Alkylidenesilacyclopropanes Derived from Allenes: Applications to the Selective Synthesis of Triols and Homoallylic Alcohols

Kay M. Buchner, Timothy B. Clark, Janice M. N. Loy, Thong X. Nguyen, and K. A. Woerpel*
Department of Chemistry, University of California, Irvine, California 92697-2025

Supporting Information

Contents:

I. Syntheses of Allenes. S-2
II. Silver-Catalyzed Synthesis of Alkylidenesilacyclopropanes S-9
III. Thermal vs. Copper-Catalyzed Carbonyl Insertion Reactions S-13
IV. Two-Step, One-Flask Reactions to Form Oxasilacyclopentanes. S-16
V. Functionalization of Oxasilacyclopentanes S-19
VI. Synthesis of an Enantiopure Homoallylic Alcohol. S-20
VII. Regiochemistry of Alkylidenesilacyclopropanes S-24
VIII. Regiochemistry of Oxasilacyclopentanes S-27
IX. X-ray Crystallographic Data S-32
X. Selected Spectra S-74

Experimental Section

General Procedures. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature using Bruker DRX 400 (400 and 100 MHz , respectively) or DRX 500 (500 and 125 MHz , respectively) spectrometers, as indicated. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (appar = apparent, $\mathrm{br}=\mathrm{broad}, \mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, sext $=$ sextet, sept $=$ septet, $\mathrm{m}=$ multiplet), coupling constants (Hz), and integration. Due to difficulties with purification for certain products, only distinctive peaks are listed in tabulated ${ }^{1} \mathrm{H}$ NMR spectral data as indicated, and the structures were assigned using a combination of COSY, HMQC, HMBC, NOESY, and NOE experiments. ${ }^{29}$ Si NMR spectra were recorded at ambient temperature using a Bruker DRX $500(99.3 \mathrm{MHz})$ spectrometer relative to an external tetramethylsilane standard on the δ scale. NMR yields were determined relative to a known concentration of internal standard (PhSiMe_{3}). Melting points were obtained using a Büchi 510 melting point apparatus and were reported uncorrected. Infrared (IR) spectra were obtained using Perkin Elmer Paragon 1000PC FT-IR or Mattson Galaxy FT-IR 5000 spectrometers. Optical rotations were measured using a Jasco DIP370 Digital Polarimeter. Gas chromatography-mass spectrometry (GC-MS) was performed with
a Thermo-Finnigan Trace Mass Spectrometer Plus quadrupole system with a fused silica capillary column ($30 \mathrm{~m} \times 0.32 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$) wall-coated with DB-5 (J \& W Scientific) using electron ionization (70 eV). High and low resolution mass spectra (HRMS/LRMS) were acquired on a Waters LCT Premier quadrupole time-of-flight spectrometer and were obtained by peak matching. HPLC determination of enantiopurity was performed with Mettler Toledo supercritical CO_{2} fluid chromatography (SFC) using a Daicel Chiralpak AD column calibrated with a sample of the racemate. Air-sensitive microanalyses were performed by Columbia Analytical Services Inc., Tucson, AZ. All other microanalyses were performed by Atlantic Microlab Inc., Norcross, GA. Analytical thin layer chromatography was performed on EM reagents 0.25 mm silica gel 60-F plates. Liquid chromatography was performed using forced flow (flash chromatography) of the indicated solvent system on Sorbent Technologies silica gel $\left(\mathrm{SiO}_{2}\right) 60$ (230-400 mesh). Metal salts and silacyclopropanes were stored and manipulated in an Innovative Technologies nitrogen-atmosphere dry box. All reactions were performed under an atmosphere of nitrogen in glassware that had been flame-dried under vacuum. Solvents were distilled or filtered before use. Unless otherwise noted, all reagents and substrates were commercially available.

I. Syntheses of Allenes

1a
Allene 1a. A procedure reported by Jamison ${ }^{1}$ was used to prepare allene 1a. To a cooled (-15 ${ }^{\circ} \mathrm{C}$) solution of $\mathrm{PPh}_{3}(11.8 \mathrm{~g}, 45.1 \mathrm{mmol})$ in 63 mL of anhydrous THF was added diethyl azodicarboxylate ($7.1 \mathrm{~mL}, 45 \mathrm{mmol}$). The resulting reaction mixture was stirred for 10 min , and then a solution of 2-nonyn-1-ol ($4.19 \mathrm{~g}, 29.9 \mathrm{mmol}$) in 63 mL of anhydrous THF was added. After 10 min , a solution of o-nitrobenzylsulfonylhydrazine ${ }^{2}(4.58 \mathrm{~g}, 21.1 \mathrm{mmol})$ in 40 mL of anhydrous THF was added. The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for 2 h then slowly warmed to $22^{\circ} \mathrm{C}$ over 18 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and diluted with 400 mL of pentane. The organic layer was washed with ice-cold $\mathrm{H}_{2} \mathrm{O}(10 \times 200 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography (pentane) gave allene $\mathbf{1 a}$ as a colorless oil ($1.32 \mathrm{~g}, 35 \%$). The spectral data are consistent with the data reported: ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.08$ (quint, $J=6.8,1 \mathrm{H}$), 4.64 (dtd, $J=6.7,3.2,0.5,2 \mathrm{H}$), 1.93 ($\mathrm{qt}, J=7.2$, $3.4,2 \mathrm{H}), 1.35$ (quint, $J=7.3,2 \mathrm{H}), 1.23(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 209.4,90.8,75.2,32.4,29.8,29.5,29.0,23.4,14.6$.

1b

Allene 1b. A procedure reported by Price ${ }^{4}$ was adapted to prepare 1b. $\mathrm{CuI}(9.52 \mathrm{~g}, 50.0 \mathrm{mmol})$ was added in small portions to a solution of paraformaldehyde ($7.5 \mathrm{~g}, 250 \mathrm{mmol}$), propargyl alcohol ($5.82 \mathrm{~mL}, 100 \mathrm{mmol}$), and $i-\mathrm{Pr}_{2} \mathrm{NH}(30 \mathrm{~mL}, 200 \mathrm{mmol})$ in THF $(192 \mathrm{~mL})$. The reaction mixture was heated at reflux for 15 h , then cooled off and vacuum-filtered through Celite, and
concentrated in vacuo. The resulting brown oil was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(70 \mathrm{~mL})$ and the aqueous layer was acidified using $3 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$. The mixture was vacuum-filtered to remove solids and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times$ $25 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and brine (70 mL), dried over MgSO_{4}, and concentrated in vacuo to give an orange-red oil. The oil was dissolved in DMF (10 mL), and imidazole ($2.87 \mathrm{~g}, 42.1 \mathrm{mmol}$) was added. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $t-\mathrm{BuMe}_{2} \mathrm{SiCl}(6.35 \mathrm{~g}, 42.1 \mathrm{mmol})$ was added. After 1.5 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was warmed to $22^{\circ} \mathrm{C}$ and stirred for an additional 16 h . The mixture was diluted with pentane (60 mL), washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo. Purification by column chromatography (pentane) gave allene $\mathbf{1 b}(1.105 \mathrm{~g}, 6 \%)$ as a colorless oil. The spectral data are consistent with the data reported: ${ }^{5}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.15$ (quint, $J=6.5,1 \mathrm{H}), 4.69(\mathrm{dt}, J=6.6,2.8,2 \mathrm{H}), 4.11(\mathrm{dt}, J=6.4,2.8,2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.3,91.1,76.3,61.6,26.1,18.6,-4.9$.

D-1
Alkene D-1. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of cinnamyl alcohol ($5.33 \mathrm{~g}, 39.7 \mathrm{mmol}$) and imidazole $(5.45 \mathrm{~g}, 80.0 \mathrm{mmol})$ in DMF (13 mL) was added $i-\mathrm{Pr}_{3} \mathrm{SiCl}(8.99 \mathrm{~mL}, 42.0 \mathrm{mmol})$. After 3 h at 0 ${ }^{\circ} \mathrm{C}$, the reaction mixture was warmed to $22{ }^{\circ} \mathrm{C}$ and stirred for an additional 20 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by column chromatography ($15: 85 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes) gave alkene $\mathbf{D}-1(9.95 \mathrm{~g}, 82 \%)$ as a colorless oil. The spectral data are consistent with the data reported: ${ }^{6}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, \mathrm{~J}=$ $7.5,2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4,2 \mathrm{H}), 7.21(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.64(\mathrm{~d}, J=15.9,1 \mathrm{H}), 6.30(\mathrm{dt}, J=15.8,4.8$, $1 \mathrm{H}), 4.43$ (dd, $J=4.8,1.7,2 \mathrm{H}), 1.16(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.4,18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, CDCl_{3}) $\delta 137.5,129.6,129.3,128.7,127.4,126.6,64.1,18.3,12.3$; IR (thin film) 3026, 2942, 2865, 1460, $1131 \mathrm{~cm}^{-1}$; LRMS (APCI) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{Si}^{+}{ }^{+}\right.$133, found $133 ; \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{9} \mathrm{H}_{9}\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{OSi}\right)^{+}$117, found 117.

D-2
Dibromocyclopropane D-2. A procedure reported by Tanino ${ }^{7}$ was adapted to prepare D-2. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alkene $\mathbf{D - 1}{ }^{6}(3.46 \mathrm{~g}, 11.3 \mathrm{mmol}), \mathrm{BnNEt}_{3} \mathrm{Cl}(0.257 \mathrm{~g}, 1.13 \mathrm{mmol})$, $\mathrm{CHBr}_{3}(4.93 \mathrm{~mL}, 56.5 \mathrm{mmol})$, and ethanol $(0.050 \mathrm{~mL})$ in 11.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a 50% aqueous NaOH solution (11.3 mL). The reaction mixture was stirred vigorously and allowed to slowly warm to $22^{\circ} \mathrm{C}$. After 16 h , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and ethanol $(0.50$ $\mathrm{mL})$ and 50% aqueous $\mathrm{NaOH}(3.0 \mathrm{~mL})$ were added. After 5 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous sodium potassium tartrate (100 mL) and brine (150 mL), dried over MgSO_{4} and concentrated in vacuo to give a brown oil. Purification by column chromatography ($10: 90 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes) gave dibromocyclopropane $\mathbf{D}-2$ as a yellow oil $(4.34 \mathrm{~g}$, 83%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.08(\mathrm{dd}, J=10.9,6.9,1 \mathrm{H}), 3.98(\mathrm{dd}, J$ $=10.9,5.8,1 \mathrm{H}), 2.69(\mathrm{~d}, J=8.4,1 \mathrm{H}), 2.20(\mathrm{ddd}, J=8.4,6.8,6.0,1 \mathrm{H}), 1.17-1.07(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.3,129.1,128.5,127.8,65.4,39.7,37.3,34.8,18.3,12.2$; IR (thin film) $3026,2942,2865,1459,1103 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{NaOSi}(\mathrm{M}+$ $\mathrm{Na})^{+}$483.0331, found 483.0330. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{OSi}$: C, 49.36; H, 6.54. Found: C, 49.16; H, 6.41.

Allene 1d. To a cooled ($-78{ }^{\circ} \mathrm{C}$) solution of dibromocyclopropane $\mathbf{D}-2(2.28 \mathrm{~g}, 4.93 \mathrm{mmol})$ in 16 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added $\mathrm{MeLi}\left(4.93 \mathrm{~mL}, 7.89 \mathrm{mmol}, 1.60 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}$) over 5 min . The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 20 min , then was transferred to an ice- MeOH bath $\left(-15{ }^{\circ} \mathrm{C}\right)$ and stirred for 20 min . The reaction mixture was diluted with phosphate buffer $(30 \mathrm{~mL}, \mathrm{pH} 7)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (30 mL), dried over MgSO_{4}, and concentrated in vacuo to give a yellow-orange oil. Purification by column chromatography ($10: 90 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes) gave $\mathbf{1 d}$ as a light yellow oil $(0.810 \mathrm{~g}, 62 \%):{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{dt}, J=6.1,2.6$, $1 \mathrm{H}), 5.71(\mathrm{q}, J=6.2,1 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.03$ (sept, $J=5.7,3 \mathrm{H}$ and d, $J=6.2,18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.7,134.5,128.7,127.12,127.05,96.2,96.1,61.8,18.2,12.2$; IR (neat) 3032, 2942, 1951, 1599, $1496 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{OSi}(\mathrm{M}+\mathrm{H})^{+}$ 303.2144, found 303.2143.

E-1
Propargylic alcohol E-1. A procedure reported by Jamison ${ }^{1}$ was adapted to prepare E-1. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathrm{CBr}_{4}(30 \mathrm{~g}, 100 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(50 \mathrm{~g}, 200$ mmol). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , and then cyclohexanecarboxaldehyde ($6 \mathrm{~mL}, 50 \mathrm{mmol}$) was added dropwise. The reaction mixture was warmed to $22{ }^{\circ} \mathrm{C}$ and stirred for an additional 22 h . The mixture was vacuum-filtered through SiO_{2} with hexanes and concentrated in vacuo. The resulting oil was dissolved in THF (50 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. $\mathrm{MeLi}\left(52 \mathrm{~mL}, 1.6 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 84 \mathrm{mmol}$) was slowly added and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2.5 h . Acetaldehyde ($6 \mathrm{~mL}, 100 \mathrm{mmol}$) was added and after 15 h at $-78{ }^{\circ} \mathrm{C}$ the mixture was gradually warmed to $22^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo. Purification by column chromatography (10:90 EtOAc/hexanes) gave propargylic alcohol E-1 as a yellow oil ($5.42 \mathrm{~g}, 71 \%$). The spectral data are consistent with the data reported: ${ }^{11} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.52$ (qdd, $J=6.6,5.2,1.7$, $1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=5.2,1 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H})$, $1.42(\mathrm{~d}, J=6.6,3 \mathrm{H}), 1.29(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 88.8,82.2,58.7,32.7,29.0$, 25.9, 24.93, 24.89; HRMS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ONa}(\mathrm{M}+\mathrm{Na})^{+}$175.1099, found 175.1098.

$1 \mathbf{1}$
Allene (1e). A procedure reported by Myers ${ }^{8}$ and adapted by Jamison ${ }^{1}$ was used to prepare allene 1e. To a cooled $\left(-15{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PPh}_{3}(2.61 \mathrm{~g}, 9.95 \mathrm{mmol})$ in 14 mL of anhydrous THF was added diethyl azodicarboxylate ($1.6 \mathrm{~mL}, 9.9 \mathrm{mmol}$). The resulting reaction mixture was stirred for 10 min , and then a solution of alcohol $\mathbf{E - 1}(1.00 \mathrm{~g}, 6.57 \mathrm{mmol})$ in 14 mL of anhydrous THF was added. After 10 min , a solution of o-nitrobenzylsulfonylhydrazine ${ }^{2}$ (2.16 g , 9.94 mmol) in 9 mL of anhydrous THF was added. The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for 2 h then slowly warmed to $22^{\circ} \mathrm{C}$ over 17 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and diluted with 100 mL of pentane. The organic layer was washed with ice-cold $\mathrm{H}_{2} \mathrm{O}(10 \times 60 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography
(pentane) gave allene $\mathbf{1 e}$ as a colorless oil $(0.471 \mathrm{~g}, 52 \%)$. The spectral data are consistent with the data reported: ${ }^{1,9}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.11(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.65$ $(\mathrm{m}, 2 \mathrm{H}), 1.59(\mathrm{dd}, J=6.8,3.4,3 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 203.9, 96.5, 86.3, 37.2, 33.1, 26.02, 26.00, 14.6.

F-1

Propargylic alcohol F-1. ${ }^{10}$ To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{LiBr}(1.27 \mathrm{~g}, 14.7 \mathrm{mmol})$ and 3-methyl-1-butyne ($3.00 \mathrm{~mL}, 29.3 \mathrm{mmol}$) in 15 mL of THF was slowly added $n-\mathrm{BuLi}(12.6 \mathrm{~mL}$, 2.44 M in hexanes, 30.8 mmol). After 10 min , butyraldehyde ($2.64 \mathrm{~mL}, 29.3 \mathrm{mmol}$) was added. The reaction mixture was slowly warmed to $22{ }^{\circ} \mathrm{C}$ and stirred for 18 h . The reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography (10:90 EtOAc/hexanes) gave $\mathbf{F - 1}$ as an oil ($2.26 \mathrm{~g}, 55 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.35$ (ddd, $J=11.7,6.7,1.7,1 \mathrm{H}$), 2.57 (septd, $J=$ $6.9,1.8,1 \mathrm{H}), 1.72-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.46$ (appar sext, $J=7.4,2 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9,6 \mathrm{H}), 0.95(\mathrm{t}, J=$ $7.4,3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 91.2,80.7,62.7,40.6,23.2,20.7,18.7,14.0$; IR (thin film) $3355,2961,2873,2242,1466,1023 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NaO}(M+$ $\mathrm{Na})^{+}$163.1099, found 163.1098.

F-2
Vinyl ether F-2. A procedure reported by Yamamoto ${ }^{11}$ was adapted to prepare F-2. To a solution of propargylic alcohol $\mathbf{F - 1}(1.00 \mathrm{~g}, 7.13 \mathrm{mmol})$ in 19 mL of ethyl vinyl ether was added $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}(0.304 \mathrm{~g}, 0.713 \mathrm{mmol})$. The reaction mixture was allowed to stir for 18 h and was then diluted with 5% aqueous $\mathrm{KOH}(9 \mathrm{~mL})$ and extracted with hexanes $(3 \times 15 \mathrm{~mL})$. The
combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (hexanes) gave F-2 as a colorless oil ($0.606 \mathrm{~g}, 51 \%$): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.43(\mathrm{dd}, J=14.1,6.6,1 \mathrm{H}), 4.39(\mathrm{td}, J=5.9,1.5,1 \mathrm{H}$ and dd, $J=14.1,1.6,1 \mathrm{H})$, $4.07(\mathrm{dd}, J=6.6,1.6,1 \mathrm{H}), 2.58(\operatorname{septd}, J=6.9,1.7,1 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.48$ (sext, $J=7.5,2 \mathrm{H})$, $1.16(\mathrm{~d}, J=6.9,6 \mathrm{H}), 0.93(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,92.9,89.5$, $89.5,69.4,38.0,23.2,20.7,18.6,13.9$; IR (thin film) $2966,2874,2244,1636,1615,1190 \mathrm{~cm}^{-1}$.

F-3
Homoallenic alcohol F-3. A procedure reported by Toste ${ }^{12}$ was adapted to prepare F-3. A solution of vinyl ether $\mathbf{F}-2(0.600 \mathrm{~g}, 3.61 \mathrm{mmol})$ and $\left[\left(\mathrm{Ph}_{3} \mathrm{PAu}\right)_{3} \mathrm{O}\right] \mathrm{BF}_{4}{ }^{13}(0.063 \mathrm{~g}, 0.036 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $22^{\circ} \mathrm{C}$. After 18 h , $\mathrm{MeOH}(20 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(0.136 \mathrm{~g}, 3.61$ mmol) were added to the reaction mixture. After 1 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification by column chromatography (70:30 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $)$ gave F-3 as an oil ($0.515 \mathrm{~g}, 85 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.24(\mathrm{~m}, 1 \mathrm{H})$, 3.73 (q, $J=6.1,2 \mathrm{H}), 2.23(\mathrm{td}, J=6.1,3.1,2 \mathrm{H}), 2.09($ septd, $J=6.7,2.3,1 \mathrm{H}), 1.97(\mathrm{q}, J=7.1$, 2 H), $1.68(\mathrm{t}, J=6.2,1 \mathrm{H}), 1.43$ (sext, $J=7.3,2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7,3 \mathrm{H}$ and d, $J=6.7,3 \mathrm{H}), 0.93$ $(\mathrm{t}, J=7.3,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,107.8,94.2,61.5,34.2,31.9,31.5,22.8$, 22.0, 21.8, 14.0; IR (thin film) 3338, 2960, 2930, 1957, $1045 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{ONa}(\mathrm{M}+\mathrm{Na})^{+}$191.1412, found 191.1409.

