.7, 78.9, 50.4, 44.2, 39.0, 30.4, 30.1, 26.68, 26.65, 26.57, 22.4, 19.4, 18.2, 13.7; IR (thin film) 3263, 2924, 1680, 1537, 1448, 1255 cm⁻¹; HRMS (ESI) *m* / *z* calcd for

 $C_{23}H_{35}NO_2Na (M + Na)^+$ 380.2566, found 380.2562. Anal. Calcd for $C_{23}H_{35}NO_2$: C, 77.27; H, 9.87. Found: C, 77.33; H, 10.12. [α]²²_D +5.34 (*c* 1.00, CHCl₃).

VII. Regiochemistry of Alkylidenesilacyclopropanes

A. NOE experiments for alkylidenesilacyclopropane 3a.

 H_a irradiated: H_b (1.2%), H_c (1.1%), H_d (0.3%) Note: The observation of an NOE between H_a and H_b , H_c , and H_d and the absence of an NOE between H_a and H_e suggests an (*E*)-alkene geometry.

B. NOE experiments for alkylidenesilacyclopropane 3b.

$$t$$
-Bu
Si
 H_c
 H_b
 H_a
 H_b
OSi(Me)₂t-Bu

3b

 H_b irradiated: H_a (4.1%), H_c (1.8%) Note: The observation of an NOE between H_b and H_c suggests an (*E*)-alkene geometry.

C. NOE experiments for alkylidenesilacyclopropane 3c.

 $\begin{array}{l} \mathbf{H}_{a} \text{ irradiated: } \mathbf{H}_{b} \ (0.2\%), \ \mathbf{H}_{c} \ (0.2\%) \\ \mathbf{H}_{b} \text{ irradiated: } \mathbf{H}_{d} \ (0.6\%) \\ \mathbf{H}_{d} \text{ irradiated: } \mathbf{H}_{a} \ (1.2\%), \ \mathbf{H}_{b} \ (1.9\%) \\ \text{Note: The observation of an NOE between } \mathbf{H}_{b} \text{ and } \mathbf{H}_{d} \text{ and the small NOE between } \mathbf{H}_{a} \text{ and } \mathbf{H}_{b} \\ \text{suggests an } (E)\text{-alkene geometry.} \end{array}$

D. NOE experiments for alkylidenesilacyclopropane 3d.

 H_c irradiated: H_d (2.5%), Ph (NOE is present, but it cannot be quantified because the enhanced resonance overlaps with other aryl resonances).

 H_d irradiated: H_c (1.4%), H_b (NOE is present, but it cannot be quantified because the resonance of H_b overlaps with a resonance from the minor diastereomer).

Note: The observation of a large NOE between H_c and H_d suggests an (*E*)-alkene geometry.

E. NOE experiments for alkylidenesilacyclopropane 3e.

 $\mathbf{H}_{\mathbf{b}}$ irradiated: $\mathbf{H}_{\mathbf{c}}$ (NOE is present, but it cannot be quantified because the resonance of $\mathbf{H}_{\mathbf{c}}$ overlaps with cyclohexene that was formed in reaction mixture), $\mathbf{H}_{\mathbf{d}}$ (1.4%) Note: The observation of an NOE between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{d}}$ suggests an (*E*)-alkene geometry.

F. NOE experiments for alkylidenesilacyclopropane 3f.

 H_b irradiated: H_a (0.6%), H_c (0.6%), H_d (8.4%)

 H_c irradiated: H_b (2.2%), H_e (NOE is present, but it cannot be quantified because the resonance of H_e overlaps with other resonances)

 H_d irradiated: H_b (17.4%)

Note: The observation of a large NOE between H_b and H_d and the absence of NOE between H_c and H_d , suggests an (*E*)-alkene geometry.

G. NOESY experiment for alkylidenesilacyclopropane 3h.

NOESY cross peaks were observed between H_b and H_c . This correlation suggests an (*E*)-alkene geometry.

VIII. Regiochemistry of Oxasilacyclopentanes

The regiochemistry of the oxasilacyclopentanes that were derived from insertion of aldehydes or formates into alkylidenesilacyclopropanes could be determined by ${}^{1}\text{H}/{}^{1}\text{H}$ COSY experiments. For oxasilacyclopentanes derived from insertions of ketones (oxasilacyclopentanes **6** and **7**), the regiochemistry of insertion can be determined by NOE or NOESY experiments. Unless otherwise noted, the NOE or NOESY experiments were conducted in CDCl₃.

A. COSY and NOE experiments for oxasilacyclopentane 4a (conducted in CD₃CN).

 H_b irradiated: H_e (0.9%) H_c irradiated: H_b (1.1%), H_d (1.6%), H_f (0.2%)

 H_{e} irradiated: H_{a} (13.8%), H_{b} (14.4%)

Note: The observation of an NOE between H_b and H_e and the absence of an NOE between H_c and H_e suggests a 1,2-trans configuration. The observation of an NOE between H_c and H_d suggests an (*E*)-alkene geometry.

B. COSY and NOESY experiments for oxasilacyclopentane 4b.

Note: The presence of NOESY cross peaks between H_b and H_e and between H_c and H_f suggests a 1,2-trans configuration. The presence of a NOESY cross peak between H_c and H_d suggests an *(E)*-alkene geometry.

C. COSY and NOE experiments for oxasilacyclopentane 5.

COSY cross peak

5

Note: For oxasilacyclopentane 5, COSY cross peaks were not observed between H_b and H_e , H_a and H_b , or H_a and H_e , which suggests that ethyl formate insertion occurred adjacent to the double bond (through Si–Csp² bond cleavage).

5

H_b irradiated: H_e (3.8%)
H_e irradiated: H_b (4.0%), H_f (4.0%)
H_f irradiated: H_e (17.4%)
Note: The observation of an NOE between H_b and H_e suggests a 1,3-cis configuration. The observation of an NOE between H_e and H_f suggests an (*E*)-alkene geometry.

D. COSY and NOESY experiments for oxasilacyclopentane 6.

NOESY cross peaks

6

Note: No NOESY cross peak was observed between \mathbf{H}_{c} and either \mathbf{H}_{e} or \mathbf{H}_{f} , so the 1,2-stereochemistry could not be determined by this method. The large coupling constant value ($J_{bc} = 9.5 \text{ Hz}$) suggests a 1,2-trans stereochemistry, and it is consistent with reported values for other

1,2-trans oxasilacyclopentanes.^{29,30} Furthermore, the 1,2-trans stereochemistry of **6** is confirmed by X–ray crystallographic data of its derivatives, triol **10** and carbamate (+)-**13** (see Section IX). The presence of a NOESY cross peak between H_c and H_d suggests an (*E*)-alkene geometry.

E. NOE experiments for oxasilacyclopentane 7.

 H_b irradiated: H_e (1.1%) H_c irradiated: H_a (3.9%), Me (3.8%) H_e irradiated: H_b (6.3%), H_d (3.5%), Me (0.4%) Me irradiated: H_c (6.0%), H_e (0.1%)

Note: The observation of NOE between H_b and H_e , H_d and H_e , and H_c and M_e suggests a (Z)-alkene geometry. The data obtained from NOE experiments of 7 were verified with an X-ray crystal structure (see Section IX).

F. COSY and NOE experiments for oxasilacyclopentane 8 (conducted in C₆D₆).

 H_a irradiated: H_e (0.6%), H_f (0.2%) H_b irradiated: H_c (7.1%), H_d (2.9%), H_g (2.2%)

Note: The observation of an NOE between H_b and H_g suggests that 3-pentanone insertion occurred adjacent to H_b (through formal Si-Csp³ bond cleavage). The observation of an NOE between H_b and H_c and between H_b and H_d suggests an (E)-alkene geometry.

G. NOE experiments for oxasilacyclopentane 9.

9

H_a irradiated: *t*-**Bu** (0.7%)

Me irradiated: H_b (NOE is present, but it cannot be quantified because the resonance of H_b overlaps with another proton).

Note: The stereochemistry of oxasilacyclopentane **9** is not conclusive, but, it is believed that epoxidation occurs opposite the large cyclohexyl group. Oxasilacyclopentane **9** was converted to triol **10**, whose stereochemistry was determined by X-ray crystallography (see Section IX).