1f
Allene 1f. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of homoallenic alcohol F-3 $(0.380 \mathrm{~g}, 2.26 \mathrm{mmol})$ and imidazole ($0.307 \mathrm{~g}, 4.52 \mathrm{mmol}$) in 0.8 mL of DMF was slowly added $\mathrm{ClSi}(i-\operatorname{Pr})_{3}(0.51 \mathrm{~mL}, 2.4$ $\mathrm{mmol})$. The reaction mixture was slowly warmed to $22{ }^{\circ} \mathrm{C}$ and stirred for 18 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with 1 M aqueous $\mathrm{HCl}(50 \mathrm{~mL})$ and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography (hexanes) gave $\mathbf{1 f}$ as a colorless oil $(0.644 \mathrm{~g}, 88 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.11(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=7.7$, 2 H), 2.22 (td, $J=7.7,2.8,2 \mathrm{H}), 2.09$ (septd, $J=6.8,2.2,1 \mathrm{H}), 1.91(\mathrm{q}, J=7.2,2 \mathrm{H}), 1.40$ (sext, J $=7.3,2 \mathrm{H}), 1.12-1.03$ (sept, $J=4.2,3 \mathrm{H}$ and d, $J=4.8,18 \mathrm{H}), 1.00(\mathrm{~d}, J=6.7,3 \mathrm{H}$ and d, $J=6.7$, $3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.1,107.3,93.1,63.1,34.4,31.9$, $31.6,22.8,22.1,21.9,18.2,14.0,12.3$; IR (thin film) $2960,2867,1958,1464,1100,882 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{41} \mathrm{OSi}(\mathrm{M}+\mathrm{H})^{+}$325.2927, found 325.2924. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{OSi}: \mathrm{C}, 74.00 ; \mathrm{H}, 12.42$. Found: C, 73.83; H, 12.58.

H-1
Propargylic alcohol H-1. A procedure reported by Hailes ${ }^{14}$ was adapted to prepare H-1. To a cooled ($-78{ }^{\circ} \mathrm{C}$) solution of 1-hexyne (9.20 mL , 80.0 mmol) in THF (40 mL) was slowly added $n-B u L i ~(31 \mathrm{~mL}, 2.9 \mathrm{M}$ in hexanes, 90 mmol). After 10 min , valeraldehyde ($8.50 \mathrm{~mL}, 80.0$ mmol) was added. The reaction mixture remained at $-78{ }^{\circ} \mathrm{C}$ for 15 min , then was slowly warmed to $22{ }^{\circ} \mathrm{C}$ and stirred for an additional 1 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, diluted with EtOAc, and the layers were separated. The organic layer was washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography ($20: 80 \mathrm{Et}_{2} \mathrm{O} /$ hexanes) gave alcohol $\mathbf{H - 1}$ as a light yellow oil (11.76 g, 87%). The spectral data are consistent with the data reported: ${ }^{14}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $4.36(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{td}, J=7.0,2.0,2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=5.3,1 \mathrm{H}), 1.53-1.32(\mathrm{~m}$, $8 \mathrm{H}), 0.924(\mathrm{t}, J=7.2,3 \mathrm{H}), 0.918(\mathrm{t}, J=7.3,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 85.5,81.4$, $62.8,38.0,30.8,27.4,22.4,22.0,18.4,14.1,13.6$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{ONa}(\mathrm{M}+$ $\mathrm{Na})^{+}$191.1412, found 191.1411.

1h
Allene 1h. A procedure reported by Myers ${ }^{17}$ and adapted by Jamison ${ }^{18}$ was used to prepare $\mathbf{1 h}$. To a cooled $\left(-10{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PPh}_{3}(7.11 \mathrm{~g}, 27.1 \mathrm{mmol})$ in 36 mL of THF was added diethyl azodicarboxylate ($4.3 \mathrm{~mL}, 27 \mathrm{mmol}$). The resulting reaction mixture was allowed to stir for 10 min, then a solution of alcohol $\mathbf{H - 1}(3.04 \mathrm{~g}, 18.1 \mathrm{mmol})$ in 27 mL of THF was added. After 10 min, o-nitrobenzylsulfonylhydrazine ${ }^{2}(5.89 \mathrm{~g}, 27.1 \mathrm{mmol})$ in 36 mL of THF was added. The resulting reaction mixture was kept below $0{ }^{\circ} \mathrm{C}$ for 1.5 h and was slowly warmed to $22^{\circ} \mathrm{C}$ over 15 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and diluted with pentane (400 mL) and the layers were separated. The organic layer was washed with ice-cold $\mathrm{H}_{2} \mathrm{O}(10 \times 100 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo at $0{ }^{\circ} \mathrm{C}$ to give an orange liquid. Purification by column chromatography (pentane) gave $\mathbf{1 h}$ as a colorless liquid ($1.88 \mathrm{~g}, 68 \%$). The spectral data are consistent with the data reported: ${ }^{14}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.06(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 4 \mathrm{H})$, $1.36(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.0,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.0,91.1,31.6,28.9,22.4$, 14.2 .

II. Silver-Catalyzed Synthesis of Alkylidenesilacyclopropanes

Representative Procedure for the silver-catalyzed silacyclopropanation of allenes:

Alkylidenesilacyclopropanes $\mathbf{3 a}$ and $3 \mathbf{a}^{\prime}$. To a flask containing allene $\mathbf{1 a}(0.300 \mathrm{~mL}, 0.048$ $\mathrm{mmol}, 0.160 \mathrm{M}$ of the allene and 0.0386 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$) and cyclohexenesilacyclopropane $2(0.200 \mathrm{~mL}, 0.100 \mathrm{mmol}, 0.500 \mathrm{M}$ solution of 2 and 0.0386 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$) was added $\mathrm{AgO}_{2} \mathrm{CCF}_{3}(0.005 \mathrm{~mL}, 0.0005 \mathrm{mmol}, 0.096 \mathrm{M}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$). The progress of the reaction was monitored using ${ }^{1} \mathrm{H}$ NMR spectroscopy. After 1 h , alkylidenesilacyclopropanes $3 \mathbf{a}$ and $3 \mathbf{a}^{\prime}$ were formed in 77% combined yield (71% and 6%, respectively) with $\geq 95: 5$ regioselectivity and $93: 7$ diastereoselectivity, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (compared to the PhSiMe_{3} internal standard) using a single scan. Full characterization is provided for an isolated sample of $\mathbf{3 a}$ (see below).

Procedure for the isolation of alkylidenesilacyclopropane 3a:

Cyclohexenesilacyclopropane $2^{15,16}(0.816 \mathrm{~g}, 3.64 \mathrm{mmol})$ was added to a solution of allene $\mathbf{1 a}$ $(0.373 \mathrm{~g}, 3.00 \mathrm{mmol})$ in anhydrous toluene (13 mL). The mixture was cooled to $-19^{\circ} \mathrm{C}$ followed by the addition of $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.087 \mathrm{~g}, 0.21 \mathrm{mmol})$. The resulting reaction mixture remained at -19 ${ }^{\circ} \mathrm{C}$ for 30 min , then was slowly warmed to $22{ }^{\circ} \mathrm{C}$. After 20 h , the reaction mixture was filtered through Celite and concentrated in vacuo. Kugelrohr distillation under vacuum (0.3 mm Hg) at $95{ }^{\circ} \mathrm{C}$ yielded alkylidenesilacyclopropane 3a as a colorless oil ($0.51 \mathrm{~g}, 63 \%$): ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.50(\mathrm{tt}, J=6.9,3.2,1 \mathrm{H}), 2.43(\mathrm{qt}, J=6.6,1.6,2 \mathrm{H}$), 1.52 (quint, $J=7.4,2 \mathrm{H}$), $1.40-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{dt}, J=3.1,1.7,2 \mathrm{H}), 1.11(\mathrm{~s}, 18 \mathrm{H}), 0.90(\mathrm{t}, J=7.0$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 138.5,133.2,32.8,31.9,29.4,29.1,29.0,22.8,18.3,14.0$, 4.5; ${ }^{29} \mathrm{Si}$ NMR ($99.3 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-45.4$; IR (thin film) 2956, 2931, 2858, $1471,1363,823 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (APCI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{Si}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)^{+}$209.1726, found 209.1722.

3b

3b'

Alkylidenesilacyclopropanes $\mathbf{3 b}$ and $\mathbf{3 b}^{\prime}$. The representative procedure for silver-catalyzed silacyclopropanation was followed using $\mathbf{1 b}(0.250 \mathrm{~mL}, 0.125 \mathrm{mmol}, 0.500 \mathrm{M}$ of the allene and 0.0465 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$), cyclohexenesilacyclopropane $2(0.300 \mathrm{~mL}, 0.150 \mathrm{mmol}$, 0.500 M solution of 2 and 0.0465 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$) and $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.003 \mathrm{~g}, 0.006$ mmol). After 34 h , alkylidenesilacyclopropanes $\mathbf{3 b}$ and $\mathbf{3 b}^{\prime}$ were formed in 74% combined yield (61% and 13%, respectively) with $\geq 95: 5$ regioselectivity and $83: 17$ diastereoselectivity, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (compared to the PhSiMe_{3} internal standard) using a single
scan. Major isomer 3b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.68(\mathrm{tt}, J=5.8,3.1,1 \mathrm{H}), 4.52(\mathrm{dt}, J=5.8$, $1.9,2 \mathrm{H}), 1.10(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 18 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $138.5,135.0,64.5,29.6,26.6,18.98,18.95,5.2,-4.4 ;{ }^{29} \mathrm{Si}$ NMR (99.3 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-47.0$, 19.5.

Alkylidenesilacyclopropane 3c. The representative procedure for silver-catalyzed silacyclopropanation was followed using 3-(trimethylsilyl)-1,2-butadiene 1c ($0.250 \mathrm{~mL}, 0.125$ mmol , 0.500 M of the allene and 0.0465 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$), cyclohexenesilacyclopropane $\mathbf{2}^{15,16}(0.300 \mathrm{~mL}, 0.150 \mathrm{mmol}, 0.500 \mathrm{M}$ solution of 2 and 0.0465 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$) and $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.003 \mathrm{~g}, 0.006 \mathrm{mmol})$. After 2.5 h , alkylidenesilacyclopropane 3c was formed in 87% yield with $\geq 95: 5$ regioselectivity and $\geq 95: 5$ diastereoselectivity, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Full characterization is provided for an isolated sample of 3c (see below).

Procedure for the isolation of alkylidenesilacyclopropane 3c:

To a vessel fitted with an air-free seal containing a cooled $\left(-26^{\circ} \mathrm{C}\right)$ solution of 3-(trimethylsilyl)-1,2-butadiene 1c ($0.500 \mathrm{~mL}, 3.00 \mathrm{mmol}$) and cyclohexenesilacyclopropane $2^{15,16}(0.808 \mathrm{~g}, 3.60$ $\mathrm{mmol})$ in 13 mL of toluene was added $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.063 \mathrm{~g}, 0.15 \mathrm{mmol})$. The reaction mixture was kept at $-26^{\circ} \mathrm{C}$ for 30 min and then was allowed to warm to $22{ }^{\circ} \mathrm{C}$. After 3.5 h , the reaction mixture was filtered through a pad of Celite with hexanes under N_{2} in the dry box and concentrated in vacuo to give a light brown oil. Kugelrohr distillation under vacuum (0.3 mm $\mathrm{Hg})$ at $40{ }^{\circ} \mathrm{C}$ gave 3 c as a colorless oil $(0.360 \mathrm{~g}, 45 \%):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 2.06(\mathrm{t}, \mathrm{J}=$ $2.6,3 \mathrm{H}), 1.27(\mathrm{q}, J=2.6,2 \mathrm{H}), 1.08(\mathrm{~s}, 18 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 149.0$, $146.8,30.0,28.1,18.9,8.5,-0.3 ;{ }^{29} \mathrm{Si}$ NMR (99.3 MHz, C ${ }_{6} \mathrm{D}_{6}$) $\delta-51.4,-6.4$; IR (neat) 2959, 2857, 1646, 1471, 1246, $834 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{Si}_{2}$: C, $67.08 ; \mathrm{H}, 12.01$. Found: C, 66.82; H, 11.97.

3d

3d'

Alkylidenesilacyclopropanes $\mathbf{3 d}$ and $\mathbf{3 d}^{\prime}$. The representative procedure for silver-catalyzed silacyclopropanation was followed using 1-(triisopropylsilyloxy)-4-phenyl-2,3-butadiene 1d $\left(0.250 \mathrm{~mL}, 0.125 \mathrm{mmol}, 0.500 \mathrm{M}\right.$ of the allene and 0.0581 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$), cyclohexenesilacyclopropane $2^{15,16}(0.300 \mathrm{~mL}, 0.150 \mathrm{mmol}, 0.500 \mathrm{M}$ solution of 2 and 0.0465 M solution of PhSiMe_{3} in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ and $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.003 \mathrm{~g}, 0.006 \mathrm{mmol})$. After 1.5 h , a mixture of alkylidenesilacyclopropane $\mathbf{3 d}$ and regioisomer alkylidenesilacyclopropane $\mathbf{3 d}^{\prime}$ was formed in 82% yield with 79:21 regioselectivity, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Both 3d and

3d ${ }^{\prime}$ were each formed with $\geq 95: 5$ diastereoselectivity, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.63(\mathrm{dd}, J=8.3,0.6,0.6 \mathrm{H}), 7.44(\mathrm{~m}, 0.6 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 4 \mathrm{H})$, $7.06(\mathrm{~m}, 0.3 \mathrm{H}), 6.97(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{ddd}, J=6.5,5.5,3.2,1 \mathrm{H}), 4.70-4.62(\mathrm{dd}, J=10.4,7.8,0.3 \mathrm{H}$ and ddd, $J=12.8,5.5,2.4,1 \mathrm{H}), 4.48(\mathrm{ddd}, J=12.9,6.3,1.7,1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.7,9.8,0.3 \mathrm{H})$, $3.14(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, J=9.7,7.8,3.4,0.3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.15-1.07(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{d}, J$ $=2.7,18 \mathrm{H} ; \mathrm{m}, 3 \mathrm{H} ; \mathrm{d}, \mathrm{J}=2.7,5.4 \mathrm{H} ; \mathrm{m}, 0.9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 142.6$, $141.6,141.5,139.9,136.2,135.5,129.0,128.9,128.5,124.3,30.6,30.5,30.2,29.8,29.4,28.6$, $21.6,20.7,20.1,19.9,18.78,18.75,18.67,12.8 ;{ }^{29} \mathrm{Si} \operatorname{NMR}\left(99.3 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-54.2$ (minor), 47.6 (major), 12.4 (minor), 13.5 (major).

Alkylidenesilacyclopropane 3 . $^{\mathbf{1 7}}$ The representative procedure for silver-catalyzed silacyclopropanation was followed using allene $\mathbf{1 e}(0.250 \mathrm{~mL}, 0.125 \mathrm{mmol}, 0.500 \mathrm{M}$ solution of the allene and 0.0465 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$), cyclohexenesilacyclopropane $2^{15,16}$ $\left(0.300 \mathrm{~mL}, 0.150 \mathrm{mmol}, 0.500 \mathrm{M}\right.$ solution of 2 and 0.465 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$) and $\mathrm{AgO}_{2} \mathrm{CCF}_{3}\left(0.050 \mathrm{~mL}, 0.0013 \mathrm{mmol}, 0.026 \mathrm{M}\right.$ solution in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$. After 2.5 h , alkylidenesilacyclopropane $3 \mathbf{e}$ was formed in 70% yield with 95:5 regioselectivity and 95:5 diastereoselectivity. Full characterization is provided for an isolated sample of $\mathbf{3 e}$ (see below).

Procedure for the isolation of alkylidenesilacyclopropane 3e:

Cyclohexenesilacyclopropane $\mathbf{2}^{15,16}(0.514 \mathrm{~g}, 2.29 \mathrm{mmol})$ was added to a solution of allene $\mathbf{1 e}$ $(0.217 \mathrm{~g}, 1.59 \mathrm{mmol})$ in anhydrous toluene $(8 \mathrm{~mL})$. The mixture was cooled to $-18{ }^{\circ} \mathrm{C}$ followed by the addition of $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.037 \mathrm{~g}, 0.090 \mathrm{mmol})$. The resulting reaction mixture remained at $18{ }^{\circ} \mathrm{C}$ for 30 min , then was slowly warmed to $22{ }^{\circ} \mathrm{C}$. After 19 h , the reaction mixture was filtered through Celite and concentrated in vacuo. Kugelrohr distillation under vacuum (0.3 mm Hg) at $95{ }^{\circ} \mathrm{C}$ yielded alkylidenesilacyclopropane 3 e as a colorless oil ($0.31 \mathrm{~g}, 69 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 6.27(\mathrm{dd}, J=8.7,3.3,1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 3 \mathrm{H}), 1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=7.0,3 \mathrm{H}), 1.30(\mathrm{~m}, 5 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 143.3,137.6,42.2,33.9,33.0,30.2,29.3,26.2,20.1,18.9,16.2,15.2 ;{ }^{29} \mathrm{Si}$ NMR (99.3 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-47.0$; IR (thin film) 2929, 2856, 1676, 1473, 1363, $843 \mathrm{~cm}^{-1}$; LRMS (APCI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 279$, found 279 ; m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{OSi}(\mathrm{M}+\mathrm{OH})^{+} 295$; found 295; m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{OSi}\left(\mathrm{M}+\mathrm{H}_{3} \mathrm{O}\right)^{+}$297, found 297. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{Si}$: C, 77.61; H, 12.30. Found: C, 76.54; H, 12.17 (Anal. passed for H, not for C).

3f

3f'

Alkylidenesilacyclopropanes $3 f$ and $\mathbf{3 f}^{\prime}$. The representative procedure for silver-catalyzed silacyclopropanation was followed using allene $\mathbf{1 f}(0.250 \mathrm{~mL}, 0.0635 \mathrm{mmol}, 0.254 \mathrm{M}$ solution of the allene and 0.465 M solution of PhSiMe_{3} in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$, cyclohexenesilacyclopropane $\mathbf{2}^{15,16}(0.152$ $\mathrm{mL}, 0.0762 \mathrm{mmol}, 0.500 \mathrm{M}$ solution of 2 and 0.465 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$), and $\mathrm{AgO}_{2} \mathrm{CCF}_{3}\left(0.0300 \mathrm{~mL}, 0.000678 \mathrm{~mol}, 0.0226 \mathrm{M}\right.$ solution in $\mathrm{C}_{6} \mathrm{D}_{6}$). The reaction mixture was diluted with additional $\mathrm{C}_{6} \mathrm{D}_{6}(0.150 \mathrm{~mL})$ before addition of $\mathrm{AgO}_{2} \mathrm{CCF}_{3}$. After 25 h , alkylidenesilacyclopropanes $\mathbf{3 f}$ and $\mathbf{3 f}^{\prime}$ were formed in quantitative yield with $\geq 95: 5$ regioselectivity and with $78: 22$ diastereoselectivity, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 4.12-4.00(\mathrm{dt}, J=16.7,9.2,1 \mathrm{H}$ and dt, $J=16.4,9.2,1 \mathrm{H}$), 3.91 ($\mathrm{td}, J=$ $9.5,6.1,0.3 \mathrm{H}), 3.06(\mathrm{sept}, J=7.0,1 \mathrm{H}), 2.85(\mathrm{~m}, 0.3 \mathrm{H}), 2.73(\mathrm{ddd}, J=12.4,9.4,6.2,0.3 \mathrm{H}), 2.63$ (appar t, $J=9.2,2 \mathrm{H}), 2.53(\mathrm{sept}, J=6.8,0.3 \mathrm{H}), 2.26(\mathrm{~m}, 0.3 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 5 \mathrm{H})$, $1.26-1.02(\mathrm{~m}, 60 \mathrm{H}), 1.00(\mathrm{t}, J=7.3,3 \mathrm{H}), 0.28(\mathrm{~s}, 0.3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 150.8$, $150.6,133.3,132.9,65.5,63.8,38.1,37.9,37.8,35.7,33.1,32.4,31.0,30.9,30.4,30.3,27.5$, $27.4,23.3,23.0,22.8,22.6,22.4,21.8,20.6,20.5,19.7,19.5,18.8,18.7,14.71,14.68,12.9$, 12.8 ; ${ }^{29} \mathrm{Si}$ NMR (99.3 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-47.7$ (minor), -47.4 (major), 12.1 (major), 12.2 (minor).

$3 g$
Alkylidenesilacyclopropane $3 \mathbf{g}$. The representative procedure for silver-catalyzed silacyclopropanation was followed using tetramethylallene $1 \mathrm{~g}(0.250 \mathrm{~mL}, 0.125 \mathrm{mmol}, 0.500 \mathrm{M}$ solution of the allene and 0.0465 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$), cyclohexenesilacyclopropane $2^{15,16}\left(0.300 \mathrm{~mL}, 0.150 \mathrm{mmol}, 0.500 \mathrm{M}\right.$ solution of 2 and 0.0465 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$), and $\mathrm{AgO}_{2} \mathrm{CCF}_{3}(0.003 \mathrm{~g}, 0.01 \mathrm{mmol})$. After 34 h , alkylidenesilacyclopropane 3 g was formed in 79% yield, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Full characterization is provided for an isolated sample of $\mathbf{3 g}$ (see below).

Procedure for the isolation of $\mathbf{3 g}$:

Cyclohexenesilacyclopropane $\mathbf{2}^{15,16}$ was added to a solution of tetramethylallene $\mathbf{1 g}(0.061 \mathrm{~g}$, 0.64 mmol) in toluene (6 mL) followed by the addition of $\mathrm{AgO}_{2} \mathrm{CCF}_{3}(0.72 \mathrm{~mL}, 0.014 \mathrm{M}$ in toluene, 0.010 mmol). The reaction had gone to completion after 14 h , and the mixture was filtered through Celite and concentrated in vacuo. Kugelrohr distillation under vacuum (0.3 mm $\mathrm{Hg})$ at $60{ }^{\circ} \mathrm{C}$ yielded alkylidenesilacyclopropane 3 g as a colorless oil $(0.050 \mathrm{~g}, 32 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 18 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 139.3,139.1,31.3,28.0,25.5,21.8,21.8,21.0,{ }^{29} \mathrm{Si}$ NMR (99.3 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) -54.8.

3h
Alkylidenesilacyclopropane 3 h . The representative procedure for silver-catalyzed silacyclopropanation was followed using allene $\mathbf{3 h}(0.250 \mathrm{~mL}, 0.125 \mathrm{mmol}, 0.500 \mathrm{M}$ solution of the allene and 0.0465 M solution of PhSiMe_{3}, the internal standard in $\mathrm{C}_{6} \mathrm{D}_{6}$), cyclohexenesilacyclopropane $\mathbf{2}^{15,16}(0.300 \mathrm{~mL}, 0.150 \mathrm{mmol}, 0.500 \mathrm{M}$ solution of 2 and 0.0465 M solution of PhSiMe_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$), and $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.003 \mathrm{~g}, 0.006 \mathrm{mmol})$. After 2.5 h at $22{ }^{\circ} \mathrm{C}$, alkylidenesilacyclopropane 3 h was formed in 86% yield with $94: 6$ diastereoselectivity, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Full characterization is provided for an isolated sample of 3h (see below).

Procedure for the isolation of $\mathbf{3 h}$:

Cyclohexenesilacyclopropane $\mathbf{2}^{15,16}(1.1 \mathrm{~g}, 4.8 \mathrm{mmol})$ was added to a solution of allene $\mathbf{1 h}(0.61$ $\mathrm{g}, 4.0 \mathrm{mmol}$) in anhydrous toluene (17 mL). The mixture was cooled to $-20^{\circ} \mathrm{C}$ followed by the addition of $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.08 \mathrm{~g}, 0.2 \mathrm{mmol})$. The resulting reaction mixture remained at $-20^{\circ} \mathrm{C}$ for 30 min , then slowly warmed to $22^{\circ} \mathrm{C}$. After 5 h , the reaction mixture was filtered through Celite and concentrated in vacuo. Kugelrohr distillation under vacuum (0.3 mm Hg) at $95{ }^{\circ} \mathrm{C}$ yielded alkylidenesilacyclopropane 3 h as a colorless oil ($0.88 \mathrm{~g}, 74 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.38(\mathrm{td}, J=7.0,3.4,1 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}$, $8 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=7.2,3 \mathrm{H}), 0.93(\mathrm{t}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 139.6,137.8,36.6,33.6,32.9,30.9,30.4,30.2,25.5,23.34,23.27,20.8,19.6,14.9,14.7$; ${ }^{29} \mathrm{Si}$ NMR ($99.3 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-46.2$; IR (thin film) $2854,1673,1471,1363,823 \mathrm{~cm}^{-1}$; HRMS (APCI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{OSi}(\mathrm{M}+\mathrm{OH})^{+}$311.2770, found 311.2782; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{Si}: \mathrm{C}, 77.46$; H, 13.00. Found: C, 77.51 ; H, 13.09.

III. Thermal vs. Copper-Catalyzed Carbonyl Insertion Reactions

Representative procedure for the synthesis of oxasilacyclopentanes using a pure sample of alkylidenesilacyclopropane:

Oxasilacyclopentane $\mathbf{4 a}$ (thermolysis). To a J. Young NMR tube containing alkylidenesilacyclopropane $\mathbf{3 h}(0.550 \mathrm{~mL}, 0.127 \mathrm{mmol}, 0.231 \mathrm{M}$ solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe_{3}, the internal standard, in $\mathrm{C}_{6} \mathrm{D}_{6}$) was added benzaldehyde $(0.039 \mathrm{~mL}, 0.38 \mathrm{mmol})$. The reaction mixture was left at $22^{\circ} \mathrm{C}$ and the progress of the reaction was monitored using ${ }^{1} \mathrm{H}$ NMR spectroscopy. After 1.5 h ,
oxasilacyclopentane 4a was formed in 82% yield, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (compared to the PhSiMe_{3} internal standard) using a single scan. The reaction mixture was concentrated in vacuo and a GC-MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane $4 \mathbf{a}$ was formed with $93: 7$ diastereoselectivity: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, distinctive peaks) $\delta 5.94(\mathrm{td}, J=6.7,3.0,1 \mathrm{H}), 4.98(\mathrm{~d}, J=7.9,1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H})$, $1.22(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$. Full characterization is provided for an isolated sample using the twostep, one-flask reaction (see Section IV).

Oxasilacyclopentane 4a (copper-catalysis). The representative procedure for carbonyl insertion was followed using alkylidenesilacyclopropane $3 \mathrm{~h}(0.550 \mathrm{~mL}, 0.127 \mathrm{mmol}, 0.231 \mathrm{M}$ solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe_{3}, the internal standard, in $\mathrm{C}_{6} \mathrm{D}_{6}$), benzaldehyde ($0.039 \mathrm{~mL}, 0.38 \mathrm{mmol}$), and $\mathrm{CuI}(0.002 \mathrm{~g}, 0.01 \mathrm{mmol})$. The reaction mixture was left at $22{ }^{\circ} \mathrm{C}$ and after 30 min , oxasilacyclopentane $4 \mathbf{a}$ was formed in 90% yield, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction mixture was concentrated in vacuo and a GC-MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane $\mathbf{4 a}$ was formed with 90:10 diastereoselectivity. Distinctive peaks were consistent with those reported for the thermolysis-derived product (see above) and full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

Oxasilacyclopentane 4b (thermolysis). The representative procedure for thermal carbonyl insertion was followed using alkylidenesilacyclopropane $3 \mathrm{~h}(0.550 \mathrm{~mL}, 0.127 \mathrm{mmol}, 0.231 \mathrm{M}$ solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe_{3}, the internal standard, in $\mathrm{C}_{6} \mathrm{D}_{6}$) and n-butyraldehyde ($0.034 \mathrm{~mL}, 0.38 \mathrm{mmol}$). The reaction mixture was left at $22{ }^{\circ} \mathrm{C}$ for 2 h and was then heated at $60^{\circ} \mathrm{C}$. After 15 h at $60^{\circ} \mathrm{C}$, oxasilacyclopentane $\mathbf{4 b}$ was formed in 82% yield, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction mixture was concentrated in vacuo and a GC-MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane $\mathbf{4 b}$ was formed with $>99: 1$ diastereoselectivity: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, distinctive peaks) $\delta 5.88(\mathrm{td}, J=6.6,2.8,1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~s}$, $9 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H})$. Full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

Oxasilacyclopentane 4b (copper-catalysis). The representative procedure for carbonyl insertion was followed using alkylidenesilacyclopropane $3 \mathrm{~h}(0.550 \mathrm{~mL}, 0.127 \mathrm{mmol}, 0.231 \mathrm{M}$ solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe_{3}, the internal standard, in $\mathrm{C}_{6} \mathrm{D}_{6}$), n-butyraldehyde ($0.034 \mathrm{~mL}, 0.38 \mathrm{mmol}$), and $\mathrm{CuI}(0.002 \mathrm{~g}, 0.01 \mathrm{mmol})$. The reaction mixture was left at $22^{\circ} \mathrm{C}$ and after 30 min oxasilacyclopentane $\mathbf{4 b}$ was formed in 89% yield, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction mixture was concentrated in vacuo and a GC-MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane $\mathbf{4 b}$ was formed with $>99: 1$ diastereoselectivity. Distinctive peaks were consistent with those reported for the thermolysis-derived product (see above) and full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

Oxasilacyclopentane 5 (thermolysis). The representative procedure for thermal carbonyl insertion was followed using alkylidenesilacyclopropane $3 \mathrm{~h}(0.550 \mathrm{~mL}, 0.127 \mathrm{mmol}, 0.231 \mathrm{M}$ solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe_{3}, the internal standard, in $\mathrm{C}_{6} \mathrm{D}_{6}$) and ethyl formate ($0.031 \mathrm{~mL}, 0.38 \mathrm{mmol}$). The reaction mixture was left at 22 ${ }^{\circ} \mathrm{C}$ for 2 h and was then heated at $60{ }^{\circ} \mathrm{C}$ for 15 h , but no reaction was observed. After the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 7 d , oxasilacyclopentane 5 was formed in 82% yield, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction mixture was concentrated in vacuo and a GC-MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane 5 was formed with $>95: 5$ diastereoselectivity: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, distinctive peaks) $\delta 5.87$ (td, $J=6.9,2.4,1 \mathrm{H}), 5.12(\mathrm{~d}, J=0.9,1 \mathrm{H}), 3.96(\mathrm{dq}, J=9.5,7.1,1 \mathrm{H}), 3.43(\mathrm{dq}, J=9.5,7.1,1 \mathrm{H})$, $2.82(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H})$. Full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

Oxasilacyclopentane 5 (copper-catalysis). The representative procedure for thermal carbonyl insertion was followed using alkylidenesilacyclopropane $3 \mathrm{~h}(0.550 \mathrm{~mL}, 0.127 \mathrm{mmol}, 0.231 \mathrm{M}$ solution of the alkylidenesilacyclopropane and 0.0465 M solution of PhSiMe_{3}, the internal standard, in $\mathrm{C}_{6} \mathrm{D}_{6}$), ethyl formate ($0.031 \mathrm{~mL}, 0.38 \mathrm{mmol}$), and $\mathrm{CuI}(0.002 \mathrm{~g}, 0.01 \mathrm{mmol})$. The
reaction mixture was left at $22{ }^{\circ} \mathrm{C}$ for 2 h and was then heated at $60^{\circ} \mathrm{C}$ for 21 h , forming oxasilacyclopentane 5 in 82% yield, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction mixture was concentrated in vacuo and a GC-MS spectrum of the unpurified reaction mixture showed that oxasilacyclopentane 5 was formed with 95:5 diastereoselectivity. Distinctive peaks were consistent with those reported for the thermolysis-derived product (see above) and full characterization is provided for an isolated sample using the two-step, one-flask reaction (see Section IV).

IV. Two-Step, One-Flask Reactions to Form Oxasilacyclopentanes

4a
Oxasilacyclopentane 4a. To a cooled solution $\left(-26^{\circ} \mathrm{C}\right)$ of undeca-5,6-diene $\mathbf{1 h}(0.152 \mathrm{~g}, 1.00$ $\mathrm{mmol})$ and $2(0.269 \mathrm{~g}, 1.20 \mathrm{mmol})$ in 4 mL of toluene was added $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.021 \mathrm{~g}, 0.050 \mathrm{mmol})$. The reaction flask was kept at $-26^{\circ} \mathrm{C}$ for 30 min and was then allowed to warm to $22^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was cooled to $-26^{\circ} \mathrm{C}$. Benzaldehyde ($0.30 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added, followed by $\mathrm{ZnBr}_{2}(0.023 \mathrm{~g}, 0.10 \mathrm{mmol})$. The reaction mixture was kept at $-26^{\circ} \mathrm{C}$ for 1 h and was then allowed to warm to $22^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was filtered through Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated in vacuo to give a colorless oil ($87: 13$ mixture of diastereomers by GC-MS). Purification by column chromatography ($0: 100-20: 80 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes) gave 4 a as a colorless oil ($0.263 \mathrm{~g}, 66 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=7.2,2 \mathrm{H}), 7.33$ (t, $J=7.3$, $2 \mathrm{H}), 7.25(\mathrm{tt}, J=7.2,1.2,1 \mathrm{H}), 5.88(\mathrm{td}, J=6.8,3.2,1 \mathrm{H}), 4.78(\mathrm{~d}, J=8.4,1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H})$, $2.17(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 8 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=$ $7.3,3 \mathrm{H}), 0.85(\mathrm{t}, J=6.9,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.2,140.7,140.4,128.4,127.6$, $127.2,85.2,51.6,31.9,31.3,30.9,28.5,28.2,28.1,23.4,22.8,21.9,20.8,14.2$; IR (thin film) 3029, 2958, 2360, 1625, 1472, $1024 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{NaOSi}(\mathrm{M}+\mathrm{Na})^{+}$ 423.3059, found 423.3068. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{OSi}$: C, 77.93; H, 11.07. Found: C, 77.75; H, 11.10 .

4b
Oxasilacyclopentane 4b. To a solution of undeca-5,6-diene $\mathbf{1 h}(0.152 \mathrm{~g}, 1.00 \mathrm{mmol})$ and 2 ($0.269 \mathrm{~g}, 1.20 \mathrm{mmol}$) in 4 mL of toluene was added $\mathrm{AgO}_{2} \mathrm{CCF}_{3}$ ($0.002 \mathrm{~g}, 0.01 \mathrm{mmol}$). After 15 min , butyraldehyde $(0.27 \mathrm{~mL}, 3.0 \mathrm{mmol})$ was added, followed by CuI $(0.019 \mathrm{~g}, 0.10 \mathrm{mmol})$. After 25 min , the reaction mixture was filtered through Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated in vacuo to give a colorless oil ($93: 7$ mixture of diastereomers by GC-MS). Purification by column chromatography ($0: 100-5: 95 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $)$ gave $\mathbf{4 b}$ as a colorless oil $(0.297 \mathrm{~g}, 81 \%):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78(\mathrm{td}, J=7.1,2.7,1 \mathrm{H}), 3.87(\mathrm{dt}, J=7.9,4.5,1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H})$,
$2.12(\mathrm{q}, J=6.8,2 \mathrm{H}), 1.57-1.20(\mathrm{~m}, 14 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.95-0.87(\mathrm{t}, J=5.5,3 \mathrm{H} ; \mathrm{t}$, $J=5.7,3 \mathrm{H} ; \mathrm{t}, J=7.2,3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0,140.6,84.2,49.1,42.3,35.6$, $31.9,30.9,30.5,28.5,28.3,23.2,22.8,21.0,20.3,19.7,14.4,14.3,14.2$; IR (thin film) 2958 , 1627, 1471, 1362, 1093, $822 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{47} \mathrm{OSi}(\mathrm{M}+\mathrm{H})^{+}$367.3396, found 367.3400. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{OSi}$: C, 75.33; H, 12.64. Found: C, 75.46; H, 12.80.

5
Oxasilacyclopentane 5. A solution of undeca-5,6-diene $\mathbf{1 h}(0.457 \mathrm{~g}, 3.00 \mathrm{mmol})$ and $2(0.808$ $\mathrm{g}, 3.60 \mathrm{mmol}$) in 13 mL of toluene was prepared in a vessel fitted with an air-free seal. The reaction mixture was cooled to $-26^{\circ} \mathrm{C}$ and $\mathrm{AgO}_{2} \mathrm{CCF}_{3}(0.60 \mathrm{~mL}, 0.015 \mathrm{mmol}, 0.025 \mathrm{M})$ was added. The reaction flask was kept at $-26^{\circ} \mathrm{C}$ for 45 min . Ethyl formate ($0.73 \mathrm{~mL}, 9.0 \mathrm{mmol}$) was added, followed by $\mathrm{CuI}(0.057 \mathrm{~g}, 0.30 \mathrm{mmol})$. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 19 h . After the reaction mixture was cooled to $22^{\circ} \mathrm{C}$, it was vacuum-filtered through a pad of Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated in vacuo to give a colorless oil (97:3 mixture of diastereomers by GC-MS). Purification by column chromatography (0:100 - 10:90 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes) gave 5 as a colorless oil ($0.996 \mathrm{~g}, 90 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.79$ $(\mathrm{td}, J=6.9,2.4,1 \mathrm{H}), 4.94(\mathrm{~d}, J=0.8,1 \mathrm{H}), 3.82(\mathrm{dq}, J=9.6,7.1,1 \mathrm{H}), 3.46(\mathrm{dq}, J=9.6,7.1,1 \mathrm{H})$, $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{q}, J=6.9,2 \mathrm{H}), 1.37(\mathrm{~m}, 10 \mathrm{H}), 1.19(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~s}$, 9H), $0.90(\mathrm{t}, J=7.3,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.0,140.0,108.0,62.6,50.5,34.3$, $31.9,31.2,30.9,28.3,28.2,22.9,22.8,20.41,20.36,15.3,14.32,14.28$; IR (thin film) 2959 , 1631, 1473, 1363, $1114 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{NaO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+} 391.3008$, found 391.2998. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 71.67$; H, 12.03. Found: C, 71.85; H, 12.09.