IX. X-ray Crystallographic Data (Oxasilacyclopentane 7, Triol 10, and Carbamate (+)-13)

A. X-ray Data Collection, Structure Solution and Refinement for Oxasilacyclopentane 7.

A colorless crystal of approximate dimensions 0.26 x 0.27 x 0.29 mm was mounted on a glass fiber and transferred to a Bruker CCD platform diffractometer. The SMART¹ program package was used to determine the unit-cell parameters and for data collection (25 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was 2/m and the systematic absences were consistent with the centrosymmetric monoclinic space group $P2_1/c$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Carbon atoms C(21) and C(22) were disordered and included using multiple components, partial site-occupancy-factors and isotropic temperature parameters. Hydrogen atoms associated with the disordered carbon atoms were included using a riding model. The remaining hydrogen atoms were located from a difference-Fourier map and refined (x,y,z and U_{iso}). At convergence, wR2 = 0.1124 and Goof = 1.070 for 373 variables refined against 5380 data (0.78Å), R1 = 0.0417 for those 4363 data with I > 2.0 σ (I).

7

References.

- 1. SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
- 2. SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
- 3. Sheldrick, G. M. SADABS, Version 2.10, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2002.
- 4. Sheldrick, G. M. SHELXTL Version 6.12, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2001.
- 5. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.

Definitions:

wR2 = $[\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$

$$R1 = \Sigma ||F_o| \text{-} |F_c|| \ / \ \Sigma |F_o|$$

Goof = S = $[\Sigma[w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Identification code	kaw112 (Janice Loy)		
Empirical formula	C ₂₃ H ₄₀ O Si ₂		
Formula weight	388.73		
Temperature	158(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions	a = 11.2644(12) Å	α=90°.	
	b = 18.238(2) Å	β=111.178(2)°.	
	c = 12.7049(14) Å	$\gamma = 90^{\circ}$.	
Volume	2433.8(5) Å ³		
Ζ	4		
Density (calculated)	1.061 Mg/m ³		
Absorption coefficient	0.155 mm ⁻¹		
F(000)	856		
Crystal color	colorless		
Crystal size	0.29 x 0.27 x 0.26 mm ³		
Theta range for data collection	1.94 to 27.10°		
Index ranges	$-14 \le h \le 14, -23 \le k \le 23, -16 \le l \le 16$		
Reflections collected	24656		
Independent reflections	5380 [R(int) = 0.0321]		
Completeness to theta = 27.10°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9609 and 0.9565		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5380 / 0 / 373		
Goodness-of-fit on F ²	1.070		
Final R indices [I>2sigma(I) = 4363 data]	R1 = 0.0417, wR2 = 0.1013		
R indices (all data; 0.78Å)	R1 = 0.0563, $wR2 = 0.1124$		
Largest diff. peak and hole	0.618 and -0.556 e.Å-3		

Table 1. Crystal data and structure refinement for 7.
	Х	у	Z	U(eq)	
Si(1)	7829(1)	460(1)	2416(1)	20(1)	
Si(2)	11809(1)	1514(1)	2279(1)	23(1)	
O(1)	6987(1)	979(1)	1335(1)	22(1)	
C(1)	7685(2)	1547(1)	995(1)	20(1)	
C(2)	9130(2)	1419(1)	1638(1)	19(1)	
C(3)	9345(2)	985(1)	2721(1)	22(1)	
C(4)	10091(2)	1682(1)	1352(1)	20(1)	
C(5)	9881(2)	2170(1)	330(2)	29(1)	
C(6)	7238(2)	1470(1)	-295(1)	27(1)	
C(7)	7257(2)	2289(1)	1307(1)	19(1)	
C(8)	8113(2)	2835(1)	1873(1)	22(1)	
C(9)	7683(2)	3507(1)	2114(1)	25(1)	
C(10)	6393(2)	3640(1)	1803(2)	27(1)	
C(11)	5531(2)	3097(1)	1252(2)	28(1)	
C(12)	5955(2)	2427(1)	1003(2)	25(1)	
C(13)	12162(2)	1857(1)	3756(2)	38(1)	
C(14)	12248(2)	523(1)	2322(2)	41(1)	
C(15)	12889(2)	2025(1)	1707(2)	36(1)	
C(16)	7904(2)	-505(1)	1875(2)	31(1)	
C(17)	6572(2)	-825(2)	1276(3)	54(1)	
C(18)	8607(3)	-456(1)	1047(3)	54(1)	
C(19)	8666(3)	-1026(1)	2826(2)	49(1)	
C(20)	7185(2)	549(1)	3603(2)	28(1)	
C(21)	6046(3)	71(2)	3477(2)	44(1)	
C(22)	8268(2)	350(1)	4755(2)	38(1)	
C(21B)	5597(11)	461(6)	2933(10)	32(2)	
C(22B)	7560(12)	-34(7)	4432(10)	37(3)	
C(23)	6887(3)	1352(1)	3718(2)	47(1)	

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for 7. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

_

Si(1)-O(1)	1.6561(12)
Si(1)-C(3)	1.8722(17)
Si(1)-C(16)	1.9011(18)
Si(1)-C(20)	1.9019(18)
Si(2)-C(14)	1.869(2)
Si(2)-C(15)	1.875(2)
Si(2)-C(13)	1.879(2)
Si(2)-C(4)	1.8916(17)
O(1)-C(1)	1.4571(19)
C(1)-C(7)	1.536(2)
C(1)-C(6)	1.538(2)
C(1)-C(2)	1.553(2)
C(2)-C(4)	1.348(2)
C(2)-C(3)	1.529(2)
C(4)-C(5)	1.522(2)
C(7)-C(8)	1.393(2)
C(7)-C(12)	1.397(2)
C(8)-C(9)	1.391(2)
C(9)-C(10)	1.383(3)
C(10)-C(11)	1.386(3)
C(11)-C(12)	1.389(3)
C(16)-C(18)	1.530(3)
C(16)-C(17)	1.532(3)
C(16)-C(19)	1.533(3)
C(20)-C(22B)	1.448(12)
C(20)-C(21)	1.510(3)
C(20)-C(23)	1.522(3)
C(20)-C(22)	1.572(3)
C(20)-C(21B)	1.687(11)
O(1)-Si(1)-C(3)	94.90(7)
O(1)-Si(1)-C(16)	108.43(8)
C(3)-Si(1)-C(16)	113.04(8)
O(1)-Si(1)-C(20)	109.87(7)
$\langle \cdot \rangle = \langle \cdot \rangle = \langle \cdot \rangle = \langle \cdot \rangle$	× /

Table 3. Bond lengths [Å] and angles [°] for **7**.

C(3)-Si(1)-C(20)	111.94(8)
C(16)-Si(1)-C(20)	116.44(8)
C(14)-Si(2)-C(15)	106.88(10)
C(14)-Si(2)-C(13)	109.52(12)
C(15)-Si(2)-C(13)	106.75(11)
C(14)-Si(2)-C(4)	112.07(10)
C(15)-Si(2)-C(4)	109.81(9)
C(13)-Si(2)-C(4)	111.56(9)
C(1)-O(1)-Si(1)	116.33(9)
O(1)-C(1)-C(7)	107.27(12)
O(1)-C(1)-C(6)	104.33(13)
C(7)-C(1)-C(6)	110.04(14)
O(1)-C(1)-C(2)	108.23(12)
C(7)-C(1)-C(2)	111.34(13)
C(6)-C(1)-C(2)	115.10(14)
C(4)-C(2)-C(3)	123.02(15)
C(4)-C(2)-C(1)	126.61(14)
C(3)-C(2)-C(1)	110.25(13)
C(2)-C(3)-Si(1)	104.07(11)
C(2)-C(4)-C(5)	123.07(15)
C(2)-C(4)-Si(2)	120.99(12)
C(5)-C(4)-Si(2)	115.80(12)
C(8)-C(7)-C(12)	118.40(15)
C(8)-C(7)-C(1)	122.70(14)
C(12)-C(7)-C(1)	118.90(15)
C(9)-C(8)-C(7)	120.82(16)
C(10)-C(9)-C(8)	120.34(16)
C(9)-C(10)-C(11)	119.36(17)
C(10)-C(11)-C(12)	120.53(17)
C(11)-C(12)-C(7)	120.55(16)
C(18)-C(16)-C(17)	109.8(2)
C(18)-C(16)-C(19)	107.3(2)
C(17)-C(16)-C(19)	108.9(2)
C(18)-C(16)-Si(1)	107.25(14)
C(17)-C(16)-Si(1)	111.62(15)
C(19)-C(16)-Si(1)	111.94(14)