6
Oxasilacyclopentane 6. To a cooled $\left(-18{ }^{\circ} \mathrm{C}\right)$ solution of allene $\mathbf{1 e}(0.14 \mathrm{~g}, 1.0 \mathrm{mmol})$ and 2 $(0.28 \mathrm{~g}, 1.3 \mathrm{mmol})$ in 4.5 mL of toluene was added $\mathrm{AgO}_{2} \mathrm{CCF}_{3}(0.010 \mathrm{~g}, 0.05 \mathrm{mmol})$. The reaction mixture was kept at $-18{ }^{\circ} \mathrm{C}$ for 30 min and was then slowly warmed to 22 C . After 2 h , the reaction mixture was cooled to $-18{ }^{\circ} \mathrm{C}$. Isobutyraldehyde ($0.27 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added, followed by $\mathrm{CuI}(0.030 \mathrm{~g}, 0.16 \mathrm{mmol})$. The reaction mixture was kept at $-18{ }^{\circ} \mathrm{C}$ for 30 min and then slowly warmed to $22^{\circ} \mathrm{C}$ over 15 h . The reaction mixture was filtered through Celite with $\mathrm{Et}_{2} \mathrm{O}$ and concentrated in vacuo to give a colorless oil (96:3:1 mixture of diastereomers by GCMS). Purification by column chromatography ($10: 90 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes) gave 6 as a colorless oil $(0.256 \mathrm{~g}, 70 \%)$ that solidified upon storage $\left(-20^{\circ} \mathrm{C}\right): \mathrm{mp} 54-55^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.12(\mathrm{qd}, J=6.7,1.8,1 \mathrm{H}), 3.60(\mathrm{dd}, J=9.5,1.2,1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 3 \mathrm{H}$ and $\mathrm{d}, J=6.7,3 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}$,
$J=6.6,3 \mathrm{H}), 0.94(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6,3 \mathrm{H}$ and $\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 140.1, 137.6, 88.9, 51.1, 43.0, 34.7, 33.9, 31.3, 29.0, 28.8, 27.4, 27.3, 27.0, 20.8, 20.6, 19.6, 18.7; IR (thin film) 2930, 2855, 1629, 1474, 1039, $821 \mathrm{~cm}^{-1}$; HRMS (APCI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{OSi}(\mathrm{M}+\mathrm{H})^{+}$351.3083, found 351.3073. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{OSi}$: C, 75.36; H, 12.07. Found: C, 75.15; H, 12.09.

7
Oxasilacyclopentane 7. ${ }^{18}$ To a cooled $\left(-26{ }^{\circ} \mathrm{C}\right)$ solution of 3-(trimethylsilyl)-1,2-butadiene 1c $(0.17 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and $2(0.269 \mathrm{~g}, 1.20 \mathrm{mmol})$ in 4 mL of toluene was added $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.021 \mathrm{~g}$, $0.050 \mathrm{mmol})$. The reaction mixture was kept at $-26^{\circ} \mathrm{C}$ for 30 min and was then allowed to warm to $22^{\circ} \mathrm{C}$. After 2 h , the reaction mixture was cooled to $-26^{\circ} \mathrm{C}$. Acetophenone (0.35 mL , 3.0 mmol) was added, followed by $\mathrm{Cu}(\mathrm{OTf})_{2}(0.036 \mathrm{~g}, 0.10 \mathrm{mmol})$. After 5 d , the reaction mixture was filtered through silica gel with $\mathrm{Et}_{2} \mathrm{O}$ and concentrated in vacuo to give a yellow oil ($95: 5$ mixture of diastereomers by GC-MS). Purification by column chromatography ($20: 80$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $)$ gave 7 as a light yellow oil $(0.281 \mathrm{~g}, 72 \%)$ that solidified upon storage $(-20$ ${ }^{\circ} \mathrm{C}$). Crystallization by slow evaporation of pentane afforded crystals suitable for X-ray crystallographic analysis: mp $73-75^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{dq}, J=17.6,1.2,1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{dq}, J=17.6,2.7,1 \mathrm{H}), 1.60$ $(\mathrm{dd}, J=2.7,1.2,3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $153.5,146.2,130.1,128.0,126.9,126.7,87.5,31.8,28.2,28.0,21.1,20.7,19.9,17.6,0.4$; IR (thin film) $3060,2932,2360,1472,1249,1028 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NaOSi}_{2}$ $(\mathrm{M}+\mathrm{Na})^{+} 411.2516$, found 411.2522 . Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{OSi}_{2}$: $\mathrm{C}, 71.06 ; \mathrm{H}, 10.37$. Found: C, $71.35 ; \mathrm{H}, 10.48$. Details of the X-ray crystallographic study are described in Section IX.

8
Oxasilacyclopentane 8. A solution of undeca-5,6-diene $\mathbf{1 h}(0.152 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $2(0.269$ $\mathrm{g}, 1.20 \mathrm{mmol}$) in 4 mL of toluene was prepared in a vessel fitted with an air-free seal. The reaction mixture was cooled to $-26{ }^{\circ} \mathrm{C}$ and $\mathrm{Ag}_{3} \mathrm{PO}_{4}(0.021 \mathrm{~g}, 0.050 \mathrm{mmol})$ was added. The reaction flask was kept at $-26^{\circ} \mathrm{C}$ for 1 h and was then allowed to warm to $22^{\circ} \mathrm{C}$. After $2 \mathrm{~h}, 3-$ pentanone ($0.32 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added, followed by $\mathrm{ZnBr}_{2}(0.023 \mathrm{~g}, 0.10 \mathrm{mmol})$. The reaction mixture was heated at $50{ }^{\circ} \mathrm{C}$ for 18 h . After the reaction mixture was cooled to $22{ }^{\circ} \mathrm{C}$, it was vacuum-filtered through a pad of Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated in vacuo to give a colorless oil (99:1 mixture of regioisomers by GC-MS). Purification by column chromatography (hexanes) gave 8 as a colorless oil ($0.204 \mathrm{~g}, 54 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82$ (ddd, $J=$ $8.0,5.2,2.1,1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~m}, 10 \mathrm{H}), 1.03$ $(\mathrm{s}, 9 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.94-0.87(\mathrm{t}, J=7.0,3 \mathrm{H} ; \mathrm{t}, J=7.4,3 \mathrm{H} ; \mathrm{t}, J=7.0,3 \mathrm{H}), 0.79(\mathrm{t}, J=7.5$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.1,141.2,85.9,50.5,33.6,32.6,32.3,31.9,31.2,29.2$, 29.0, 27.0, 23.6, 22.8, 20.7, 20.5, 14.4, 14.2, 9.5, 8.8; IR (thin film) 2961, 1627, 1470, 1378, 970, $821 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{49} \mathrm{OSi}(\mathrm{M}+\mathrm{H})^{+}$381.3553, found 381.3553. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{OSi}$: C, $75.71 ; \mathrm{H}, 12.71$. Found: C, $75.73 ; \mathrm{H}, 12.89$.

V. Functionalization of Oxasilacyclopentanes

Epoxide 9. To a cooled ($0^{\circ} \mathrm{C}$) solution of m-chloroperoxybenzoic acid ($2.42 \mathrm{~g}, 9.82 \mathrm{mmol}$) in 7 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of oxasilacyclopentane $\mathbf{6}(1.15 \mathrm{~g}, 3.27 \mathrm{mmol})$ in 13 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred for 3 hours at $0^{\circ} \mathrm{C}$, then allowed to warm to $22^{\circ} \mathrm{C}$ and stirred for 3 days. The reaction mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine (2 $\times 90 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give an oil with white solids, as a 98:2 mixture of diastereomers (as determined by GC-MS). Purification by column chromatography ($4: 96 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes - $6: 94 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes) afforded 9 as a colorless oil $(0.862 \mathrm{~g}, 72 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.05(\mathrm{dd}, J=10.4,1.6,1 \mathrm{H}), 3.07(\mathrm{q}, J=5.6,1 \mathrm{H})$, 1.86 (septd, $J=6.7,1.5,1 \mathrm{H}), 1.70(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~d}, J=5.6,3 \mathrm{H})$, $1.32-1.12(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8,3 \mathrm{H}$ and $\mathrm{m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=6.7$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 82.6,59.7,54.4,46.5,36.2,33.7,32.1,29.8,28.2,28.0$, 27.42, 27.37, 26.8, 22.2, 21.4, 20.3, 14.1, 12.9; IR (thin film) 2931, 2855, 1473, 1024, 848, 824 cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 367.3032$, found 367.3023. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}$: C, 72.07; H, 11.55. Found: C, 72.06; H, 11.67.

10
1,2,4-Triol 10. To a solution of $\mathrm{KOt}-\mathrm{Bu}(0.444 \mathrm{~g}, 3.96 \mathrm{mmol})$ in 1-methyl-2-pyrrolidinone $(9.4$ mL) was added a solution of epoxide $9(0.484 \mathrm{~g}, 1.32 \mathrm{mmol})$ in toluene $(6.3 \mathrm{~mL})$ and THF $(6.3$ mL), followed by a 1.0 M solution of $n-\mathrm{Bu}_{4} \mathrm{NF}$ in THF ($7.90 \mathrm{~mL}, 7.8 \mathrm{mmol}$). The reaction mixture was heated to $70{ }^{\circ} \mathrm{C}$ for 6 h . After the reaction mixture was cooled to $22{ }^{\circ} \mathrm{C}$, it was diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with MTBE $(4 \times 40 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a pink liquid. Purification by column chromatography (40:60 EtOAc/hexanes) did not completely remove excess $n-\mathrm{Bu}_{4} \mathrm{NF}$, so a second aqueous extraction was undertaken. The mixture was dissolved in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined
organic layers were washed with brine (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography ($2: 30: 70 \mathrm{Et}_{3} \mathrm{~N} / \mathrm{EtOAc} /$ hexanes) gave triol 10 as a white solid $(0.271 \mathrm{~g}, 84 \%)$. Crystallization by slow evaporation of hexanes and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded crystals suitable for X-ray crystallographic analysis: mp $72-73{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.96(\mathrm{dq}, J=7.6,6.3,1 \mathrm{H}), 3.75(\mathrm{dd}, J=7.7,1.7,1 \mathrm{H}), 3.56(\mathrm{dd}, J=8.6,2.0,1 \mathrm{H}$ and $\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=4.4,1 \mathrm{H}), 2.08(\mathrm{~d}, J=9.1,1 \mathrm{H}), 1.85(\mathrm{septd}, J=6.7,1.8,1 \mathrm{H}), 1.74$ $(\mathrm{m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.09(\mathrm{~m}, 5 \mathrm{H}$ and d, $J=6.3,3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7,3 \mathrm{H})$, $0.85(\mathrm{~d}, J=6.7,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 78.3,77.4,68.8,45.4,37.3,33.6,32.1$, 31.5, 27.4, 27.2, 26.7, 19.8, 19.6, 19.2; IR (thin film) $3356,2923,1448,1365,1060 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$267.1936, found 267.1933. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3}: \mathrm{C}, 68.81 ; \mathrm{H}, 11.55$. Found: C, $68.43 ; \mathrm{H}, 11.42$. Details of the X-ray crystallographic study are described in Section IX.

11
Homoallylic alcohol 11. To a solution of $\mathrm{KOt}-\mathrm{Bu}(0.303 \mathrm{~g}, 2.70 \mathrm{mmol})$ in 1-methyl-2pyrrolidinone (6.4 mL) was added a solution of oxasilacyclopentane $6(0.316 \mathrm{~g}, 0.901 \mathrm{mmol})$ in toluene (4.3 mL) and THF (4.3 mL), followed by a 1.0 M solution of $n-\mathrm{Bu}_{4} \mathrm{NF}$ in THF (5.40 mL , 5.4 mmol). The reaction mixture was heated to $70{ }^{\circ} \mathrm{C}$ for 22 h . After the reaction mixture was cooled to $22{ }^{\circ} \mathrm{C}$, it was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with MTBE $(4 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a pink liquid. Purification by column chromatography ($8: 92$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$ gave 11 as a yellow oil ($0.168 \mathrm{~g}, 89 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71(\mathrm{dq}, J$ $=11.5,6.8,1 \mathrm{H}), 5.35(\mathrm{tq}, J=11.0,1.7,1 \mathrm{H}), 3.37(\mathrm{dd}, J=10.4,5.5,1 \mathrm{H}), 2.32(\mathrm{dt}, J=11.4,6.1$, $1 \mathrm{H}), 1.70(\mathrm{~m}, 6 \mathrm{H}), 1.62(\mathrm{dd}, J=6.8,1.8,3 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=4.3,1 \mathrm{H}), 1.12(\mathrm{~m}, 5 \mathrm{H})$, $0.94(\mathrm{~d}, J=6.7,3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 129.0,127.5,76.3$, $45.5,38.9,31.9,30.9,29.7,26.9,26.8,20.0,17.5,14.0$; IR (thin film) 3465, 3012, 2923, 2360, $1448 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$233.1881, found 233.1879. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}$: C, 79.94; H, 12.46. Found: C, 79.66; H, 12.35.

VI. Synthesis of an Enantiopure Homoallylic Alcohol Using the Two-Step, One-Flask Silacyclopropanation/Carbonyl Insertion Reaction:

(S)-(-)-Propargylic alcohol (-)-E-1. To a flask containing $4 \AA$ molecular sieves ($\sim 50 \mathrm{~mL}$) was added propargylic alcohol E-1 ($4.36 \mathrm{~g}, 28.7 \mathrm{mmol}$) dissolved in anhydrous pentane (96 mL). Amano lipase AK from pseudomonas fluorescens $(2.42 \mathrm{~g})$ was added followed by vinyl acetate $(7.1 \mathrm{~mL}, 77 \mathrm{mmol})$. The slurry was stirred at $22^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was filtered through Celite, washed with pentane, and concentrated in vacuo. Purification by column chromatography (10:90 EtOAc/hexanes) afforded alcohol (-)-E-1 as a colorless oil with $\sim 98 \%$ ee ($1.41 \mathrm{~g}, 64 \%$ yield based on 50% conversion). Both the $\%$ ee and the absolute configuration were assigned according to Mosher's ester analysis. ${ }^{19,20}$ The spectral data are consistent with the data reported, ${ }^{1}$ and were reported for racemic $\mathbf{E - 1}$ (see Section I): $[\alpha]^{23}{ }_{\mathrm{D}}-24.1\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Mosher's ester analysis of alcohol (-)-E-1: To a solution of alcohol (-)-E-1 (0.040 g, 0.3 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $(R)-(+)$ - α-methoxy- α-trifluoromethylphenylacetic acid $(0.084 \mathrm{~g}, 0.36 \mathrm{mmol}), N, N^{\prime}$-dicyclohexylcarbodiimide ($0.068 \mathrm{~g}, 0.34 \mathrm{mmol}$), and N, N^{\prime} dimethylaminopyridine $(0.004 \mathrm{~g}, 0.03 \mathrm{mmol})$. After stirring for 3 d at rt , the reaction mixture was filtered through SiO_{2}, washed with EtOAc, and concentrated in vacuo. ${ }^{1} \mathrm{H}$ NMR spectroscopy ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of the unpurified mixture revealed a single methyl doublet at δ 1.56 ppm (Figure S1). Therefore, the 4-cyclohexyl-but-3-yn-2-ol prepared from lipase resolution was determined to have $>98 \%$ ee and an absolute configuration of (S). ${ }^{19-21}$

Figure S1. Possible (R)-Mosher's esters resulting from lipase resolution of alcohol E-1.
(S) $\quad(R)$

observed
$(R) \quad(R)$
vs.

not observed

$(+)-1 e$
(aS)-(+)-Allene (+)-1e. A procedure reported Myers ${ }^{8}$ and adapted by Jamison ${ }^{1}$ was used to prepare $(+)-1 \mathbf{e}$. To a cooled $\left(-15{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PPh}_{3}(3.58 \mathrm{~g}, 13.6 \mathrm{mmol})$ in 19 mL of anhydrous THF was added diethyl azodicarboxylate ($2.1 \mathrm{~mL}, 13 \mathrm{mmol}$). The reaction mixture was stirred for 10 min , then a solution of alcohol (-)-E-1 ($1.37 \mathrm{~g}, 9.00 \mathrm{mmol}$) in 19 mL of anhydrous THF was added. After 10 min , a solution of o-nitrobenzylsulfonylhydrazine ${ }^{2}(2.92 \mathrm{~g}$, 13.5 mmol) in 12 mL of anhydrous THF was added. The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$
for 2 h then slowly warmed to rt over 17 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and diluted with pentane $(150 \mathrm{~mL})$. The organic layer was washed with ice-cold $\mathrm{H}_{2} \mathrm{O}(10 \times 60 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography (pentane) gave allene $(+)-1 \mathbf{e}$ as a colorless oil $(0.794 \mathrm{~g}, 64 \%)$. The absolute configuration was determined ${ }^{8}$ based on the absolute configuration of alcohol (-)-E-1 and is consistent with the Lowe-Brewster rule. ${ }^{22}$ The spectral data are consistent with the data reported, ${ }^{1,9}$ and were reported for racemic 1e (see Section I): $[\alpha]^{22}{ }_{\mathrm{D}}+70.1\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

(-)-6
(R,S)-(-)-Oxasilacyclopentane (-)-6. Cyclohexenesilacyclopropane $\mathbf{2}^{15,16}(1.44 \mathrm{~g}, 6.42 \mathrm{mmol})$ was added to a solution of allene $(+)-1 \mathbf{e}(0.73 \mathrm{~g}, 5.4 \mathrm{mmol})$ in anhydrous toluene $(20 \mathrm{~mL})$. The mixture was cooled to $-18{ }^{\circ} \mathrm{C}$, then $\mathrm{AgO}_{2} \mathrm{CCF}_{3}(0.015 \mathrm{~g}, 0.068 \mathrm{mmol})$ was added. The reaction mixture remained at $-18{ }^{\circ} \mathrm{C}$ for 30 min , then was slowly warmed to $22{ }^{\circ} \mathrm{C}$. After 2 h , the mixture was cooled to $-18^{\circ} \mathrm{C}$, then isobutyraldehyde ($1.5 \mathrm{~mL}, 16 \mathrm{mmol}$) and $\mathrm{CuI}(0.100 \mathrm{~g}, 0.525$ mmol) were added. The reaction mixture remained at $-18{ }^{\circ} \mathrm{C}$ for 30 min , then was slowly warmed to $22{ }^{\circ} \mathrm{C}$. After 15 h , the reaction mixture was filtered through Celite, washed with $\mathrm{Et}_{2} \mathrm{O}$, and concentrated in vacuo. Purification by column chromatography (10:90 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes) gave oxasilacyclopentane (-)-6 as a white solid in 96% ee ($1.2 \mathrm{~g}, 65 \%$). The $\%$ ee was determined based on the $\%$ ee of alcohol $(+)-\mathbf{1 1}$ and assumes retention of stereochemistry upon protodesilylation. ${ }^{23}$ The absolute configuration was assigned by X-ray crystallographic analysis after conversion to carbamate $(+)-\mathbf{1 3}$. Full characterization data was reported for racemic 6 (see Section IV): $[\alpha]^{23}{ }_{\mathrm{D}}-29.6\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