C(22B)-C(20)-C(21)	70.6(5)
C(22B)-C(20)-C(23)	130.8(5)
C(21)-C(20)-C(23)	110.94(19)
C(22B)-C(20)-C(22)	39.6(5)
C(21)-C(20)-C(22)	108.04(18)
C(23)-C(20)-C(22)	104.83(18)
C(22B)-C(20)-C(21B)	106.0(6)
C(21)-C(20)-C(21B)	35.7(4)
C(23)-C(20)-C(21B)	84.8(4)
C(22)-C(20)-C(21B)	140.5(4)
C(22B)-C(20)-Si(1)	114.8(5)
C(21)-C(20)-Si(1)	114.81(15)
C(23)-C(20)-Si(1)	108.59(13)
C(22)-C(20)-Si(1)	109.16(14)
C(21B)-C(20)-Si(1)	103.4(4)

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
Si(1)	20(1)	18(1)	24(1)	0(1)	9(1)	-2(1)
Si(2)	20(1)	23(1)	29(1)	4(1)	11(1)	1(1)
O(1)	19(1)	21(1)	24(1)	0(1)	7(1)	-4(1)
C(1)	20(1)	20(1)	20(1)	-1(1)	7(1)	-2(1)
C(2)	22(1)	17(1)	19(1)	-1(1)	8(1)	2(1)
2(3)	20(1)	25(1)	21(1)	4(1)	7(1)	0(1)
C(4)	22(1)	19(1)	20(1)	1(1)	9(1)	1(1)
C(5)	27(1)	35(1)	27(1)	10(1)	12(1)	0(1)
C(6)	29(1)	32(1)	19(1)	-2(1)	7(1)	0(1)
C(7)	22(1)	20(1)	17(1)	3(1)	8(1)	2(1)
C(8)	21(1)	24(1)	21(1)	0(1)	7(1)	1(1)
C(9)	29(1)	23(1)	24(1)	-3(1)	10(1)	-2(1)
C(10)	32(1)	24(1)	26(1)	2(1)	14(1)	6(1)
C(11)	22(1)	32(1)	30(1)	4(1)	10(1)	6(1)
2(12)	22(1)	25(1)	28(1)	0(1)	7(1)	-1(1)
C(13)	33(1)	50(1)	28(1)	0(1)	5(1)	-10(1)
C(14)	40(1)	30(1)	62(2)	13(1)	30(1)	13(1)
C(15)	27(1)	38(1)	46(1)	10(1)	17(1)	-2(1)
C(16)	32(1)	21(1)	39(1)	-4(1)	12(1)	-1(1)
C(17)	42(1)	38(1)	73(2)	-28(1)	8(1)	-6(1)
2(18)	83(2)	33(1)	63(2)	-11(1)	47(2)	6(1)
2(19)	56(2)	23(1)	59(2)	1(1)	10(1)	9(1)
2(20)	28(1)	28(1)	33(1)	4(1)	18(1)	0(1)
C(23)	71(2)	39(1)	47(1)	-6(1)	41(1)	-2(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **7**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	у	Z	U(eq)
H(21A)	5726	185	4080	67
H(21B)	6298	-446	3527	67
H(21C)	5377	164	2742	67
H(22A)	7951	416	5373	57
H(22B)	9001	672	4874	57
H(22C)	8526	-161	4735	57
H(21D)	5400	-38	2637	49
H(21E)	5303	813	2309	49
H(21F)	5167	559	3466	49
H(22D)	7206	60	5020	56
H(22E)	8491	-54	4774	56
H(22F)	7237	-503	4065	56
H(3A)	10100(20)	698(12)	2941(17)	29(5)
H(3B)	9460(20)	1329(13)	3340(20)	40(6)
H(5A)	9120(20)	2482(12)	175(18)	35(6)
H(5B)	10590(20)	2477(14)	430(20)	50(7)
H(5C)	9800(20)	1884(15)	-310(20)	54(7)
H(6A)	6320(20)	1390(12)	-570(18)	34(6)
H(6B)	7440(20)	1896(12)	-654(18)	33(5)
H(6C)	7650(20)	1039(13)	-493(19)	40(6)
H(8A)	9004(18)	2751(10)	2095(15)	17(4)
H(9A)	8300(20)	3884(12)	2531(18)	35(6)
H(10A)	6090(20)	4101(12)	1957(17)	32(5)
H(11A)	4660(20)	3179(11)	1046(17)	28(5)
H(12A)	5380(20)	2064(12)	638(18)	36(6)
H(13A)	11910(30)	1523(15)	4210(20)	60(8)
H(13B)	13010(30)	1936(17)	4060(30)	76(9)
H(13C)	11790(30)	2340(20)	3740(30)	95(11)
H(14A)	11880(30)	220(16)	2690(20)	68(9)
H(14B)	13140(30)	473(18)	2710(30)	90(11)
H(14C)	12150(30)	357(17)	1640(30)	78(10)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 7.

H(15A)	12790(20)	2556(14)	1709(19)	42(6)
H(15B)	13740(30)	1903(14)	2210(20)	51(7)
H(15C)	12780(30)	1876(15)	960(20)	60(8)
H(17A)	6630(20)	-1291(15)	970(20)	51(7)
H(17B)	6140(30)	-500(17)	690(30)	69(9)
H(17C)	6110(30)	-881(16)	1810(30)	69(9)
H(18A)	8610(30)	-957(16)	730(20)	65(8)
H(18B)	8080(30)	-213(16)	420(20)	57(8)
H(18C)	9530(30)	-232(19)	1410(30)	90(11)
H(19A)	8720(30)	-1518(15)	2480(20)	60(8)
H(19B)	9550(30)	-850(15)	3230(20)	59(8)
H(19C)	8180(30)	-1110(19)	3350(30)	94(11)
H(23A)	7600(30)	1663(14)	3790(20)	52(7)
H(23B)	6630(20)	1420(13)	4370(20)	48(7)
H(23C)	6110(40)	1540(20)	2940(40)	111(13)

C(3)-Si(1)-O(1)-C(1)	4.82(12)
C(16)-Si(1)-O(1)-C(1)	-111.46(11)
C(20)-Si(1)-O(1)-C(1)	120.27(11)
Si(1)-O(1)-C(1)-C(7)	-110.37(12)
Si(1)-O(1)-C(1)-C(6)	132.89(12)
Si(1)-O(1)-C(1)-C(2)	9.87(15)
O(1)-C(1)-C(2)-C(4)	160.27(15)
C(7)-C(1)-C(2)-C(4)	-82.07(19)
C(6)-C(1)-C(2)-C(4)	44.0(2)
O(1)-C(1)-C(2)-C(3)	-23.62(17)
C(7)-C(1)-C(2)-C(3)	94.05(15)
C(6)-C(1)-C(2)-C(3)	-139.85(15)
C(4)-C(2)-C(3)-Si(1)	-158.14(14)
C(1)-C(2)-C(3)-Si(1)	25.58(15)
O(1)-Si(1)-C(3)-C(2)	-17.76(11)
C(16)-Si(1)-C(3)-C(2)	94.66(12)
C(20)-Si(1)-C(3)-C(2)	-131.48(11)
C(3)-C(2)-C(4)-C(5)	-174.51(16)
C(1)-C(2)-C(4)-C(5)	1.1(3)
C(3)-C(2)-C(4)-Si(2)	1.0(2)
C(1)-C(2)-C(4)-Si(2)	176.69(12)
C(14)-Si(2)-C(4)-C(2)	66.63(16)
C(15)-Si(2)-C(4)-C(2)	-174.74(14)
C(13)-Si(2)-C(4)-C(2)	-56.59(16)
C(14)-Si(2)-C(4)-C(5)	-117.51(15)
C(15)-Si(2)-C(4)-C(5)	1.12(16)
C(13)-Si(2)-C(4)-C(5)	119.27(15)
O(1)-C(1)-C(7)-C(8)	132.48(15)
C(6)-C(1)-C(7)-C(8)	-114.61(17)
C(2)-C(1)-C(7)-C(8)	14.2(2)
O(1)-C(1)-C(7)-C(12)	-48.10(18)
C(6)-C(1)-C(7)-C(12)	64.81(19)
C(2)-C(1)-C(7)-C(12)	-166.34(14)
C(12)-C(7)-C(8)-C(9)	-1.0(2)

Table 6. Torsion angles [°] for **7**.

C(1)-C(7)-C(8)-C(9)	178.42(15)
C(7)-C(8)-C(9)-C(10)	0.6(3)
C(8)-C(9)-C(10)-C(11)	0.2(3)
C(9)-C(10)-C(11)-C(12)	-0.6(3)
C(10)-C(11)-C(12)-C(7)	0.1(3)
C(8)-C(7)-C(12)-C(11)	0.7(2)
C(1)-C(7)-C(12)-C(11)	-178.80(15)
O(1)-Si(1)-C(16)-C(18)	62.87(18)
C(3)-Si(1)-C(16)-C(18)	-41.00(19)
C(20)-Si(1)-C(16)-C(18)	-172.67(17)
O(1)-Si(1)-C(16)-C(17)	-57.38(19)
C(3)-Si(1)-C(16)-C(17)	-161.24(18)
C(20)-Si(1)-C(16)-C(17)	67.1(2)
O(1)-Si(1)-C(16)-C(19)	-179.75(16)
C(3)-Si(1)-C(16)-C(19)	76.39(18)
C(20)-Si(1)-C(16)-C(19)	-55.28(19)
O(1)-Si(1)-C(20)-C(22B)	161.6(6)
C(3)-Si(1)-C(20)-C(22B)	-94.3(6)
C(16)-Si(1)-C(20)-C(22B)	37.9(6)
O(1)-Si(1)-C(20)-C(21)	82.53(17)
C(3)-Si(1)-C(20)-C(21)	-173.37(16)
C(16)-Si(1)-C(20)-C(21)	-41.19(19)
O(1)-Si(1)-C(20)-C(23)	-42.28(17)
C(3)-Si(1)-C(20)-C(23)	61.82(17)
C(16)-Si(1)-C(20)-C(23)	-166.00(15)
O(1)-Si(1)-C(20)-C(22)	-156.02(13)
C(3)-Si(1)-C(20)-C(22)	-51.93(16)
C(16)-Si(1)-C(20)-C(22)	80.26(16)
O(1)-Si(1)-C(20)-C(21B)	46.6(4)
C(3)-Si(1)-C(20)-C(21B)	150.7(4)
C(16)-Si(1)-C(20)-C(21B)	-77.1(4)

B. X-ray Data Collection, Structure Solution and Refinement for Triol 10.

A colorless crystal of approximate dimensions 0.21 x 0.26 x 0.38 mm was mounted on a glass fiber and transferred to a Bruker CCD platform diffractometer. The SMART¹ program package was used to determine the unit-cell parameters and for data collection (25 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was 2/m and the systematic absences were consistent with the centrosymmetric monoclinic space group $P2_1/n$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were located from a difference-Fourier map and refined (x,y,z and U_{iso}). There were two molecules of the formula unit present (Z = 8). At convergence, wR2 = 0.1033 and Goof = 1.030 for 531 variables refined against 6341 data (0.78Å), R1 = 0.0389 for those 4540 data with I > 2.0 σ (I).

References.

- 6. SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
- 7. SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
- 8. Sheldrick, G. M. SADABS, Version 2.10, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2002.
- 9. Sheldrick, G. M. SHELXTL Version 6.12, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2001.
- 10. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.

Definitions:

wR2 = $[\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$

$$R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$$

Goof = S = $[\Sigma[w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Identification code	kaw111 (Janice Loy)	
Empirical formula	$C_{14} H_{28} O_3$	
Formula weight	244.36	
Temperature	158(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/n$	
Unit cell dimensions	a = 11.9103(11) Å	α= 90°.
	b = 19.0369(17) Å	β= 91.289(2)°.
	c = 12.6994(11) Å	$\gamma = 90^{\circ}$.
Volume	2878.7(4) Å ³	
Ζ	8	
Density (calculated)	1.128 Mg/m ³	
Absorption coefficient	0.077 mm ⁻¹	
F(000)	1088	
Crystal color	colorless	
Crystal size	0.38 x 0.26 x 0.21 mm ³	
Theta range for data collection	1.93 to 27.10°	
Index ranges	$-15 \le h \le 15, -24 \le k \le 24$, $-16 \le l \le 16$
Reflections collected	29465	
Independent reflections	6341 [R(int) = 0.0448]	
Completeness to theta = 27.10°	99.8 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.9841 and 0.9714	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	6341 / 0 / 531	
Goodness-of-fit on F ²	1.030	
Final R indices [I>2sigma(I) = 4540 data]	R1 = 0.0389, wR2 = 0.086	67
R indices (all data; 0.78Å)	R1 = 0.0674, wR2 = 0.102	33
Largest diff. peak and hole	0.270 and -0.204 e.Å-3	

Table 1. Crystal data and structure refinement for 10.

	Х	у	Ζ	U(eq)
O(1)	6740(1)	382(1)	6560(1)	23(1)
O(2)	5715(1)	-77(1)	8475(1)	25(1)
O(3)	5891(1)	-1330(1)	9453(1)	20(1)
C(1)	8537(1)	341(1)	7376(1)	27(1)
C(2)	7293(1)	375(1)	7581(1)	20(1)
C(3)	6844(1)	-253(1)	8201(1)	19(1)
C(4)	7502(1)	-554(1)	9159(1)	16(1)
C(5)	7092(1)	-1323(1)	9329(1)	17(1)
C(6)	7357(1)	-1843(1)	8446(1)	20(1)
C(7)	7007(2)	-2587(1)	8749(2)	29(1)
C(8)	8594(1)	-1831(1)	8167(2)	28(1)
C(9)	7460(1)	-131(1)	10200(1)	18(1)
C(10)	8314(1)	-419(1)	11017(1)	26(1)
C(11)	8306(2)	-18(1)	12058(1)	26(1)
C(12)	8524(2)	759(1)	11892(1)	29(1)
C(13)	7674(2)	1056(1)	11107(1)	31(1)
C(14)	7666(2)	657(1)	10062(1)	27(1)
O(4)	4617(1)	1205(1)	8475(1)	23(1)
O(5)	4408(1)	554(1)	6589(1)	21(1)
O(6)	2751(1)	450(1)	5171(1)	24(1)
C(15)	3925(1)	2295(1)	7857(1)	23(1)
C(16)	4494(1)	1618(1)	7537(1)	18(1)
C(17)	3818(1)	1206(1)	6713(1)	18(1)
C(18)	3594(1)	1578(1)	5653(1)	16(1)
C(19)	2633(1)	1197(1)	5032(1)	19(1)
C(20)	1461(1)	1438(1)	5372(1)	26(1)
C(21)	536(2)	974(1)	4897(2)	39(1)
C(22)	1248(2)	2200(1)	5057(2)	37(1)
C(23)	4646(1)	1731(1)	4993(1)	18(1)
C(24)	4436(1)	2381(1)	4297(1)	22(1)
C(25)	5444(1)	2574(1)	3633(1)	27(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **10**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(26)	5838(1)	1951(1)	2981(1)	26(1)
C(27)	6081(1)	1319(1)	3679(1)	25(1)
C(28)	5056(1)	1116(1)	4317(1)	21(1)

O(1)-C(2)	1.4412(17)	
O(2)-C(3)	1.4356(17)	
O(3)-C(5)	1.4426(17)	
C(1)-C(2)	1.511(2)	
C(2)-C(3)	1.534(2)	
C(3)-C(4)	1.5439(19)	
C(4)-C(9)	1.5488(19)	
C(4)-C(5)	1.5592(19)	
C(5)-C(6)	1.5344(19)	
C(6)-C(8)	1.524(2)	
C(6)-C(7)	1.528(2)	
C(9)-C(14)	1.532(2)	
C(9)-C(10)	1.537(2)	
C(10)-C(11)	1.527(2)	
C(11)-C(12)	1.518(2)	
C(12)-C(13)	1.514(2)	
C(13)-C(14)	1.529(2)	
O(4)-C(16)	1.4314(17)	
O(5)-C(17)	1.4364(17)	
O(6)-C(19)	1.4382(17)	
C(15)-C(16)	1.516(2)	
C(16)-C(17)	1.524(2)	
C(17)-C(18)	1.5395(19)	
C(18)-C(23)	1.5497(19)	
C(18)-C(19)	1.5559(19)	
C(19)-C(20)	1.541(2)	
C(20)-C(22)	1.524(3)	
C(20)-C(21)	1.526(2)	
C(23)-C(28)	1.537(2)	
C(23)-C(24)	1.538(2)	
C(24)-C(25)	1.527(2)	
C(25)-C(26)	1.526(2)	
C(26)-C(27)	1.518(2)	
C(27)-C(28)	1.530(2)	

Table 3. Bond lengths [Å] and angles $[\circ]$ for **10**.