(+)-11
($\boldsymbol{R}, \boldsymbol{S}$)-(+)-Homoallylic alcohol (+)-11. To a solution of KOt-Bu ($0.471 \mathrm{~g}, 4.20 \mathrm{mmol}$) in 23 mL of anhydrous DMSO^{24} was added $n-\mathrm{Bu}_{4} \mathrm{NF}(8.5 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 8.5 mmol) followed by a solution of oxasilacyclopentane $(-)-6(0.496 \mathrm{~g}, 1.41 \mathrm{mmol})$ in 5 mL of anhydrous THF. The reaction mixture was heated to $120^{\circ} \mathrm{C}$ for 17 h . The reaction mixture was cooled to $22{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and extracted with MTBE $(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. $\mathrm{NEt}_{3}(20 \mathrm{~mL})$ was added, and the solution was stirred for 1 min . The organic layer was washed with $1 \mathrm{M} \mathrm{HCl}(5 \times 100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \times 100 \mathrm{~mL})$, and brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography ($4: 96 \mathrm{Et}_{2} \mathrm{O} /$ hexanes) gave homoallylic alcohol (+)-11 as a yellow oil with 96% ee $(0.236 \mathrm{~g}, 79 \%)$. The $\%$ ee was assigned after conversion ${ }^{25}$ to carbamate 12 using SFC analysis (Daicel Chiralpak AD, 10:90 i-PrOH $/ \mathrm{CO}_{2}, \lambda=220 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{\mathrm{R}} 13.4 \mathrm{~min}$ (major), 14.2 min (minor). The absolute configuration was assigned by X-ray crystallographic
analysis after conversion to carbamate $(+) \mathbf{- 1 3}$. Full characterization data was reported for racemic 11 (see Section V): $[\alpha]^{22}{ }_{\mathrm{D}}+23.2\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

(R, S)-12
Conversion of alcohol (+)-11 to carbamate (\mathbf{R}, \mathbf{S})-12 for SFC analysis: A procedure reported by Kanai ${ }^{25}$ was adapted to prepare $(R, S)-12$. Anhydrous $\mathrm{CuCl}(0.010 \mathrm{~g}, 0.10 \mathrm{mmol})$ and DMF $(0.01 \mathrm{~mL}, 0.1 \mathrm{mmol})$ were added to a solution of homoallylic alcohol $(+)-\mathbf{1 1}(0.020 \mathrm{~g}, 0.10$ mmol) in phenyl isocyanate $(0.22 \mathrm{~mL}, 2.0 \mathrm{mmol})$. After 3 h , the solid reaction mixture was diluted with 3 mL of hexanes, filtered through Celite, and concentrated in vacuo to give carbamate $(R, S)-12$ as a white solid $(0.016 \mathrm{~g}, 56 \%)$. The structure was assigned using HMQC and HMBC experiments, and the compound was subjected to SFC analysis without further purification: mp 94-95 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=6.5,2 \mathrm{H}), 7.32(\mathrm{t}, J=8.0$, $2 \mathrm{H}), 7.06(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.65(\mathrm{dq}, J=11.1,6.8,1 \mathrm{H}), 5.37(\mathrm{td}, J=10.9,1.6$, $1 \mathrm{H}), 4.90(\mathrm{dd}, J=6.9,4.4,1 \mathrm{H}), 2.48(\mathrm{ddd}, J=10.7,7.2,4.4,1 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{td}, J=$ $12.3,2.2,3 H), 1.62(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.06(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{qd}, J=11.7,3.4,1 \mathrm{H}), 0.97-0.89(\mathrm{~m}, 1 \mathrm{H})$, $0.94(\mathrm{~d}, J=6.8,3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,138.3,129.1$, $128.9,126.1,123.2,118.6,79.5,44.1,38.8,31.6,30.4,30.0,26.7,26.61,26.58,19.5,18.0,13.7$; IR (thin film) 3442, 2924, 1641, 1523, 1442, $1223 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 352.2253$, found 352.2257.

(+)-13
Conversion of alcohol (+)-11 to carbamate (+)-13 for X-ray crystallographic analysis: A procedure reported by Woerpel ${ }^{26}$ was modified to prepare $(+)-13$. $(R)-(+)$-Methylbenzyl isocyanate $(0.16 \mathrm{~mL}, 1.2 \mathrm{mmol})$ was added to a solution of alcohol $(+)-11(0.222 \mathrm{~g}, 1.06 \mathrm{mmol})$ in anhydrous toluene (2 mL) and $4 \AA$ molecular sieves. The reaction flask was sealed under vacuum and heated to $100{ }^{\circ} \mathrm{C}$. After 3 d , the reaction mixture was cooled to $22{ }^{\circ} \mathrm{C}$ and concentrated in vacuo. Purification by column chromatography ($2: 98 \mathrm{EtOAc} / \mathrm{hexanes}$) gave carbamate $(+)-\mathbf{1 3}$ as a white solid $(0.207 \mathrm{~g}, 54 \%)$. X-ray crystallographic analysis was performed after recrystallization from EtOAc/hexanes: mp $135-136{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, 50{ }^{\circ} \mathrm{C}\right)^{27} \delta 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{dq}, J=11.1,6.8,1 \mathrm{H}), 5.32(\mathrm{tq}, J$ $=10.9,1.8,1 \mathrm{H})^{28}, 4.80-4.75(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{ddd}, J=10.7,6.8,4.2,1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H})$, $1.69-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{dd}, J=6.8,1.7,4 \mathrm{H}), 1.48(\mathrm{~d}, J=6.6,3 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.18-$ $1.03(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.86(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,144.0,129.1,128.5$, $127.1,125.9,125.7,78.9,50.4,44.2,39.0,30.4,30.1,26.68,26.65,26.57,22.4,19.4,18.2,13.7$; IR (thin film) 3263, 2924, 1680, 1537, 1448, $1255 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for
$\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$380.2566, found 380.2562. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{2}$: C, 77.27; H , 9.87. Found: C, $77.33 ; \mathrm{H}, 10.12 .[\alpha]^{22}{ }_{\mathrm{D}}+5.34\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

VII. Regiochemistry of Alkylidenesilacyclopropanes

A. NOE experiments for alkylidenesilacyclopropane 3a.

$\mathbf{H}_{\mathbf{a}}$ irradiated: $\mathbf{H}_{\mathbf{b}}(1.2 \%), \mathbf{H}_{\mathbf{c}}(1.1 \%), \mathbf{H}_{\mathbf{d}}(0.3 \%)$
Note: The observation of an NOE between $\mathbf{H}_{\mathbf{a}}$ and $\mathbf{H}_{\mathbf{b}}, \mathbf{H}_{\mathbf{c}}$, and $\mathbf{H}_{\mathbf{d}}$ and the absence of an NOE between $\mathbf{H}_{\mathbf{a}}$ and $\mathbf{H}_{\mathbf{e}}$ suggests an (E)-alkene geometry.

B. NOE experiments for alkylidenesilacyclopropane $\mathbf{3 b}$.

$\mathbf{H}_{\mathbf{b}}$ irradiated: $\mathbf{H}_{\mathbf{a}}(4.1 \%), \mathbf{H}_{\mathbf{c}}$ (1.8\%)
Note: The observation of an NOE between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{c}}$ suggests an (E)-alkene geometry.

C. NOE experiments for alkylidenesilacyclopropane 3c.

3c
$\mathbf{H}_{\mathbf{a}}$ irradiated: $\mathbf{H}_{\mathbf{b}}(0.2 \%), \mathbf{H}_{\mathbf{c}}(0.2 \%)$
\mathbf{H}_{b} irradiated: $\mathbf{H}_{\mathbf{d}}(0.6 \%)$
$\mathbf{H}_{\mathbf{d}}$ irradiated: $\mathbf{H}_{\mathbf{a}}(1.2 \%), \mathbf{H}_{\mathbf{b}}(1.9 \%)$
Note: The observation of an NOE between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{d}}$ and the small NOE between $\mathbf{H}_{\mathbf{a}}$ and $\mathbf{H}_{\mathbf{b}}$ suggests an (E)-alkene geometry.

D. NOE experiments for alkylidenesilacyclopropane 3d.

3d
$\mathbf{H}_{\mathbf{c}}$ irradiated: $\mathbf{H}_{\mathbf{d}}(2.5 \%), \mathbf{P h}$ (NOE is present, but it cannot be quantified because the enhanced resonance overlaps with other aryl resonances).
$\mathbf{H}_{\mathbf{d}}$ irradiated: $\mathbf{H}_{\mathbf{c}}(1.4 \%), \mathbf{H}_{\mathbf{b}}$ (NOE is present, but it cannot be quantified because the resonance of H_{b} overlaps with a resonance from the minor diastereomer).
Note: The observation of a large NOE between $\mathbf{H}_{\mathbf{c}}$ and $\mathbf{H}_{\mathbf{d}}$ suggests an (E)-alkene geometry.

E. NOE experiments for alkylidenesilacyclopropane 3e.

$3 e$
$\mathbf{H}_{\mathbf{b}}$ irradiated: $\mathbf{H}_{\mathbf{c}}$ (NOE is present, but it cannot be quantified because the resonance of $\mathrm{H}_{\mathbf{c}}$ overlaps with cyclohexene that was formed in reaction mixture), $\mathbf{H}_{\mathbf{d}}(1.4 \%)$
Note: The observation of an NOE between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{d}}$ suggests an (E)-alkene geometry.

F. NOE experiments for alkylidenesilacyclopropane 3f.

$3 f$
\mathbf{H}_{b} irradiated: $\mathbf{H}_{\mathbf{a}}(0.6 \%), \mathbf{H}_{\mathbf{c}}(0.6 \%), \mathbf{H}_{\mathbf{d}}(8.4 \%)$
$\mathbf{H}_{\mathbf{c}}$ irradiated: $\mathbf{H}_{\mathbf{b}}(2.2 \%), \mathbf{H}_{\mathbf{e}}$ (NOE is present, but it cannot be quantified because the resonance of H_{e} overlaps with other resonances)
$\mathbf{H}_{\mathbf{d}}$ irradiated: $\mathbf{H}_{\mathbf{b}}$ (17.4\%)
Note: The observation of a large NOE between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{d}}$ and the absence of NOE between $\mathbf{H}_{\mathbf{c}}$ and $\mathbf{H}_{\mathbf{d}}$, suggests an (E)-alkene geometry.

G. NOESY experiment for alkylidenesilacyclopropane 3h.

NOESY cross peaks were observed between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{c}}$. This correlation suggests an (E)-alkene geometry.

VIII. Regiochemistry of Oxasilacyclopentanes

The regiochemistry of the oxasilacyclopentanes that were derived from insertion of aldehydes or formates into alkylidenesilacyclopropanes could be determined by ${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY experiments. For oxasilacyclopentanes derived from insertions of ketones (oxasilacyclopentanes 6 and 7), the regiochemistry of insertion can be determined by NOE or NOESY experiments. Unless otherwise noted, the NOE or NOESY experiments were conducted in CDCl_{3}.
A. COSY and NOE experiments for oxasilacyclopentane 4 (conducted in $\mathrm{CD}_{3} \mathrm{CN}$).

COSY cross peaks
4a

$\mathbf{H}_{\mathbf{b}}$ irradiated: $\mathbf{H}_{\mathbf{e}}(0.9 \%)$
$\mathbf{H}_{\mathbf{c}}$ irradiated: $\mathbf{H}_{\mathbf{b}}(1.1 \%), \mathbf{H}_{\mathbf{d}}(1.6 \%), \mathbf{H}_{\mathrm{f}}(0.2 \%)$
$\mathbf{H}_{\mathbf{e}}$ irradiated: $\mathbf{H}_{\mathbf{a}}(13.8 \%), \mathbf{H}_{\mathbf{b}}(14.4 \%)$
Note: The observation of an NOE between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{e}}$ and the absence of an NOE between $\mathbf{H}_{\mathbf{c}}$ and $\mathbf{H}_{\mathbf{e}}$ suggests a 1,2-trans configuration. The observation of an NOE between $\mathbf{H}_{\mathbf{c}}$ and $\mathbf{H}_{\mathbf{d}}$ suggests an (E)-alkene geometry.
B. COSY and NOESY experiments for oxasilacyclopentane 4b.

COSY cross peaks
4b

Note: The presence of NOESY cross peaks between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{e}}$ and between $\mathbf{H}_{\mathbf{c}}$ and \mathbf{H}_{f} suggests a 1,2-trans configuration. The presence of a NOESY cross peak between $\mathbf{H}_{\mathbf{c}}$ and $\mathbf{H}_{\mathbf{d}}$ suggests an (E)-alkene geometry.

C. COSY and NOE experiments for oxasilacyclopentane 5.

COSY cross peak

5
Note: For oxasilacyclopentane $\mathbf{5}$, COSY cross peaks were not observed between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{e}}, \mathbf{H}_{\mathbf{a}}$ and $\mathbf{H}_{\mathbf{b}}$, or $\mathbf{H}_{\mathbf{a}}$ and $\mathbf{H}_{\mathbf{e}}$, which suggests that ethyl formate insertion occurred adjacent to the double bond (through $\mathrm{Si}-\mathrm{Csp}{ }^{2}$ bond cleavage).

5
$\mathbf{H}_{\mathbf{b}}$ irradiated: $\mathbf{H}_{\mathbf{e}}$ (3.8\%)
$\mathbf{H}_{\mathbf{e}}$ irradiated: $\mathbf{H}_{\mathbf{b}}(4.0 \%), \mathbf{H}_{\mathbf{f}}(4.0 \%)$
\mathbf{H}_{f} irradiated: $\mathbf{H}_{\mathbf{e}}(17.4 \%)$
Note: The observation of an NOE between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{e}}$ suggests a 1,3-cis configuration. The observation of an NOE between $\mathbf{H}_{\mathbf{e}}$ and $\mathbf{H}_{\mathbf{f}}$ suggests an (E)-alkene geometry.

D. COSY and NOESY experiments for oxasilacyclopentane 6.

COSY cross peaks

NOESY cross peaks

Note: No NOESY cross peak was observed between $\mathbf{H}_{\mathbf{c}}$ and either $\mathbf{H}_{\mathbf{e}}$ or $\mathbf{H}_{\mathbf{f}}$, so the 1,2stereochemistry could not be determined by this method. The large coupling constant value ($\mathrm{J}_{\mathrm{bc}}=$ 9.5 Hz) suggests a 1,2-trans stereochemistry, and it is consistent with reported values for other

1,2-trans oxasilacyclopentanes. ${ }^{29,30}$ Furthermore, the 1,2-trans stereochemistry of $\mathbf{6}$ is confirmed by X-ray crystallographic data of its derivatives, triol 10 and carbamate (+)-13 (see Section IX). The presence of a NOESY cross peak between $\mathbf{H}_{\mathbf{c}}$ and $\mathbf{H}_{\mathbf{d}}$ suggests an (E)-alkene geometry.

E. NOE experiments for oxasilacyclopentane 7.

7
\mathbf{H}_{b} irradiated: $\mathbf{H}_{\mathbf{e}}(1.1 \%)$
\mathbf{H}_{c} irradiated: $\mathbf{H}_{\mathbf{a}}(3.9 \%), \mathbf{M e}(3.8 \%)$
$\mathbf{H}_{\mathbf{e}}$ irradiated: $\mathbf{H}_{\mathbf{b}}(6.3 \%), \mathbf{H}_{\mathbf{d}}(3.5 \%), \mathbf{M e}(0.4 \%)$
Me irradiated: $\mathbf{H}_{\mathbf{c}}(6.0 \%), \mathbf{H}_{\mathbf{e}}(0.1 \%)$
Note: The observation of NOE between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{e}}, \mathbf{H}_{\mathbf{d}}$ and \mathbf{H}_{e}, and $\mathbf{H}_{\mathbf{c}}$ and Me suggests a (Z)alkene geometry. The data obtained from NOE experiments of 7 were verified with an X-ray crystal structure (see Section IX).

F. COSY and NOE experiments for oxasilacyclopentane 8 (conducted in $\mathrm{C}_{6} \mathrm{D}_{6}$).

$\mathbf{H}_{\mathbf{a}}$ irradiated: $\mathbf{H}_{\mathbf{e}}(0.6 \%), \mathbf{H}_{\mathbf{f}}(0.2 \%)$
\mathbf{H}_{b} irradiated: $\mathbf{H}_{\mathbf{c}}(7.1 \%), \mathbf{H}_{\mathbf{d}}(2.9 \%), \mathbf{H}_{\mathbf{g}}(2.2 \%)$
Note: The observation of an NOE between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{g}}$ suggests that 3-pentanone insertion occurred adjacent to $\mathbf{H}_{\mathbf{b}}$ (through formal $\mathrm{Si}-\mathrm{Csp}{ }^{3}$ bond cleavage). The observation of an NOE between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{c}}$ and between $\mathbf{H}_{\mathbf{b}}$ and $\mathbf{H}_{\mathbf{d}}$ suggests an (E)-alkene geometry.

G. NOE experiments for oxasilacyclopentane 9.

9
$\mathbf{H}_{\mathbf{a}}$ irradiated: \boldsymbol{t}-Bu (0.7\%)
Me irradiated: $\mathbf{H}_{\mathbf{b}}$ (NOE is present, but it cannot be quantified because the resonance of H_{b} overlaps with another proton).
Note: The stereochemistry of oxasilacyclopentane 9 is not conclusive, but, it is believed that epoxidation occurs opposite the large cyclohexyl group. Oxasilacyclopentane 9 was converted to triol 10, whose stereochemistry was determined by X-ray crystallography (see Section IX).

IX. X-ray Crystallographic Data (Oxasilacyclopentane 7, Triol 10, and Carbamate (+)-13)

A. X-ray Data Collection, Structure Solution and Refinement for Oxasilacyclopentane 7.

A colorless crystal of approximate dimensions $0.26 \times 0.27 \times 0.29 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker CCD platform diffractometer. The SMART ${ }^{1}$ program package was used to determine the unit-cell parameters and for data collection ($25 \mathrm{sec} /$ frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT ${ }^{2}$ and SADABS 3 to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. The diffraction symmetry was $2 / m$ and the systematic absences were consistent with the centrosymmetric monoclinic space group $P 2_{1} / c$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Carbon atoms $\mathrm{C}(21)$ and $\mathrm{C}(22)$ were disordered and included using multiple components, partial site-occupancy-factors and isotropic temperature parameters. Hydrogen atoms associated with the disordered carbon atoms were included using a riding model. The remaining hydrogen atoms were located from a difference-Fourier map and refined ($\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $\mathrm{U}_{\text {iso }}$). At convergence, $\mathrm{wR} 2=0.1124$ and Goof $=1.070$ for 373 variables refined against 5380 data $(0.78 \AA), \mathrm{R} 1=0.0417$ for those 4363 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$.

7

References.

1. SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
2. SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
3. Sheldrick, G. M. SADABS, Version 2.10, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2002.
4. Sheldrick, G. M. SHELXTL Version 6.12, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2001.
5. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.

Definitions:

$\mathrm{wR} 2=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$
$\mathrm{R} 1=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$
Goof $=\mathrm{S}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Table 1. Crystal data and structure refinement for 7.
Identification code
kaw112 (Janice Loy)
Empirical formula
$\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O} \mathrm{Si}_{2}$
Formula weight
388.73

Temperature
158(2) K
Wavelength
$0.71073 \AA$
Crystal system
Monoclinic
Space group
Unit cell dimensions
P2 ${ }_{1} / \mathrm{C}$
$a=11.2644(12) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=18.238(2) \AA \quad \beta=111.178(2)^{\circ}$.
$\mathrm{c}=12.7049(14) \AA \quad \gamma=90^{\circ}$.
Volume
2433.8(5) \AA^{3}

Z
4
Density (calculated)
$1.061 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient
$0.155 \mathrm{~mm}^{-1}$
F(000)
Crystal color
856

Crystal size
colorless

Theta range for data collection
$0.29 \times 0.27 \times 0.26 \mathrm{~mm}^{3}$

Index ranges
1.94 to 27.10°

Reflections collected
$-14 \leq h \leq 14,-23 \leq k \leq 23,-16 \leq l \leq 16$

Independent reflections
Completeness to theta $=27.10^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
24656
$5380[\mathrm{R}(\mathrm{int})=0.0321]$
99.9 \%

Semi-empirical from equivalents
0.9609 and 0.9565

Full-matrix least-squares on F^{2}
5380 / 0 / 373

Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})=4363$ data]
1.070

R indices (all data; 0.78 \AA)
$\mathrm{R} 1=0.0417, \mathrm{wR} 2=0.1013$

Largest diff. peak and hole
0.618 and -0.556 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for 7. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Si}(1)$	$7829(1)$	$460(1)$	$2416(1)$	$20(1)$
$\mathrm{Si}(2)$	$11809(1)$	$1514(1)$	$2279(1)$	$23(1)$
$\mathrm{O}(1)$	$6987(1)$	$979(1)$	$1335(1)$	$22(1)$
$\mathrm{C}(1)$	$7685(2)$	$1547(1)$	$995(1)$	$20(1)$
$\mathrm{C}(2)$	$9130(2)$	$1419(1)$	$1638(1)$	$19(1)$
$\mathrm{C}(3)$	$9345(2)$	$985(1)$	$2721(1)$	$22(1)$
$\mathrm{C}(4)$	$10091(2)$	$1682(1)$	$1352(1)$	$20(1)$
$\mathrm{C}(5)$	$9881(2)$	$2170(1)$	$330(2)$	$29(1)$
$\mathrm{C}(6)$	$7238(2)$	$1470(1)$	$-295(1)$	$27(1)$
$\mathrm{C}(7)$	$7257(2)$	$2289(1)$	$1307(1)$	$19(1)$
$\mathrm{C}(8)$	$8113(2)$	$2835(1)$	$1873(1)$	$22(1)$
$\mathrm{C}(9)$	$7683(2)$	$3507(1)$	$2114(1)$	$25(1)$
$\mathrm{C}(10)$	$6393(2)$	$3640(1)$	$1803(2)$	$27(1)$
$\mathrm{C}(11)$	$5531(2)$	$3097(1)$	$1252(2)$	$28(1)$
$\mathrm{C}(12)$	$5955(2)$	$2427(1)$	$1003(2)$	$25(1)$
$\mathrm{C}(13)$	$12162(2)$	$1857(1)$	$3756(2)$	$38(1)$
$\mathrm{C}(14)$	$12248(2)$	$523(1)$	$2322(2)$	$41(1)$
$\mathrm{C}(15)$	$12889(2)$	$2025(1)$	$1707(2)$	$36(1)$
$\mathrm{C}(16)$	$7904(2)$	$-505(1)$	$1875(2)$	$31(1)$
$\mathrm{C}(17)$	$6572(2)$	$-825(2)$	$1276(3)$	$54(1)$
$\mathrm{C}(18)$	$8607(3)$	$-456(1)$	$1047(3)$	$54(1)$
$\mathrm{C}(19)$	$8666(3)$	$-1026(1)$	$2826(2)$	$49(1)$
$\mathrm{C}(20)$	$7185(2)$	$549(1)$	$3603(2)$	$28(1)$
$\mathrm{C}(21)$	$6046(3)$	$71(2)$	$3477(2)$	$44(1)$
$\mathrm{C}(22)$	$8268(2)$	$350(1)$	$4755(2)$	$38(1)$
$\mathrm{C}(21 \mathrm{~B})$	$5597(11)$	$461(6)$	$2933(10)$	$32(2)$
$\mathrm{C}(22 B)$	$7560(12)$	$-34(7)$	$4432(10)$	$37(3)$
$\mathrm{C}(23)$	$6887(3)$	$1352(1)$	$3718(2)$	$47(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 7.

$\mathrm{Si}(1)-\mathrm{O}(1)$	$1.6561(12)$
$\mathrm{Si}(1)-\mathrm{C}(3)$	$1.8722(17)$
$\mathrm{Si}(1)-\mathrm{C}(16)$	$1.9011(18)$
$\mathrm{Si}(1)-\mathrm{C}(20)$	$1.9019(18)$
$\mathrm{Si}(2)-\mathrm{C}(14)$	$1.869(2)$
$\mathrm{Si}(2)-\mathrm{C}(15)$	$1.875(2)$
$\mathrm{Si}(2)-\mathrm{C}(13)$	$1.879(2)$
$\mathrm{Si}(2)-\mathrm{C}(4)$	$1.8916(17)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.4571(19)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.536(2)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.538(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.553(2)$
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.348(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.529(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.522(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.393(2)$
$\mathrm{C}(7)-\mathrm{C}(12)$	$1.397(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.391(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.383(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.386(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.389(3)$
$\mathrm{C}(16)-\mathrm{C}(18)$	$1.530(3)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.532(3)$
$\mathrm{C}(16)-\mathrm{C}(19)$	$1.533(3)$
$\mathrm{C}(20)-\mathrm{C}(22 \mathrm{~B})$	$1.448(12)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.510(3)$
$\mathrm{C}(20)-\mathrm{C}(23)$	$1.522(3)$
$\mathrm{C}(20)-\mathrm{C}(22)$	$1.572(3)$
$\mathrm{C}(20)-\mathrm{C}(21 \mathrm{~B})$	$1.687(11)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(3)$	
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(16)$	$\mathrm{P})$
$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(16)$	$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(20)$

$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(20)$	$111.94(8)$
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{C}(20)$	$116.44(8)$
$\mathrm{C}(14)-\mathrm{Si}(2)-\mathrm{C}(15)$	$106.88(10)$
$\mathrm{C}(14)-\mathrm{Si}(2)-\mathrm{C}(13)$	$109.52(12)$
$\mathrm{C}(15)-\mathrm{Si}(2)-\mathrm{C}(13)$	$106.75(11)$
$\mathrm{C}(14)-\mathrm{Si}(2)-\mathrm{C}(4)$	$112.07(10)$
$\mathrm{C}(15)-\mathrm{Si}(2)-\mathrm{C}(4)$	$109.81(9)$
$\mathrm{C}(13)-\mathrm{Si}(2)-\mathrm{C}(4)$	$111.56(9)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Si}(1)$	$116.33(9)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	$107.27(12)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$104.33(13)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)$	$110.04(14)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$108.23(12)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$	$111.34(13)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$115.10(14)$
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(3)$	$123.02(15)$
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	$126.61(14)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$110.25(13)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Si}(1)$	$104.07(11)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$123.07(15)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{Si}(2)$	$120.99(12)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Si}(2)$	$115.80(12)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	$118.40(15)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(1)$	$122.70(14)$
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(1)$	$118.90(15)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$120.82(16)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$120.34(16)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.36(17)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.53(17)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$120.55(16)$
$\mathrm{C}(18)-\mathrm{C}(16)-\mathrm{C}(17)$	$109.8(2)$
$\mathrm{C}(18)-\mathrm{C}(16)-\mathrm{C}(19)$	$107.3(2)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(19)$	$108.9(2)$
$\mathrm{C}(18)-\mathrm{C}(16)-\mathrm{Si}(1)$	$107.25(14)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{Si}(1)$	$111.62(15)$
$\mathrm{C}(19)-\mathrm{C}(16)-\mathrm{Si}(1)$	$111.94(14)$

$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(20)-\mathrm{C}(21)$	$70.6(5)$
$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(20)-\mathrm{C}(23)$	$130.8(5)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(23)$	$110.94(19)$
$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(20)-\mathrm{C}(22)$	$39.6(5)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(22)$	$108.04(18)$
$\mathrm{C}(23)-\mathrm{C}(20)-\mathrm{C}(22)$	$104.83(18)$
$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(20)-\mathrm{C}(21 \mathrm{~B})$	$106.0(6)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(21 \mathrm{~B})$	$35.7(4)$
$\mathrm{C}(23)-\mathrm{C}(20)-\mathrm{C}(21 \mathrm{~B})$	$84.8(4)$
$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{C}(21 \mathrm{~B})$	$140.5(4)$
$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(20)-\mathrm{Si}(1)$	$114.8(5)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{Si}(1)$	$114.81(15)$
$\mathrm{C}(23)-\mathrm{C}(20)-\mathrm{Si}(1)$	$108.59(13)$
$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{Si}(1)$	$109.16(14)$
$\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(20)-\mathrm{Si}(1)$	$103.4(4)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 7. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Si}(1)$	$20(1)$	$18(1)$	$24(1)$	$0(1)$	$9(1)$	$-2(1)$
$\mathrm{Si}(2)$	$20(1)$	$23(1)$	$29(1)$	$4(1)$	$11(1)$	$1(1)$
$\mathrm{O}(1)$	$19(1)$	$21(1)$	$24(1)$	$0(1)$	$7(1)$	$-4(1)$
$\mathrm{C}(1)$	$20(1)$	$20(1)$	$20(1)$	$-1(1)$	$7(1)$	$-2(1)$
$\mathrm{C}(2)$	$22(1)$	$17(1)$	$19(1)$	$-1(1)$	$8(1)$	$2(1)$
$\mathrm{C}(3)$	$20(1)$	$25(1)$	$21(1)$	$4(1)$	$7(1)$	$0(1)$
$\mathrm{C}(4)$	$22(1)$	$19(1)$	$20(1)$	$1(1)$	$9(1)$	$1(1)$
$\mathrm{C}(5)$	$27(1)$	$35(1)$	$27(1)$	$10(1)$	$12(1)$	$0(1)$
$\mathrm{C}(6)$	$29(1)$	$32(1)$	$19(1)$	$-2(1)$	$7(1)$	$0(1)$
$\mathrm{C}(7)$	$22(1)$	$20(1)$	$17(1)$	$3(1)$	$8(1)$	$2(1)$
$\mathrm{C}(8)$	$21(1)$	$24(1)$	$21(1)$	$0(1)$	$7(1)$	$1(1)$
$\mathrm{C}(9)$	$29(1)$	$23(1)$	$24(1)$	$-3(1)$	$10(1)$	$-2(1)$
$\mathrm{C}(10)$	$32(1)$	$24(1)$	$26(1)$	$2(1)$	$14(1)$	$6(1)$
$\mathrm{C}(11)$	$22(1)$	$32(1)$	$30(1)$	$4(1)$	$10(1)$	$6(1)$
$\mathrm{C}(12)$	$22(1)$	$25(1)$	$28(1)$	$0(1)$	$7(1)$	$-1(1)$
$\mathrm{C}(13)$	$33(1)$	$50(1)$	$28(1)$	$0(1)$	$5(1)$	$-10(1)$
$\mathrm{C}(14)$	$40(1)$	$30(1)$	$62(2)$	$13(1)$	$30(1)$	$13(1)$
$\mathrm{C}(15)$	$27(1)$	$38(1)$	$46(1)$	$10(1)$	$17(1)$	$-2(1)$
$\mathrm{C}(16)$	$32(1)$	$21(1)$	$39(1)$	$-4(1)$	$12(1)$	$-1(1)$
$\mathrm{C}(17)$	$42(1)$	$38(1)$	$73(2)$	$-28(1)$	$8(1)$	$-6(1)$
$\mathrm{C}(18)$	$83(2)$	$33(1)$	$63(2)$	$-11(1)$	$47(2)$	$6(1)$
$\mathrm{C}(19)$	$56(2)$	$23(1)$	$59(2)$	$1(1)$	$10(1)$	$9(1)$
$\mathrm{C}(20)$	$28(1)$	$28(1)$	$33(1)$	$4(1)$	$18(1)$	$0(1)$
$\mathrm{C}(23)$	$71(2)$	$39(1)$	$47(1)$	$-6(1)$	$41(1)$	$-2(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 7.

	x	y	z	U(eq)
H(21A)	5726	185	4080	67
H(21B)	6298	-446	3527	67
H(21C)	5377	164	2742	67
H(22A)	7951	416	5373	57
H(22B)	9001	672	4874	57
H(22C)	8526	-161	4735	57
H(21D)	5400	-38	2637	49
H(21E)	5303	813	2309	49
H(21F)	5167	559	3466	49
H(22D)	7206	60	5020	56
H(22E)	8491	-54	4774	56
H(22F)	7237	-503	4065	56
H(3A)	10100(20)	698(12)	2941(17)	29(5)
H(3B)	9460(20)	1329(13)	3340(20)	40(6)
H(5A)	9120(20)	2482(12)	175(18)	35(6)
H(5B)	10590(20)	2477(14)	430(20)	50(7)
H(5C)	9800(20)	1884(15)	-310(20)	54(7)
H(6A)	6320(20)	1390(12)	-570(18)	34(6)
H(6B)	7440(20)	1896(12)	-654(18)	33(5)
H(6C)	7650 (20)	1039(13)	-493(19)	40(6)
H(8A)	9004(18)	2751(10)	2095(15)	17(4)
H(9A)	8300(20)	3884(12)	2531(18)	35(6)
H(10A)	6090(20)	4101(12)	1957(17)	32(5)
H(11A)	4660(20)	3179(11)	1046(17)	28(5)
H(12A)	5380(20)	2064(12)	638(18)	36(6)
H(13A)	11910(30)	1523(15)	4210(20)	60(8)
H(13B)	13010(30)	1936(17)	4060(30)	76(9)
H(13C)	11790(30)	2340(20)	3740(30)	95(11)
H(14A)	11880(30)	220(16)	2690(20)	68(9)
H(14B)	13140(30)	473(18)	2710(30)	90(11)
H(14C)	12150(30)	357(17)	1640(30)	78(10)

$\mathrm{H}(15 \mathrm{~A})$	$12790(20)$	$2556(14)$	$1709(19)$	$42(6)$
$\mathrm{H}(15 \mathrm{~B})$	$13740(30)$	$1903(14)$	$2210(20)$	$51(7)$
$\mathrm{H}(15 \mathrm{C})$	$12780(30)$	$1876(15)$	$960(20)$	$60(8)$
$\mathrm{H}(17 \mathrm{~A})$	$6630(20)$	$-1291(15)$	$970(20)$	$51(7)$
$\mathrm{H}(17 \mathrm{~B})$	$6140(30)$	$-500(17)$	$690(30)$	$69(9)$
$\mathrm{H}(17 \mathrm{C})$	$6110(30)$	$-881(16)$	$1810(30)$	$69(9)$
$\mathrm{H}(18 \mathrm{~A})$	$8610(30)$	$-957(16)$	$730(20)$	$65(8)$
$\mathrm{H}(18 B)$	$8080(30)$	$-213(16)$	$420(20)$	$57(8)$
$\mathrm{H}(18 \mathrm{C})$	$9530(30)$	$-232(19)$	$1410(30)$	$90(11)$
$\mathrm{H}(19 \mathrm{~A})$	$8720(30)$	$-1518(15)$	$2480(20)$	$60(8)$
$\mathrm{H}(19 B)$	$9550(30)$	$-850(15)$	$3230(20)$	$59(8)$
$\mathrm{H}(19 \mathrm{C})$	$8180(30)$	$-1110(19)$	$3350(30)$	$94(11)$
$\mathrm{H}(23 \mathrm{~A})$	$7600(30)$	$1663(14)$	$3790(20)$	$52(7)$
$\mathrm{H}(23 B)$	$6630(20)$	$1420(13)$	$4370(20)$	$48(7)$
$\mathrm{H}(23 \mathrm{C})$	$6110(40)$	$1540(20)$	$2940(40)$	$111(13)$

Table 6. Torsion angles [${ }^{\circ}$] for 7.

$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$4.82(12)$
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$-111.46(11)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$120.27(11)$
$\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	$-110.37(12)$
$\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$132.89(12)$
$\mathrm{Si}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$9.87(15)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$160.27(15)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$-82.07(19)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$44.0(2)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-23.62(17)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$94.05(15)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-139.85(15)$
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Si}(1)$	$-158.14(14)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Si}(1)$	$25.58(15)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$-17.76(11)$
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$94.66(12)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$-131.48(11)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$-174.51(16)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$1.1(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{Si}(2)$	$1.0(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{Si}(2)$	$176.69(12)$
$\mathrm{C}(14)-\mathrm{Si}(2)-\mathrm{C}(4)-\mathrm{C}(2)$	$66.63(16)$
$\mathrm{C}(15)-\mathrm{Si}(2)-\mathrm{C}(4)-\mathrm{C}(2)$	$-174.74(14)$
$\mathrm{C}(13)-\mathrm{Si}(2)-\mathrm{C}(4)-\mathrm{C}(2)$	$-56.59(16)$
$\mathrm{C}(14)-\mathrm{Si}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$-117.51(15)$
$\mathrm{C}(15)-\mathrm{Si}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$1.12(16)$
$\mathrm{C}(13)-\mathrm{Si}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.27(15)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$132.48(15)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$-114.61(17)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$14.2(2)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$	$-48.10(18)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$	$64.81(19)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)$	$-166.34(14)$
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	

$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$178.42(15)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$0.6(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$0.2(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-0.6(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$0.1(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$0.7(2)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$-178.80(15)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(16)-\mathrm{C}(18)$	$62.87(18)$
$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(16)-\mathrm{C}(18)$	$-41.00(19)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(16)-\mathrm{C}(18)$	$-172.67(17)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	$-57.38(19)$
$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	$-161.24(18)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	$67.1(2)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(16)-\mathrm{C}(19)$	$-179.75(16)$
$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(16)-\mathrm{C}(19)$	$76.39(18)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(16)-\mathrm{C}(19)$	$-55.28(19)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22 \mathrm{~B})$	$161.6(6)$
$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22 \mathrm{~B})$	$-94.3(6)$
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22 \mathrm{~B})$	$37.9(6)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$82.53(17)$
$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$-173.37(16)$
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$-41.19(19)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(23)$	$-42.28(17)$
$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(23)$	$61.82(17)$
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(23)$	$-166.00(15)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22)$	$-156.02(13)$
$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22)$	$-51.93(16)$
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22)$	$80.26(16)$
$\mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21 \mathrm{~B})$	$46.6(4)$
$\mathrm{C}(3)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21 \mathrm{~B})$	$150.7(4)$
$\mathrm{C}(16)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21 \mathrm{~B})$	$-77.1(4)$

B. X-ray Data Collection, Structure Solution and Refinement for Triol 10.

A colorless crystal of approximate dimensions $0.21 \times 0.26 \times 0.38 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker CCD platform diffractometer. The SMART ${ }^{1}$ program package was used to determine the unit-cell parameters and for data collection ($25 \mathrm{sec} /$ frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT^{2} and SADABS 3 to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. The diffraction symmetry was $2 / m$ and the systematic absences were consistent with the centrosymmetric monoclinic space group $P 2_{1} / n$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Hydrogen atoms were located from a difference-Fourier map and refined (x,y,z and $\left.\mathrm{U}_{\mathrm{iso}}\right)$. There were two molecules of the formula unit present $(\mathrm{Z}=8)$. At convergence, wR2 $=$ 0.1033 and Goof $=1.030$ for 531 variables refined against 6341 data $(0.78 \AA), \mathrm{R} 1=0.0389$ for those 4540 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$.