O(1)-C(2)-C(1)	106.04(12)
O(1)-C(2)-C(3)	108.12(12)
C(1)-C(2)-C(3)	114.21(13)
O(2)-C(3)-C(2)	106.41(11)
O(2)-C(3)-C(4)	110.93(11)
C(2)-C(3)-C(4)	121.15(12)
C(3)-C(4)-C(9)	116.97(12)
C(3)-C(4)-C(5)	107.63(11)
C(9)-C(4)-C(5)	110.69(11)
O(3)-C(5)-C(6)	107.12(11)
O(3)-C(5)-C(4)	109.82(11)
C(6)-C(5)-C(4)	115.73(12)
C(8)-C(6)-C(7)	110.07(13)
C(8)-C(6)-C(5)	112.15(12)
C(7)-C(6)-C(5)	110.62(13)
C(14)-C(9)-C(10)	108.69(13)
C(14)-C(9)-C(4)	113.79(12)
C(10)-C(9)-C(4)	110.92(12)
C(11)-C(10)-C(9)	112.92(13)
C(12)-C(11)-C(10)	111.28(14)
C(13)-C(12)-C(11)	109.93(14)
C(12)-C(13)-C(14)	112.19(15)
C(13)-C(14)-C(9)	112.63(13)
O(4)-C(16)-C(15)	106.37(12)
O(4)-C(16)-C(17)	109.34(12)
C(15)-C(16)-C(17)	112.87(12)
O(5)-C(17)-C(16)	105.50(11)
O(5)-C(17)-C(18)	112.23(11)
C(16)-C(17)-C(18)	116.21(12)
C(17)-C(18)-C(23)	115.65(11)
C(17)-C(18)-C(19)	109.80(11)
C(23)-C(18)-C(19)	114.05(11)
O(6)-C(19)-C(20)	110.27(12)
O(6)-C(19)-C(18)	109.29(11)
C(20)-C(19)-C(18)	112.26(12)

C(22)-C(20)-C(21)	109.43(15)
C(22)-C(20)-C(19)	110.91(14)
C(21)-C(20)-C(19)	111.50(14)
C(28)-C(23)-C(24)	109.95(12)
C(28)-C(23)-C(18)	115.51(12)
C(24)-C(23)-C(18)	109.79(12)
C(25)-C(24)-C(23)	113.04(13)
C(26)-C(25)-C(24)	111.60(13)
C(27)-C(26)-C(25)	110.80(13)
C(26)-C(27)-C(28)	111.43(13)
C(27)-C(28)-C(23)	111.78(13)

	U ¹¹	U ²²	U ³³	U ²³	U13	U ¹²	
O(1)	29(1)	25(1)	16(1)	2(1)	0(1)	3(1)	
O(2)	20(1)	25(1)	30(1)	11(1)	1(1)	3(1)	
O(3)	21(1)	24(1)	16(1)	0(1)	3(1)	-1(1)	
C(1)	30(1)	31(1)	21(1)	5(1)	4(1)	-1(1)	
C(2)	27(1)	19(1)	15(1)	1(1)	1(1)	1(1)	
C(3)	22(1)	18(1)	17(1)	0(1)	0(1)	2(1)	
C(4)	17(1)	16(1)	16(1)	-1(1)	1(1)	2(1)	
C(5)	19(1)	16(1)	17(1)	1(1)	-1(1)	1(1)	
C(6)	24(1)	17(1)	19(1)	-2(1)	-1(1)	2(1)	
C(7)	37(1)	18(1)	33(1)	-3(1)	3(1)	-1(1)	
C(8)	30(1)	22(1)	33(1)	-4(1)	7(1)	5(1)	
C(9)	20(1)	17(1)	16(1)	-1(1)	1(1)	1(1)	
C(10)	30(1)	23(1)	24(1)	-4(1)	-7(1)	4(1)	
C(11)	32(1)	25(1)	19(1)	-1(1)	-6(1)	-3(1)	
C(12)	38(1)	27(1)	21(1)	-5(1)	2(1)	-13(1)	
C(13)	55(1)	16(1)	21(1)	-3(1)	0(1)	-1(1)	
C(14)	43(1)	19(1)	19(1)	-1(1)	2(1)	-2(1)	
O(4)	32(1)	21(1)	14(1)	2(1)	1(1)	7(1)	
O(5)	30(1)	15(1)	19(1)	-2(1)	-3(1)	4(1)	
O(6)	32(1)	18(1)	21(1)	-3(1)	2(1)	-4(1)	
C(15)	28(1)	21(1)	20(1)	-4(1)	-3(1)	3(1)	
C(16)	21(1)	19(1)	14(1)	2(1)	1(1)	1(1)	
C(17)	20(1)	15(1)	19(1)	1(1)	2(1)	2(1)	
C(18)	20(1)	15(1)	15(1)	-2(1)	1(1)	2(1)	
C(19)	21(1)	20(1)	17(1)	0(1)	1(1)	-2(1)	
C(20)	21(1)	35(1)	21(1)	-4(1)	2(1)	0(1)	
C(21)	21(1)	44(1)	51(1)	-6(1)	3(1)	-6(1)	
C(22)	25(1)	36(1)	49(1)	-6(1)	-5(1)	8(1)	
C(23)	19(1)	19(1)	16(1)	0(1)	0(1)	-1(1)	
C(24)	28(1)	19(1)	19(1)	0(1)	2(1)	-1(1)	
C(25)	33(1)	24(1)	24(1)	2(1)	3(1)	-8(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³) for **10**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(26)	26(1)	31(1)	20(1)	-3(1)	6(1)	-9(1)
C(27)	22(1)	30(1)	23(1)	-5(1)	5(1)	-1(1)
C(28)	23(1)	20(1)	20(1)	0(1)	2(1)	1(1)

	Х	У	Z	U(eq)	
H(1)	6046(17)	436(10)	6630(15)	34(5)	
H(2)	5472(17)	-435(11)	8784(17)	48(6)	
H(3)	5761(14)	-1313(9)	10092(15)	28(5)	
H(1A)	8994(15)	396(9)	8036(14)	31(5)	
H(1B)	8750(15)	-103(10)	7045(14)	34(5)	
H(1C)	8743(15)	706(10)	6889(15)	36(5)	
H(2A)	7087(13)	806(8)	7939(12)	17(4)	
H(3A)	6803(12)	-637(8)	7664(12)	17(4)	
H(4A)	8291(13)	-578(7)	8974(11)	11(3)	
H(5A)	7454(12)	-1509(8)	9980(12)	14(4)	
H(6A)	6912(13)	-1699(8)	7825(13)	22(4)	
H(7A)	6221(18)	-2599(10)	8885(15)	44(6)	
H(7B)	7412(16)	-2741(10)	9385(16)	41(5)	
H(7C)	7149(16)	-2932(11)	8149(16)	44(5)	
H(8A)	8836(16)	-1385(11)	7824(15)	42(5)	
H(8B)	8751(16)	-2207(11)	7668(15)	41(5)	
H(8C)	9079(15)	-1893(9)	8790(15)	35(5)	
H(9A)	6713(14)	-181(8)	10492(12)	23(4)	
H(10A)	9050(16)	-374(9)	10700(14)	33(5)	
H(10B)	8184(15)	-913(10)	11138(14)	36(5)	
H(11A)	7551(15)	-70(9)	12372(13)	26(4)	
H(11B)	8858(16)	-217(10)	12566(15)	35(5)	
H(12A)	8512(15)	999(10)	12570(15)	35(5)	
H(12B)	9287(16)	822(10)	11623(14)	38(5)	
H(13A)	6903(15)	1028(9)	11389(13)	29(5)	
H(13B)	7836(15)	1557(11)	10975(15)	40(5)	
H(14A)	8391(16)	731(9)	9727(14)	34(5)	
H(14B)	7098(15)	857(9)	9606(14)	30(5)	
H(4)	4907(17)	841(11)	8339(15)	37(6)	
H(5)	4036(18)	339(11)	6157(17)	44(6)	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **10**.

H(6)	2843(17)	239(11)	4570(17)	48(6)
H(15A)	3914(14)	2641(9)	7278(14)	31(5)
H(15B)	4337(15)	2505(9)	8464(14)	31(5)
H(15C)	3160(16)	2194(9)	8069(13)	31(5)
H(16A)	5245(13)	1723(8)	7264(12)	16(4)
H(17A)	3074(12)	1101(7)	7035(11)	11(4)
H(18A)	3299(12)	2024(8)	5847(11)	13(4)
H(19A)	2689(12)	1308(7)	4264(12)	12(4)
H(20A)	1436(14)	1393(9)	6160(14)	29(4)
H(21A)	669(17)	501(11)	5109(16)	46(6)
H(21B)	524(16)	1011(10)	4097(17)	41(5)
H(21C)	-195(18)	1146(11)	5128(16)	47(6)
H(22A)	498(18)	2348(10)	5262(15)	46(6)
H(22B)	1315(18)	2236(11)	4282(19)	57(7)
H(22C)	1780(20)	2532(12)	5366(18)	65(7)
H(23A)	5274(13)	1861(8)	5511(12)	16(4)
H(24B)	3779(15)	2289(9)	3819(14)	31(5)
H(24A)	4247(14)	2781(9)	4749(13)	27(4)
H(25A)	6062(15)	2737(9)	4113(13)	28(4)
H(25B)	5248(15)	2990(10)	3173(14)	35(5)
H(26A)	5240(14)	1841(9)	2440(14)	28(4)
H(26B)	6491(15)	2084(9)	2581(14)	31(5)
H(27A)	6329(14)	920(9)	3246(13)	29(4)
H(27B)	6715(14)	1425(8)	4169(13)	22(4)
H(28A)	4447(15)	964(9)	3815(14)	30(5)
H(28B)	5189(14)	712(10)	4766(14)	30(5)

O(1)-C(2)-C(3)-O(2)	-71.89(14)
C(1)-C(2)-C(3)-O(2)	170.35(12)
O(1)-C(2)-C(3)-C(4)	160.29(12)
C(1)-C(2)-C(3)-C(4)	42.52(19)
O(2)-C(3)-C(4)-C(9)	-49.65(16)
C(2)-C(3)-C(4)-C(9)	76.14(17)
O(2)-C(3)-C(4)-C(5)	75.64(14)
C(2)-C(3)-C(4)-C(5)	-158.58(12)
C(3)-C(4)-C(5)-O(3)	-56.06(14)
C(9)-C(4)-C(5)-O(3)	72.90(14)
C(3)-C(4)-C(5)-C(6)	65.34(15)
C(9)-C(4)-C(5)-C(6)	-165.71(12)
O(3)-C(5)-C(6)-C(8)	174.51(12)
C(4)-C(5)-C(6)-C(8)	51.67(17)
O(3)-C(5)-C(6)-C(7)	-62.18(15)
C(4)-C(5)-C(6)-C(7)	174.98(13)
C(3)-C(4)-C(9)-C(14)	-46.87(18)
C(5)-C(4)-C(9)-C(14)	-170.61(13)
C(3)-C(4)-C(9)-C(10)	-169.79(13)
C(5)-C(4)-C(9)-C(10)	66.47(15)
C(14)-C(9)-C(10)-C(11)	54.09(18)
C(4)-C(9)-C(10)-C(11)	179.92(13)
C(9)-C(10)-C(11)-C(12)	-56.85(19)
C(10)-C(11)-C(12)-C(13)	55.96(19)
C(11)-C(12)-C(13)-C(14)	-55.8(2)
C(12)-C(13)-C(14)-C(9)	55.9(2)
C(10)-C(9)-C(14)-C(13)	-53.20(19)
C(4)-C(9)-C(14)-C(13)	-177.34(14)
O(4)-C(16)-C(17)-O(5)	-55.66(14)
C(15)-C(16)-C(17)-O(5)	-173.84(12)
O(4)-C(16)-C(17)-C(18)	179.30(11)
C(15)-C(16)-C(17)-C(18)	61.12(17)
O(5)-C(17)-C(18)-C(23)	-56.17(16)
C(16)-C(17)-C(18)-C(23)	65.36(16)

Table 6. Torsion angles [°] for **10**.

O(5)-C(17)-C(18)-C(19)	74.62(14)
C(16)-C(17)-C(18)-C(19)	-163.84(12)
C(17)-C(18)-C(19)-O(6)	-39.03(15)
C(23)-C(18)-C(19)-O(6)	92.61(14)
C(17)-C(18)-C(19)-C(20)	83.65(15)
C(23)-C(18)-C(19)-C(20)	-144.71(13)
O(6)-C(19)-C(20)-C(22)	-170.34(13)
C(18)-C(19)-C(20)-C(22)	67.54(17)
O(6)-C(19)-C(20)-C(21)	-48.11(18)
C(18)-C(19)-C(20)-C(21)	-170.23(14)
C(17)-C(18)-C(23)-C(28)	82.93(15)
C(19)-C(18)-C(23)-C(28)	-45.81(17)
C(17)-C(18)-C(23)-C(24)	-152.08(12)
C(19)-C(18)-C(23)-C(24)	79.18(15)
C(28)-C(23)-C(24)-C(25)	-52.80(17)
C(18)-C(23)-C(24)-C(25)	179.07(12)
C(23)-C(24)-C(25)-C(26)	53.80(18)
C(24)-C(25)-C(26)-C(27)	-54.77(18)
C(25)-C(26)-C(27)-C(28)	56.56(18)
C(26)-C(27)-C(28)-C(23)	-56.99(17)
C(24)-C(23)-C(28)-C(27)	53.98(17)
C(18)-C(23)-C(28)-C(27)	178.89(12)

C. X-ray Data Collection, Structure Solution and Refinement for Carbamate (+)-13.

A colorless crystal of approximate dimensions 0.12 x 0.16 x 0.33 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (20 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space groups $P2_1$ and $P2_1/m$. It was later determined that the noncentrosymmetric space group $P2_1$ was correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were either located from a difference-Fourier map and refined (x,y,z and U_{iso}) or were included using a riding model (mixed hydrogen atom treatment).

At convergence, wR2 = 0.0798 and Goof = 1.045 for 360 variables refined against 4982 data (0.75Å), R1 = 0.0303 for those 4780 data with I > 2.0σ (I). The absolute structure could not be assigned by inversion of the model or by refinement of the Flack parameter⁶.

(+)-13

References.

- 11. APEX2 Version 2008.3-0, or (Version 2.2-0) Bruker AXS, Inc.; Madison, WI 2008.
- 12. SAINT Version 7.53a, Bruker AXS, Inc.; Madison, WI 2007.
- 13. Sheldrick, G. M. SADABS, Version 2007/4, Bruker AXS, Inc.; Madison, WI 2007.
- 14. Sheldrick, G. M. SHELXTL, Version 6.12, Bruker AXS, Inc.; Madison, WI 2001.
- 15. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
- 16. Flack, H. D. Acta. Cryst., A39, 876-881, 1983.

Definitions:

 $wR2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$

Goof = S = $[\Sigma[w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Identification code	kaw132 (Kay Buchner)	
Empirical formula	C ₂₃ H ₃₅ N O ₂	
Formula weight	357.52	
Temperature	103(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>P</i> 2 ₁	
Unit cell dimensions	a = 5.2823(2) Å	α=90°.
	b = 15.4651(6) Å	β= 100.7230(4)°.
	c = 13.0625(5) Å	$\gamma = 90^{\circ}$.
Volume	1048.46(7) Å ³	
Ζ	2	
Density (calculated)	1.132 Mg/m ³	
Absorption coefficient	0.071 mm ⁻¹	
F(000)	392	
Crystal color	colorless	
Crystal size	0.33 x 0.16 x 0.12 mm ³	
Theta range for data collection	1.59 to 28.30°	
Index ranges	$-6 \le h \le 7, -20 \le k \le 20, -2$	$17 \le l \le 17$
Reflections collected	12542	
Independent reflections	4982 [R(int) = 0.0171]	
Completeness to theta = 28.30°	98.2 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.9914 and 0.9772	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	4982 / 1 / 360	
Goodness-of-fit on F ²	1.045	
Final R indices [I>2sigma(I) = 4780 data]	R1 = 0.0303, wR2 = 0.078	86
R indices (all data, 0.75Å)	R1 = 0.0319, $wR2 = 0.079$	98
Largest diff. peak and hole	0.227 and -0.184 e.Å ⁻³	

Table 1. Crystal data and structure refinement for (+)-13.