References.
6. SMART Software Users Guide, Version 5.1, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
7. SAINT Software Users Guide, Version 6.0, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 1999.
8. Sheldrick, G. M. SADABS, Version 2.10, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2002.
9. Sheldrick, G. M. SHELXTL Version 6.12, Bruker Analytical X-Ray Systems, Inc.; Madison, WI 2001.
10. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.

Definitions:

$\mathrm{wR} 2=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$
$\mathrm{R} 1=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$
Goof $=\mathrm{S}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}\right] /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Table 1. Crystal data and structure refinement for 10.

Identification code	kaw111 (Janice Loy)
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3}$
Formula weight	244.36
Temperature	158(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$P 2{ }_{1} / n$
Unit cell dimensions	$a=11.9103(11) \AA \quad \alpha=90^{\circ}$.
	$b=19.0369(17) \AA \quad \beta=91.289(2)^{\circ}$.
	$\mathrm{c}=12.6994(11) \AA \quad \gamma=90^{\circ}$.
Volume	2878.7(4) \AA^{3}
Z	8
Density (calculated)	$1.128 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.077 \mathrm{~mm}^{-1}$
F(000)	1088
Crystal color	colorless
Crystal size	$0.38 \times 0.26 \times 0.21 \mathrm{~mm}^{3}$
Theta range for data collection	1.93 to 27.10°
Index ranges	$-15 \leq h \leq 15,-24 \leq k \leq 24,-16 \leq l \leq 16$
Reflections collected	29465
Independent reflections	$6341[\mathrm{R}(\mathrm{int})=0.0448]$
Completeness to theta $=27.10^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9841 and 0.9714
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6341 / 0 / 531
Goodness-of-fit on F^{2}	1.030
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})=4540$ data]	$\mathrm{R} 1=0.0389, \mathrm{wR} 2=0.0867$
R indices (all data; 0.78A)	$\mathrm{R} 1=0.0674, \mathrm{wR} 2=0.1033$
Largest diff. peak and hole	0.270 and -0.204 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for $\mathbf{1 0}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$6740(1)$	$382(1)$	$6560(1)$	$23(1)$
$\mathrm{O}(2)$	$5715(1)$	$-77(1)$	$8475(1)$	$25(1)$
$\mathrm{O}(3)$	$5891(1)$	$-1330(1)$	$9453(1)$	$20(1)$
$\mathrm{C}(1)$	$8537(1)$	$341(1)$	$7376(1)$	$27(1)$
$\mathrm{C}(2)$	$7293(1)$	$375(1)$	$7581(1)$	$20(1)$
$\mathrm{C}(3)$	$6844(1)$	$-253(1)$	$8201(1)$	$19(1)$
$\mathrm{C}(4)$	$7502(1)$	$-554(1)$	$9159(1)$	$16(1)$
$\mathrm{C}(5)$	$7092(1)$	$-1323(1)$	$9329(1)$	$17(1)$
$\mathrm{C}(6)$	$7357(1)$	$-1843(1)$	$8446(1)$	$20(1)$
$\mathrm{C}(7)$	$7007(2)$	$-2587(1)$	$8749(2)$	$29(1)$
$\mathrm{C}(8)$	$8594(1)$	$-1831(1)$	$8167(2)$	$28(1)$
$\mathrm{C}(9)$	$7460(1)$	$-131(1)$	$10200(1)$	$18(1)$
$\mathrm{C}(10)$	$8314(1)$	$-419(1)$	$11017(1)$	$26(1)$
$\mathrm{C}(11)$	$8306(2)$	$-18(1)$	$12058(1)$	$26(1)$
$\mathrm{C}(12)$	$8524(2)$	$759(1)$	$11892(1)$	$29(1)$
$\mathrm{C}(13)$	$7674(2)$	$1056(1)$	$11107(1)$	$31(1)$
$\mathrm{C}(14)$	$7666(2)$	$657(1)$	$10062(1)$	$27(1)$
$\mathrm{O}(4)$	$4617(1)$	$1205(1)$	$8475(1)$	$23(1)$
$\mathrm{O}(5)$	$4408(1)$	$554(1)$	$6589(1)$	$21(1)$
$\mathrm{O}(6)$	$2751(1)$	$450(1)$	$5171(1)$	$24(1)$
$\mathrm{C}(15)$	$3925(1)$	$2295(1)$	$7857(1)$	$23(1)$
$\mathrm{C}(16)$	$4494(1)$	$1618(1)$	$7537(1)$	$18(1)$
$\mathrm{C}(17)$	$3818(1)$	$1206(1)$	$6713(1)$	$18(1)$
$\mathrm{C}(18)$	$3594(1)$	$1578(1)$	$5653(1)$	$16(1)$
$\mathrm{C}(19)$	$2633(1)$	$1197(1)$	$5032(1)$	$19(1)$
$\mathrm{C}(20)$	$1461(1)$	$1438(1)$	$5372(1)$	$26(1)$
$\mathrm{C}(21)$	$536(2)$	$974(1)$	$4897(2)$	$39(1)$
$\mathrm{C}(22)$	$1248(2)$	$2200(1)$	$5057(2)$	$37(1)$
$\mathrm{C}(23)$	$4646(1)$	$1731(1)$	$4993(1)$	$18(1)$
$\mathrm{C}(24)$	$4436(1)$	$2381(1)$	$4297(1)$	$22(1)$
$\mathrm{C}(25)$	$5444(1)$	$2574(1)$	$3633(1)$	$27(1)$

$\mathrm{C}(26)$	$5838(1)$	$1951(1)$	$2981(1)$	$26(1)$
$\mathrm{C}(27)$	$6081(1)$	$1319(1)$	$3679(1)$	$25(1)$
$\mathrm{C}(28)$	$5056(1)$	$1116(1)$	$4317(1)$	$21(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1 0}$.

$\mathrm{O}(1)-\mathrm{C}(2)$	$1.4412(17)$
$\mathrm{O}(2)-\mathrm{C}(3)$	$1.4356(17)$
$\mathrm{O}(3)-\mathrm{C}(5)$	$1.4426(17)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.511(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.534(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5439(19)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.5488(19)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.5592(19)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.5344(19)$
$\mathrm{C}(6)-\mathrm{C}(8)$	$1.524(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.528(2)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.532(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.537(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.527(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.518(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.514(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.529(2)$
$\mathrm{O}(4)-\mathrm{C}(16)$	$1.4314(17)$
$\mathrm{O}(5)-\mathrm{C}(17)$	$1.4364(17)$
$\mathrm{O}(6)-\mathrm{C}(19)$	$1.4382(17)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.516(2)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.524(2)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.530(2)$
$\mathrm{C}(18)-\mathrm{C}(23)$	$1.5395(19)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.5497(19)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.5559(19)$
$\mathrm{C}(20)-\mathrm{C}(22)$	$1.541(2)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.524(3)$
$\mathrm{C}(23)-\mathrm{C}(28)$	$1.537(27(2)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$\mathrm{l})$
$\mathrm{C}(24)-\mathrm{C}(25)$	$\mathrm{l})$
$\mathrm{C}(25)-\mathrm{C}(26)$	C

$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$106.04(12)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$108.12(12)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$114.21(13)$
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	$106.41(11)$
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$110.93(11)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121.15(12)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	$116.97(12)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$107.63(11)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)$	$110.69(11)$
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$107.12(11)$
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(4)$	$109.82(11)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$115.73(12)$
$\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{C}(7)$	$110.07(13)$
$\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{C}(5)$	$112.15(12)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$110.62(13)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	$108.69(13)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(4)$	$113.79(12)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(4)$	$110.92(12)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$112.92(13)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$111.28(14)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$109.93(14)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$112.19(15)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$112.63(13)$
$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{C}(15)$	$106.37(12)$
$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{C}(17)$	$109.34(12)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$112.87(12)$
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(16)$	$105.50(11)$
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)$	$112.23(11)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$116.21(12)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	$115.65(11)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$109.80(11)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)$	$114.05(11)$
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(20)$	$110.27(12)$
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(18)$	$109.29(11)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$112.26(12)$

$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{C}(21)$	$109.43(15)$
$\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{C}(19)$	$110.91(14)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$111.50(14)$
$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{C}(24)$	$109.95(12)$
$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{C}(18)$	$115.51(12)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(18)$	$109.79(12)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$113.04(13)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$111.60(13)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$110.80(13)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$111.43(13)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(23)$	$111.78(13)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 10. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$29(1)$	$25(1)$	$16(1)$	$2(1)$	$0(1)$	$3(1)$
$\mathrm{O}(2)$	$20(1)$	$25(1)$	$30(1)$	$11(1)$	$1(1)$	$3(1)$
$\mathrm{O}(3)$	$21(1)$	$24(1)$	$16(1)$	$0(1)$	$3(1)$	$-1(1)$
$\mathrm{C}(1)$	$30(1)$	$31(1)$	$21(1)$	$5(1)$	$4(1)$	$-1(1)$
$\mathrm{C}(2)$	$27(1)$	$19(1)$	$15(1)$	$1(1)$	$1(1)$	$1(1)$
$\mathrm{C}(3)$	$22(1)$	$18(1)$	$17(1)$	$0(1)$	$0(1)$	$2(1)$
$\mathrm{C}(4)$	$17(1)$	$16(1)$	$16(1)$	$-1(1)$	$1(1)$	$2(1)$
$\mathrm{C}(5)$	$19(1)$	$16(1)$	$17(1)$	$1(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(6)$	$24(1)$	$17(1)$	$19(1)$	$-2(1)$	$-1(1)$	$2(1)$
$\mathrm{C}(7)$	$37(1)$	$18(1)$	$33(1)$	$-3(1)$	$3(1)$	$-1(1)$
$\mathrm{C}(8)$	$30(1)$	$22(1)$	$33(1)$	$-4(1)$	$7(1)$	$5(1)$
$\mathrm{C}(9)$	$20(1)$	$17(1)$	$16(1)$	$-1(1)$	$1(1)$	$1(1)$
$\mathrm{C}(10)$	$30(1)$	$23(1)$	$24(1)$	$-4(1)$	$-7(1)$	$4(1)$
$\mathrm{C}(11)$	$32(1)$	$25(1)$	$19(1)$	$-1(1)$	$-6(1)$	$-3(1)$
$\mathrm{C}(12)$	$38(1)$	$27(1)$	$21(1)$	$-5(1)$	$2(1)$	$-13(1)$
$\mathrm{C}(13)$	$55(1)$	$16(1)$	$21(1)$	$-3(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(14)$	$43(1)$	$19(1)$	$19(1)$	$-1(1)$	$2(1)$	$-2(1)$
$\mathrm{O}(4)$	$32(1)$	$21(1)$	$14(1)$	$2(1)$	$1(1)$	$7(1)$
$\mathrm{O}(5)$	$30(1)$	$15(1)$	$19(1)$	$-2(1)$	$-3(1)$	$4(1)$
$\mathrm{O}(6)$	$32(1)$	$18(1)$	$21(1)$	$-3(1)$	$2(1)$	$-4(1)$
$\mathrm{C}(15)$	$28(1)$	$21(1)$	$20(1)$	$-4(1)$	$-3(1)$	$3(1)$
$\mathrm{C}(16)$	$21(1)$	$19(1)$	$14(1)$	$2(1)$	$1(1)$	$1(1)$
$\mathrm{C}(17)$	$20(1)$	$15(1)$	$19(1)$	$1(1)$	$2(1)$	$2(1)$
$\mathrm{C}(18)$	$20(1)$	$15(1)$	$15(1)$	$-2(1)$	$1(1)$	$2(1)$
$\mathrm{C}(19)$	$21(1)$	$20(1)$	$17(1)$	$0(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(20)$	$21(1)$	$35(1)$	$21(1)$	$-4(1)$	$2(1)$	$0(1)$
$\mathrm{C}(21)$	$21(1)$	$44(1)$	$51(1)$	$-6(1)$	$3(1)$	$-6(1)$
$\mathrm{C}(22)$	$25(1)$	$36(1)$	$49(1)$	$-6(1)$	$-5(1)$	$8(1)$
$\mathrm{C}(23)$	$19(1)$	$19(1)$	$16(1)$	$0(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(24)$	$28(1)$	$19(1)$	$19(1)$	$0(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(25)$	$33(1)$	$24(1)$	$24(1)$	$2(1)$	$3(1)$	$-8(1)$

$\mathrm{C}(26)$	$26(1)$	$31(1)$	$20(1)$	$-3(1)$	$6(1)$	$-9(1)$
$\mathrm{C}(27)$	$22(1)$	$30(1)$	$23(1)$	$-5(1)$	$5(1)$	$-1(1)$
$\mathrm{C}(28)$	$23(1)$	$20(1)$	$20(1)$	$0(1)$	$2(1)$	$1(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 10.

	x	y	z	U(eq)
H(1)	6046(17)	436(10)	6630(15)	34(5)
H(2)	5472(17)	-435(11)	8784(17)	48(6)
H(3)	5761(14)	-1313(9)	10092(15)	28(5)
H(1A)	8994(15)	396(9)	8036(14)	31(5)
H(1B)	8750(15)	-103(10)	$7045(14)$	34(5)
$\mathrm{H}(1 \mathrm{C})$	8743(15)	706(10)	6889(15)	36(5)
H(2A)	7087(13)	806(8)	7939(12)	17(4)
H(3A)	6803(12)	-637(8)	7664(12)	17(4)
H(4A)	8291(13)	-578(7)	8974(11)	11(3)
H(5A)	7454(12)	-1509(8)	9980(12)	14(4)
H(6A)	6912(13)	-1699(8)	7825(13)	22(4)
H(7A)	6221(18)	-2599(10)	8885(15)	44(6)
H(7B)	7412(16)	-2741(10)	9385(16)	41(5)
H(7C)	7149(16)	-2932(11)	8149(16)	44(5)
H(8A)	8836(16)	-1385(11)	7824(15)	42(5)
H(8B)	8751(16)	-2207(11)	7668(15)	41(5)
H (8C)	9079(15)	-1893(9)	8790(15)	35(5)
H(9A)	6713(14)	-181(8)	10492(12)	23(4)
H(10A)	9050(16)	-374(9)	10700(14)	33(5)
H(10B)	8184(15)	-913(10)	11138(14)	36(5)
H(11A)	7551(15)	-70(9)	12372(13)	26(4)
H(11B)	8858(16)	-217(10)	12566(15)	35(5)
H(12A)	8512(15)	999(10)	12570(15)	35(5)
H(12B)	9287(16)	822(10)	11623(14)	38(5)
H(13A)	6903(15)	1028(9)	11389(13)	29(5)
H(13B)	7836(15)	1557(11)	10975(15)	40(5)
H(14A)	8391(16)	731(9)	9727(14)	34(5)
H(14B)	7098(15)	857(9)	9606(14)	30(5)
H(4)	4907(17)	841(11)	8339(15)	37(6)
H(5)	4036(18)	339(11)	6157(17)	44(6)

H(6)	2843(17)	239(11)	4570(17)	48(6)
H(15A)	3914(14)	2641(9)	7278(14)	31(5)
H(15B)	4337(15)	2505(9)	8464(14)	31(5)
H(15C)	3160(16)	2194(9)	8069(13)	31(5)
H(16A)	5245(13)	1723(8)	7264(12)	16(4)
H(17A)	3074(12)	1101(7)	7035(11)	11(4)
H(18A)	3299(12)	2024(8)	5847(11)	13(4)
H(19A)	2689(12)	1308(7)	4264(12)	12(4)
H(20A)	1436(14)	1393(9)	6160(14)	29(4)
H(21A)	669(17)	501(11)	5109(16)	46(6)
H(21B)	524(16)	1011(10)	4097(17)	41(5)
H(21C)	-195(18)	1146(11)	5128(16)	47(6)
H(22A)	498(18)	2348(10)	5262(15)	46(6)
H(22B)	1315(18)	2236(11)	4282(19)	57(7)
H(22C)	1780(20)	2532(12)	5366(18)	65(7)
H(23A)	5274(13)	1861(8)	5511(12)	16(4)
H(24B)	3779(15)	2289(9)	3819(14)	31(5)
H(24A)	4247(14)	2781(9)	4749(13)	27(4)
H(25A)	6062(15)	2737(9)	4113(13)	28(4)
H(25B)	5248(15)	2990(10)	3173(14)	35(5)
H(26A)	5240(14)	1841(9)	2440(14)	28(4)
H(26B)	6491(15)	2084(9)	2581(14)	31(5)
H(27A)	6329(14)	920(9)	3246(13)	29(4)
H(27B)	6715(14)	1425(8)	4169(13)	22(4)
H(28A)	4447(15)	964(9)	3815(14)	30(5)
H(28B)	5189(14)	712(10)	4766(14)	30(5)

Table 6. Torsion angles [${ }^{\circ}$] for $\mathbf{1 0}$.

$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$	$-71.89(14)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(2)$	$170.35(12)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$160.29(12)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$42.52(19)$
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	$-49.65(16)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	$76.14(17)$
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$75.64(14)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-158.58(12)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(3)$	$-56.06(14)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(3)$	$72.90(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$65.34(15)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-165.71(12)$
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$	$174.51(12)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$	$51.67(17)$
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-62.18(15)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$174.98(13)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(14)$	$-46.87(18)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(14)$	$-170.61(13)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$-169.79(13)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$66.47(15)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$54.09(18)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$179.92(13)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-56.85(19)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$55.96(19)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-55.8(2)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$55.9(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$-53.20(19)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$-177.34(14)$
$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(5)$	$-55.66(14)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(5)$	$-173.84(12)$
$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$179.30(11)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$61.12(17)$
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	$-56.17(16)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	$65.36)$

$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$74.62(14)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-163.84(12)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(6)$	$-39.03(15)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(6)$	$92.61(14)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$83.65(15)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$-144.71(13)$
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(22)$	$-170.34(13)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(22)$	$67.54(17)$
$\mathrm{O}(6)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$-48.11(18)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$-170.23(14)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(28)$	$82.93(15)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(28)$	$-45.81(17)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(24)$	$-152.08(12)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(24)$	$79.18(15)$
$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$-52.80(17)$
$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$179.07(12)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$53.80(18)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$-54.77(18)$
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$56.56(18)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(23)$	$-56.99(17)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(27)$	$53.98(17)$
$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(27)$	$178.89(12)$

C. X-ray Data Collection, Structure Solution and Refinement for Carbamate (+)-13.

A colorless crystal of approximate dimensions $0.12 \times 0.16 \times 0.33 \mathrm{~mm}$ was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2 ${ }^{1}$ program package was used to determine the unit-cell parameters and for data collection ($20 \mathrm{sec} /$ frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT ${ }^{2}$ and SADABS 3 to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. The diffraction symmetry was $2 / m$ and the systematic absences were consistent with the monoclinic space groups $P 2_{1}$ and $P 2_{1} / m$. It was later determined that the noncentrosymmetric space group $P 2_{1}$ was correct.