	Х	у	Z	U(eq)	
O(1)	5909(1)	8222(1)	2377(1)	15(1)	
O(2)	9393(1)	8125(1)	3698(1)	19(1)	
N(1)	5298(2)	8004(1)	3998(1)	15(1)	
C(1)	5308(2)	9270(1)	-1485(1)	25(1)	
C(2)	3584(2)	9114(1)	-713(1)	18(1)	
C(3)	4255(2)	9056(1)	319(1)	14(1)	
C(4)	6930(2)	9110(1)	978(1)	12(1)	
C(5)	7577(2)	8264(1)	1599(1)	13(1)	
C(6)	7068(2)	8121(1)	3386(1)	14(1)	
C(7)	6085(2)	8038(1)	5134(1)	14(1)	
C(8)	4161(2)	7536(1)	5645(1)	18(1)	
C(9)	7237(2)	9919(1)	1692(1)	14(1)	
C(10)	6532(2)	10749(1)	1061(1)	18(1)	
C(11)	6766(2)	11553(1)	1761(1)	21(1)	
C(12)	9446(2)	11632(1)	2435(1)	18(1)	
C(13)	10204(2)	10806(1)	3050(1)	20(1)	
C(14)	9967(2)	10015(1)	2332(1)	18(1)	
C(15)	7170(2)	7431(1)	960(1)	15(1)	
C(16)	8860(2)	7418(1)	130(1)	20(1)	
C(17)	7762(3)	6639(1)	1659(1)	26(1)	
C(18)	6364(2)	8965(1)	5532(1)	15(1)	
C(19)	8588(2)	9222(1)	6211(1)	20(1)	
C(20)	8830(2)	10064(1)	6596(1)	23(1)	
C(21)	6847(2)	10654(1)	6311(1)	22(1)	
C(22)	4601(2)	10397(1)	5640(1)	21(1)	
C(23)	4372(2)	9558(1)	5255(1)	19(1)	

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for (+)-**13**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(6)	1.3554(13)
O(1)-C(5)	1.4645(12)
O(2)-C(6)	1.2201(13)
N(1)-C(6)	1.3505(13)
N(1)-C(7)	1.4661(13)
C(1)-C(2)	1.4983(16)
C(2)-C(3)	1.3319(15)
C(3)-C(4)	1.5142(14)
C(4)-C(5)	1.5440(14)
C(4)-C(9)	1.5505(14)
C(5)-C(15)	1.5284(15)
C(7)-C(18)	1.5225(15)
C(7)-C(8)	1.5273(14)
C(9)-C(14)	1.5339(15)
C(9)-C(10)	1.5345(15)
C(10)-C(11)	1.5343(16)
C(11)-C(12)	1.5267(16)
C(12)-C(13)	1.5237(16)
C(13)-C(14)	1.5318(16)
C(15)-C(17)	1.5253(16)
C(15)-C(16)	1.5270(15)
C(18)-C(19)	1.3917(15)
C(18)-C(23)	1.3920(16)
C(19)-C(20)	1.3929(17)
C(20)-C(21)	1.3868(18)
C(21)-C(22)	1.3946(18)
C(22)-C(23)	1.3887(17)
C(6)-O(1)-C(5)	117.30(8)
C(6)-N(1)-C(7)	119.84(9)
C(3)-C(2)-C(1)	127.68(10)
C(2)-C(3)-C(4)	128.03(10)
C(3)-C(4)-C(5)	110.10(8)
C(3)-C(4)-C(9)	111.64(8)

Table 3. Bond lengths [Å] and angles $[\circ]$ for (+)-13.

C(5)-C(4)-C(9)	112.26(8)
O(1)-C(5)-C(15)	107.44(8)
O(1)-C(5)-C(4)	107.39(8)
C(15)-C(5)-C(4)	115.62(8)
O(2)-C(6)-N(1)	124.60(10)
O(2)-C(6)-O(1)	124.63(9)
N(1)-C(6)-O(1)	110.77(9)
N(1)-C(7)-C(18)	111.75(8)
N(1)-C(7)-C(8)	109.74(9)
C(18)-C(7)-C(8)	111.07(9)
C(14)-C(9)-C(10)	108.74(9)
C(14)-C(9)-C(4)	112.86(8)
C(10)-C(9)-C(4)	111.33(9)
C(11)-C(10)-C(9)	111.93(9)
C(12)-C(11)-C(10)	111.85(9)
C(13)-C(12)-C(11)	111.17(10)
C(12)-C(13)-C(14)	111.36(9)
C(13)-C(14)-C(9)	111.85(9)
C(17)-C(15)-C(16)	109.39(10)
C(17)-C(15)-C(5)	111.00(9)
C(16)-C(15)-C(5)	110.95(9)
C(19)-C(18)-C(23)	118.99(10)
C(19)-C(18)-C(7)	120.22(10)
C(23)-C(18)-C(7)	120.75(10)
C(18)-C(19)-C(20)	120.49(11)
C(21)-C(20)-C(19)	120.24(12)
C(20)-C(21)-C(22)	119.53(11)
C(23)-C(22)-C(21)	120.04(11)
C(22)-C(23)-C(18)	120.70(11)

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}	
O(1)	13(1)	20(1)	11(1)	2(1)	3(1)	-1(1)	
O(2)	14(1)	28(1)	14(1)	2(1)	2(1)	-1(1)	
N(1)	12(1)	20(1)	12(1)	0(1)	1(1)	-1(1)	
C(1)	24(1)	35(1)	15(1)	4(1)	2(1)	5(1)	
C(2)	14(1)	20(1)	18(1)	-1(1)	-1(1)	2(1)	
C(3)	12(1)	14(1)	17(1)	-1(1)	2(1)	0(1)	
C(4)	12(1)	14(1)	11(1)	1(1)	1(1)	1(1)	
C(5)	12(1)	16(1)	11(1)	0(1)	2(1)	0(1)	
C(6)	17(1)	12(1)	12(1)	-1(1)	3(1)	-1(1)	
C(7)	15(1)	17(1)	11(1)	1(1)	2(1)	0(1)	
C(8)	19(1)	19(1)	15(1)	2(1)	5(1)	-1(1)	
C(9)	13(1)	15(1)	13(1)	-1(1)	3(1)	0(1)	
C(10)	19(1)	15(1)	17(1)	0(1)	-2(1)	1(1)	
C(11)	20(1)	16(1)	25(1)	-4(1)	0(1)	3(1)	
C(12)	20(1)	16(1)	18(1)	-3(1)	3(1)	-2(1)	
C(13)	22(1)	19(1)	16(1)	-2(1)	-2(1)	-3(1)	
C(14)	17(1)	16(1)	17(1)	-1(1)	-3(1)	1(1)	
C(15)	14(1)	15(1)	14(1)	1(1)	1(1)	0(1)	
C(16)	21(1)	18(1)	23(1)	-5(1)	9(1)	-1(1)	
C(17)	42(1)	15(1)	21(1)	2(1)	4(1)	0(1)	
C(18)	17(1)	17(1)	11(1)	0(1)	5(1)	-2(1)	
C(19)	17(1)	22(1)	19(1)	-2(1)	1(1)	2(1)	
C(20)	20(1)	26(1)	23(1)	-6(1)	0(1)	-3(1)	
C(21)	27(1)	16(1)	22(1)	-1(1)	5(1)	-2(1)	
C(22)	23(1)	18(1)	20(1)	4(1)	2(1)	3(1)	
C(23)	19(1)	21(1)	17(1)	2(1)	0(1)	0(1)	

Table 4. Anisotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for (+)-13. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	X	y	Z	U(eq)	
H(1A)	4651	9760	-1932	37	
H(1B)	5348	8752	-1914	37	
H(1C)	7054	9401	-1113	37	
H(7A)	7802	7749	5326	17	
H(1)	3800(30)	8075(10)	3749(11)	16(3)	
H(2)	1800(30)	9038(11)	-1025(12)	27(4)	
H(3)	2930(30)	8946(9)	721(10)	14(3)	
H(4)	8180(30)	9166(9)	516(11)	14(3)	
H(5)	9310(30)	8259(9)	1957(10)	12(3)	
H(8A)	4680(30)	7563(9)	6395(11)	14(3)	
H(8B)	2420(30)	7812(10)	5478(12)	26(4)	
H(8C)	4070(30)	6936(11)	5428(12)	22(4)	
H(9)	6020(30)	9842(10)	2167(12)	17(3)	
H(10A)	4830(30)	10718(11)	651(12)	24(4)	
H(10B)	7720(30)	10804(11)	534(12)	28(4)	
H(11A)	5500(30)	11509(11)	2222(13)	29(4)	
H(11B)	6370(30)	12063(11)	1345(13)	27(4)	
H(12A)	9490(30)	12135(10)	2919(12)	17(3)	
H(12B)	10720(30)	11750(11)	2027(14)	29(4)	
H(13A)	9120(30)	10721(11)	3581(12)	24(4)	
H(13B)	11960(30)	10847(12)	3444(14)	34(4)	
H(14A)	11150(30)	10090(10)	1808(13)	28(4)	
H(14B)	10470(30)	9467(11)	2751(13)	26(4)	
H(15)	5460(30)	7389(10)	648(11)	15(3)	
H(16A)	8770(30)	6864(10)	-225(12)	21(4)	
H(16B)	10660(40)	7486(13)	454(15)	42(5)	
H(16C)	8390(30)	7860(11)	-394(13)	29(4)	
H(17A)	7560(30)	6098(13)	1274(14)	38(5)	
H(17B)	6570(30)	6600(12)	2177(14)	33(4)	
H(17C)	9640(40)	6646(14)	2021(16)	47(5)	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for (+)-13.

H(19)	9990(30)	8827(11)	6396(12)	24(4)
H(20)	10460(30)	10244(11)	7062(14)	31(4)
H(21)	6990(30)	11217(11)	6538(12)	22(4)
H(22)	3140(30)	10802(10)	5438(11)	21(4)
H(23)	2830(30)	9383(9)	4812(11)	17(3)

C(1)-C(2)-C(3)-C(4)	-1.62(19)
C(2)-C(3)-C(4)-C(5)	-119.92(12)
C(2)-C(3)-C(4)-C(9)	114.69(12)
C(6)-O(1)-C(5)-C(15)	109.91(10)
C(6)-O(1)-C(5)-C(4)	-125.11(9)
C(3)-C(4)-C(5)-O(1)	-68.43(10)
C(9)-C(4)-C(5)-O(1)	56.61(10)
C(3)-C(4)-C(5)-C(15)	51.47(11)
C(9)-C(4)-C(5)-C(15)	176.51(8)
C(7)-N(1)-C(6)-O(2)	11.90(16)
C(7)-N(1)-C(6)-O(1)	-168.93(9)
C(5)-O(1)-C(6)-O(2)	5.54(15)
C(5)-O(1)-C(6)-N(1)	-173.63(9)
C(6)-N(1)-C(7)-C(18)	79.78(12)
C(6)-N(1)-C(7)-C(8)	-156.55(10)
C(3)-C(4)-C(9)-C(14)	-177.30(9)
C(5)-C(4)-C(9)-C(14)	58.51(11)
C(3)-C(4)-C(9)-C(10)	-54.68(11)
C(5)-C(4)-C(9)-C(10)	-178.87(9)
C(14)-C(9)-C(10)-C(11)	-56.38(12)
C(4)-C(9)-C(10)-C(11)	178.66(9)
C(9)-C(10)-C(11)-C(12)	55.50(13)
C(10)-C(11)-C(12)-C(13)	-53.39(14)
C(11)-C(12)-C(13)-C(14)	54.03(13)
C(12)-C(13)-C(14)-C(9)	-57.07(13)
C(10)-C(9)-C(14)-C(13)	57.28(12)
C(4)-C(9)-C(14)-C(13)	-178.67(9)
O(1)-C(5)-C(15)-C(17)	-57.79(11)
C(4)-C(5)-C(15)-C(17)	-177.66(10)
O(1)-C(5)-C(15)-C(16)	-179.64(9)
C(4)-C(5)-C(15)-C(16)	60.49(12)
N(1)-C(7)-C(18)-C(19)	-129.94(10)
C(8)-C(7)-C(18)-C(19)	107.15(11)
N(1)-C(7)-C(18)-C(23)	52.42(13)

Table 6. Torsion angles $[^{\circ}]$ for (+)-13.

C(8)-C(7)-C(18)-C(23)	-70.49(12)
C(23)-C(18)-C(19)-C(20)	-0.85(16)
C(7)-C(18)-C(19)-C(20)	-178.53(10)
C(18)-C(19)-C(20)-C(21)	0.37(18)
C(19)-C(20)-C(21)-C(22)	0.35(19)
C(20)-C(21)-C(22)-C(23)	-0.57(18)
C(21)-C(22)-C(23)-C(18)	0.08(18)
C(19)-C(18)-C(23)-C(22)	0.63(16)
C(7)-C(18)-C(23)-C(22)	178.30(10)

References and Notes

- (1) Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 7320-7321.
- (2) Myers, A. G.; Zheng, B.; Movassaghi, M. J. Org. Chem. 1997, 62, 7507.
- (3) Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466-12476.
- (4) Price, W. A.; Patten, T. E. J. Chem. Educ. 1991, 68, 256-257.
- (5) Eichberg, M. J.; Dorta, R. L.; Grotjahn, D. B.; Lamottke, K.; Schmidt, M.; Vollhardt, K. P.
- C. J. Am. Chem. Soc. 2001, 123, 9324-9337.
- (6) Ikawa, T.; Hattori, K.; Sajiki, H.; Hirota, K. Tetrahedron 2004, 60, 6901-6911.
- (7) Tanino, K.; Honda, Y.; Miyashita, M. Tetrahedron Lett. 2000, 41, 9281-9285.
- (8) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492–4493.
- (9) Danheiser, R. L.; Choi, Y. M.; Menichincheri, M.; Stoner, E. J. J. Org. Chem. 1993, 58, 322-327.
- (10) Favorskaya, I. A.; Nikitina, A. A. Zh. Org. Khim. 1965, 1, 2094-2097.
- (11) Nonoshita, K.; Banno, H.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. **1990**, *112*, 316–322.
- (12) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978-15979.
- (13) Yang, Y.; Ramamorrthy, V.; Sharp, P. R. Inorg. Chem. 1993, 32, 1946–1950.
- (14) Hailes, H. C.; Issac, B.; Javaid, M. H. Synth. Commun. 2003, 33, 29-41.
- (15) Boudjouk, P.; Samaraweera, U.; Sooriyakumaran, R.; Chrusciel, J.; Anderson, K. R. Angew. Chem. Int. Ed. Engl. **1988**, 27, 1355–1356.
- (16) Driver, T. G.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125, 10659-10663.
- (17) The yields of each regioisomer were monitored closely by ¹H NMR spectroscopy vs. an internal standard. The yield of the major isomer remained constant while that of the minor isomer decreased, indicating decomposition and not isomerization of the minor isomer.
- (18) Carbonyl insertion with ketones and aldehydes tended to favor allylic transposition except in the case of silacyclopropane **3b**. Presumably, the exocyclic vinyl silane stabilizes the double bond which inhibits allylic transposition in favor of $Si-C(sp^2)$ bond cleavage.
- (19) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549.
- (20) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512–519.
- (21) Yakelis, N. A.; Roush, W. R. J. Org. Chem. 2003, 68, 3838-3843.
- (22) Eliel, E. L.; Wilen, S. H.; Mander, L. N., *Stereochemistry of Organic Compounds* Wiley: New York, 1994; pp. 1091, 1129–1130.
- (23) Heitzman, C. L.; Lambert, W. T.; Mertz, E.; Shotwell, J. B.; Tinsley, J. M.; Va, P.; Roush, W. R. *Org. Lett.* **2005**, *7*, 2405–2408.
- (24) Burfield, D. R.; Smithers, R. H. J. Org. Chem. 1978, 43, 3966-3968.
- (25) Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 26, 8910-8911.
- (26) Baghdasarian, G.; Woerpel, K. A. J. Org. Chem. 2006, 71, 6851-6858.
- (27) Due to the observation of rotamers, high-temperature ¹H NMR was employed for characterization. Coalescence was observed at 50 °C.
- (28) An apodization function was applied to the spectrum to resolve the splitting of this peak (MestRe-C 4.9.9.6; Gaussian 0.70 Hz, SineBell 0.00 Deg).
- (29) O'Neil, G. W.; Phillips, A. J. Tetrahedron Lett. 2004, 45, 4253-4256.
- (30) Marshall, J. A.; Yanik, M. M. Org. Lett. 2000, 2, 2173-2175.

,

Date:8/19/2008 Time:6:43:58 PM Method Name:Kay-Woerpel Run Name:KB-II-32-sample2-8 Runinfo:10% 2-propanol, AD column, 220nm 1.000 ml/min (trial 2)

Date:8/20/2008 Time:7:45:50 PM Method Name:Kay-Woerpel Run Name:KB-II-38-5 Runinfo:10% 2-propanol, AD column, 220nm 1.000 ml/min

(*R*,*S*)**-12**, 96% ee