The structure was solved by direct methods and refined on F^{2} by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analysis. Hydrogen atoms were either located from a difference-Fourier map and refined (x,y,z and $\mathrm{U}_{\mathrm{iso}}$) or were included using a riding model (mixed hydrogen atom treatment).

At convergence, $\mathrm{wR} 2=0.0798$ and Goof $=1.045$ for 360 variables refined against 4982 data $(0.75 \AA), \mathrm{R} 1=0.0303$ for those 4780 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$. The absolute structure could not be assigned by inversion of the model or by refinement of the Flack parameter ${ }^{6}$.

(+)-13

References.
11. APEX2 Version 2008.3-0, or (Version 2.2-0) Bruker AXS, Inc.; Madison, WI 2008.
12. SAINT Version 7.53a, Bruker AXS, Inc.; Madison, WI 2007.
13. Sheldrick, G. M. SADABS, Version 2007/4, Bruker AXS, Inc.; Madison, WI 2007.
14. Sheldrick, G. M. SHELXTL, Version 6.12, Bruker AXS, Inc.; Madison, WI 2001.
15. International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
16. Flack, H. D. Acta. Cryst., A39, 876-881, 1983.

Definitions:

$$
\mathrm{wR} 2=\left[\Sigma\left[\mathrm{w}\left(\mathrm{~F}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)^{2}\right]\right]^{1 / 2}
$$

$\mathrm{R} 1=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$
Goof $=\mathrm{S}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.

Table 1. Crystal data and structure refinement for $(+)-\mathbf{1 3}$.

Identification code	kaw132 (Kay Buchner)
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{2}$
Formula weight	357.52
Temperature	103(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$P 2_{1}$
Unit cell dimensions	$\mathrm{a}=5.2823(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=15.4651(6) \AA \quad \beta=100.7230(4)^{\circ}$.
	$\mathrm{c}=13.0625(5) \AA \quad \gamma=90^{\circ}$.
Volume	1048.46(7) \AA^{3}
Z	2
Density (calculated)	$1.132 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.071 \mathrm{~mm}^{-1}$
F(000)	392
Crystal color	colorless
Crystal size	$0.33 \times 0.16 \times 0.12 \mathrm{~mm}^{3}$
Theta range for data collection	1.59 to 28.30°
Index ranges	$-6 \leq h \leq 7,-20 \leq k \leq 20,-17 \leq l \leq 17$
Reflections collected	12542
Independent reflections	$4982[\mathrm{R}(\mathrm{int})=0.0171]$
Completeness to theta $=28.30^{\circ}$	98.2 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9914 and 0.9772
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4982 / 1 / 360
Goodness-of-fit on F^{2}	1.045
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})=4780$ data]	$\mathrm{R} 1=0.0303, \mathrm{wR} 2=0.0786$
R indices (all data, $0.75 \AA$)	$\mathrm{R} 1=0.0319, w R 2=0.0798$
Largest diff. peak and hole	0.227 and -0.184 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for $(+)-\mathbf{1 3} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$5909(1)$	$8222(1)$	$2377(1)$	$15(1)$
$\mathrm{O}(2)$	$9393(1)$	$8125(1)$	$3698(1)$	$19(1)$
$\mathrm{N}(1)$	$5298(2)$	$8004(1)$	$3998(1)$	$15(1)$
$\mathrm{C}(1)$	$5308(2)$	$9270(1)$	$-1485(1)$	$25(1)$
$\mathrm{C}(2)$	$3584(2)$	$9114(1)$	$-713(1)$	$18(1)$
$\mathrm{C}(3)$	$4255(2)$	$9056(1)$	$319(1)$	$14(1)$
$\mathrm{C}(4)$	$6930(2)$	$9110(1)$	$978(1)$	$12(1)$
$\mathrm{C}(5)$	$7577(2)$	$8264(1)$	$1599(1)$	$13(1)$
$\mathrm{C}(6)$	$7068(2)$	$8121(1)$	$3386(1)$	$14(1)$
$\mathrm{C}(7)$	$6085(2)$	$8038(1)$	$5134(1)$	$14(1)$
$\mathrm{C}(8)$	$4161(2)$	$7536(1)$	$5645(1)$	$18(1)$
$\mathrm{C}(9)$	$7237(2)$	$9919(1)$	$1692(1)$	$14(1)$
$\mathrm{C}(10)$	$6532(2)$	$10749(1)$	$1061(1)$	$18(1)$
$\mathrm{C}(11)$	$6766(2)$	$11553(1)$	$1761(1)$	$21(1)$
$\mathrm{C}(12)$	$9446(2)$	$11632(1)$	$2435(1)$	$18(1)$
$\mathrm{C}(13)$	$10204(2)$	$10806(1)$	$3050(1)$	$20(1)$
$\mathrm{C}(14)$	$9967(2)$	$10015(1)$	$2332(1)$	$18(1)$
$\mathrm{C}(15)$	$7170(2)$	$7431(1)$	$960(1)$	$15(1)$
$\mathrm{C}(16)$	$8860(2)$	$7418(1)$	$130(1)$	$20(1)$
$\mathrm{C}(17)$	$7762(3)$	$6639(1)$	$1659(1)$	$26(1)$
$\mathrm{C}(18)$	$6364(2)$	$8965(1)$	$5532(1)$	$15(1)$
$\mathrm{C}(19)$	$8588(2)$	$9222(1)$	$6211(1)$	$20(1)$
$\mathrm{C}(20)$	$8830(2)$	$10064(1)$	$6596(1)$	$23(1)$
$\mathrm{C}(21)$	$6847(2)$	$10654(1)$	$6311(1)$	$22(1)$
$\mathrm{C}(22)$	$4601(2)$	$10397(1)$	$5640(1)$	$21(1)$
$\mathrm{C}(23)$	$4372(2)$	$9558(1)$	$5255(1)$	$19(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $(+)-\mathbf{1 3}$.

$\mathrm{O}(1)-\mathrm{C}(6)$	1.3554(13)
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.4645(12)$
$\mathrm{O}(2)-\mathrm{C}(6)$	1.2201(13)
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.3505(13)$
$\mathrm{N}(1)-\mathrm{C}(7)$	1.4661(13)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.4983(16)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.3319(15)$
$\mathrm{C}(3)-\mathrm{C}(4)$	1.5142(14)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.5440(14)
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.5505(14)$
$\mathrm{C}(5)-\mathrm{C}(15)$	$1.5284(15)$
$\mathrm{C}(7)-\mathrm{C}(18)$	$1.5225(15)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.5273(14)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.5339(15)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.5345(15)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.5343(16)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.5267(16)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.5237(16)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.5318(16)$
$\mathrm{C}(15)-\mathrm{C}(17)$	$1.5253(16)$
$\mathrm{C}(15)-\mathrm{C}(16)$	1.5270(15)
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.3917(15)$
$\mathrm{C}(18)-\mathrm{C}(23)$	1.3920(16)
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.3929(17)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.3868(18)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.3946(18)$
$\mathrm{C}(22)-\mathrm{C}(23)$	1.3887(17)
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(5)$	117.30(8)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)$	119.84(9)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	127.68(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	128.03(10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	110.10(8)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	111.64(8)

$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	$112.26(8)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(15)$	$107.44(8)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$107.39(8)$
$\mathrm{C}(15)-\mathrm{C}(5)-\mathrm{C}(4)$	$115.62(8)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{N}(1)$	$124.60(10)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{O}(1)$	$124.63(9)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{O}(1)$	$110.77(9)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(18)$	$111.75(8)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$109.74(9)$
$\mathrm{C}(18)-\mathrm{C}(7)-\mathrm{C}(8)$	$111.07(9)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	$108.74(9)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(4)$	$112.86(8)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(4)$	$111.33(9)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$111.93(9)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$111.85(9)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$111.17(10)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$111.36(9)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$111.85(9)$
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(16)$	$109.39(10)$
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(5)$	$111.00(9)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(5)$	$110.95(9)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)$	$118.99(10)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(7)$	$120.22(10)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(7)$	$120.75(10)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$120.49(11)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.24(12)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$119.53(11)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$120.04(11)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$	$120.70(11)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $(+)$-13. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	$13(1)$	$20(1)$	$11(1)$	$2(1)$	$3(1)$	$-1(1)$
$\mathrm{O}(2)$	$14(1)$	$28(1)$	$14(1)$	$2(1)$	$2(1)$	$-1(1)$
$\mathrm{N}(1)$	$12(1)$	$20(1)$	$12(1)$	$0(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(1)$	$24(1)$	$35(1)$	$15(1)$	$4(1)$	$2(1)$	$5(1)$
$\mathrm{C}(2)$	$14(1)$	$20(1)$	$18(1)$	$-1(1)$	$-1(1)$	$2(1)$
$\mathrm{C}(3)$	$12(1)$	$14(1)$	$17(1)$	$-1(1)$	$2(1)$	$0(1)$
$\mathrm{C}(4)$	$12(1)$	$14(1)$	$11(1)$	$1(1)$	$1(1)$	$1(1)$
$\mathrm{C}(5)$	$12(1)$	$16(1)$	$11(1)$	$0(1)$	$2(1)$	$0(1)$
$\mathrm{C}(6)$	$17(1)$	$12(1)$	$12(1)$	$-1(1)$	$3(1)$	$-1(1)$
$\mathrm{C}(7)$	$15(1)$	$17(1)$	$11(1)$	$1(1)$	$2(1)$	$0(1)$
$\mathrm{C}(8)$	$19(1)$	$19(1)$	$15(1)$	$2(1)$	$5(1)$	$-1(1)$
$\mathrm{C}(9)$	$13(1)$	$15(1)$	$13(1)$	$-1(1)$	$3(1)$	$0(1)$
$\mathrm{C}(10)$	$19(1)$	$15(1)$	$17(1)$	$0(1)$	$-2(1)$	$1(1)$
$\mathrm{C}(11)$	$20(1)$	$16(1)$	$25(1)$	$-4(1)$	$0(1)$	$3(1)$
$\mathrm{C}(12)$	$20(1)$	$16(1)$	$18(1)$	$-3(1)$	$3(1)$	$-2(1)$
$\mathrm{C}(13)$	$22(1)$	$19(1)$	$16(1)$	$-2(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(14)$	$17(1)$	$16(1)$	$17(1)$	$-1(1)$	$-3(1)$	$1(1)$
$\mathrm{C}(15)$	$14(1)$	$15(1)$	$14(1)$	$1(1)$	$1(1)$	$0(1)$
$\mathrm{C}(16)$	$21(1)$	$18(1)$	$23(1)$	$-5(1)$	$9(1)$	$-1(1)$
$\mathrm{C}(17)$	$42(1)$	$15(1)$	$21(1)$	$2(1)$	$4(1)$	$0(1)$
$\mathrm{C}(18)$	$17(1)$	$17(1)$	$11(1)$	$0(1)$	$5(1)$	$-2(1)$
$\mathrm{C}(19)$	$17(1)$	$22(1)$	$19(1)$	$-2(1)$	$1(1)$	$2(1)$
$\mathrm{C}(20)$	$20(1)$	$26(1)$	$23(1)$	$-6(1)$	$0(1)$	$-3(1)$
$\mathrm{C}(21)$	$27(1)$	$16(1)$	$22(1)$	$-1(1)$	$5(1)$	$-2(1)$
$\mathrm{C}(22)$	$23(1)$	$18(1)$	$20(1)$	$4(1)$	$2(1)$	$3(1)$
$\mathrm{C}(23)$	$19(1)$	$21(1)$	$17(1)$	$2(1)$	$0(1)$	$0(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for (+)-13.

	x	y	z	U(eq)
H(1A)	4651	9760	-1932	37
H(1B)	5348	8752	-1914	37
H(1C)	7054	9401	-1113	37
H(7A)	7802	7749	5326	17
H(1)	3800(30)	8075(10)	3749(11)	16(3)
H(2)	1800(30)	9038(11)	-1025(12)	27(4)
H(3)	2930(30)	8946(9)	721(10)	14(3)
H(4)	8180(30)	9166(9)	516(11)	14(3)
H(5)	9310(30)	8259(9)	1957(10)	12(3)
H(8A)	4680(30)	7563(9)	6395(11)	14(3)
H(8B)	2420(30)	7812(10)	5478(12)	26(4)
H(8C)	4070(30)	6936(11)	5428(12)	22(4)
H(9)	6020(30)	9842(10)	2167(12)	17(3)
H(10A)	4830(30)	10718(11)	651(12)	24(4)
H(10B)	7720 (30)	10804(11)	534(12)	28(4)
H(11A)	5500(30)	11509(11)	2222(13)	29(4)
H(11B)	6370(30)	12063(11)	1345(13)	27(4)
$\mathrm{H}(12 \mathrm{~A})$	9490(30)	12135(10)	2919(12)	17(3)
H(12B)	10720(30)	11750(11)	2027(14)	29(4)
H(13A)	9120(30)	10721(11)	3581(12)	24(4)
H(13B)	11960(30)	10847(12)	3444(14)	34(4)
H(14A)	11150(30)	10090(10)	1808(13)	28(4)
H(14B)	10470(30)	9467(11)	2751(13)	26(4)
H(15)	5460(30)	7389(10)	648(11)	15(3)
H(16A)	8770(30)	6864(10)	-225(12)	21(4)
H(16B)	10660(40)	7486(13)	454(15)	42(5)
H(16C)	8390(30)	7860 (11)	-394(13)	29(4)
H(17A)	7560(30)	6098(13)	1274(14)	38(5)
H(17B)	6570(30)	6600(12)	2177(14)	33(4)
H(17C)	9640(40)	6646(14)	2021(16)	47(5)

$\mathrm{H}(19)$	$9990(30)$	$8827(11)$	$6396(12)$	$24(4)$
$\mathrm{H}(20)$	$10460(30)$	$10244(11)$	$7062(14)$	$31(4)$
$\mathrm{H}(21)$	$6990(30)$	$11217(11)$	$6538(12)$	$22(4)$
$\mathrm{H}(22)$	$3140(30)$	$10802(10)$	$5438(11)$	$21(4)$
$\mathrm{H}(23)$	$2830(30)$	$9383(9)$	$4812(11)$	$17(3)$

Table 6. Torsion angles [${ }^{\circ}$] for (+)-13.

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-1.62(19)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-119.92(12)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	$114.69(12)$
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(15)$	$109.91(10)$
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$-125.11(9)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$-68.43(10)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$56.61(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(15)$	$51.47(11)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(15)$	$176.51(8)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{O}(2)$	$11.90(16)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{O}(1)$	$-168.93(9)$
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{O}(2)$	$5.54(15)$
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{N}(1)$	$-173.63(9)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(18)$	$79.78(12)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$-156.55(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(14)$	$-177.30(9)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(14)$	$58.51(11)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$-54.68(11)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$-178.87(9)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-56.38(12)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$178.66(9)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$55.50(13)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-53.39(14)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$54.03(13)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$-57.07(13)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$57.28(12)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$-178.67(9)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(15)-\mathrm{C}(17)$	$-57.79(11)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(15)-\mathrm{C}(17)$	$-177.66(10)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	$-179.64(9)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	$60.49(12)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(18)-\mathrm{C}(19)$	$-129.94(10)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(18)-\mathrm{C}(19)$	$52.15(11)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(18)-\mathrm{C}(23)$	

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(18)-\mathrm{C}(23)$	$-70.49(12)$
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$-0.85(16)$
$\mathrm{C}(7)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$-178.53(10)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$0.37(18)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$0.35(19)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$-0.57(18)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$	$0.08(18)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	$0.63(16)$
$\mathrm{C}(7)-\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	$178.30(10)$

References and Notes

(1) Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 7320-7321.
(2) Myers, A. G.; Zheng, B.; Movassaghi, M. J. Org. Chem. 1997, 62, 7507.
(3) Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466-12476.
(4) Price, W. A.; Patten, T. E. J. Chem. Educ. 1991, 68, 256-257.
(5) Eichberg, M. J.; Dorta, R. L.; Grotjahn, D. B.; Lamottke, K.; Schmidt, M.; Vollhardt, K. P. C. J. Am. Chem. Soc. 2001, 123, 9324-9337.
(6) Ikawa, T.; Hattori, K.; Sajiki, H.; Hirota, K. Tetrahedron 2004, 60, 6901-6911.
(7) Tanino, K.; Honda, Y.; Miyashita, M. Tetrahedron Lett. 2000, 41, 9281-9285.
(8) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492-4493.
(9) Danheiser, R. L.; Choi, Y. M.; Menichincheri, M.; Stoner, E. J. J. Org. Chem. 1993, 58, 322-327.
(10) Favorskaya, I. A.; Nikitina, A. A. Zh. Org. Khim. 1965, 1, 2094-2097.
(11) Nonoshita, K.; Banno, H.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112, 316322.
(12) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978-15979.
(13) Yang, Y.; Ramamorrthy, V.; Sharp, P. R. Inorg. Chem. 1993, 32, 1946-1950.
(14) Hailes, H. C.; Issac, B.; Javaid, M. H. Synth. Commun. 2003, 33, 29-41.
(15) Boudjouk, P.; Samaraweera, U.; Sooriyakumaran, R.; Chrusciel, J.; Anderson, K. R. Angew. Chem. Int. Ed. Engl. 1988, 27, 1355-1356.
(16) Driver, T. G.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125, 10659-10663.
(17) The yields of each regioisomer were monitored closely by ${ }^{1} \mathrm{H}$ NMR spectroscopy vs. an internal standard. The yield of the major isomer remained constant while that of the minor isomer decreased, indicating decomposition and not isomerization of the minor isomer.
(18) Carbonyl insertion with ketones and aldehydes tended to favor allylic transposition except in the case of silacyclopropane $\mathbf{3 b}$. Presumably, the exocyclic vinyl silane stabilizes the double bond which inhibits allylic transposition in favor of $\mathrm{Si}-\mathrm{C}\left(s p^{2}\right)$ bond cleavage.
(19) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549.
(20) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512-519.
(21) Yakelis, N. A.; Roush, W. R. J. Org. Chem. 2003, 68, 3838-3843.
(22) Eliel, E. L.; Wilen, S. H.; Mander, L. N., Stereochemistry of Organic Compounds Wiley: New York, 1994; pp. 1091, 1129-1130.
(23) Heitzman, C. L.; Lambert, W. T.; Mertz, E.; Shotwell, J. B.; Tinsley, J. M.; Va, P.; Roush, W. R. Org. Lett. 2005, 7, 2405-2408.
(24) Burfield, D. R.; Smithers, R. H. J. Org. Chem. 1978, 43, 3966-3968.
(25) Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 26, 8910-8911.
(26) Baghdasarian, G.; Woerpel, K. A. J. Org. Chem. 2006, 71, 6851-6858.
(27) Due to the observation of rotamers, high-temperature ${ }^{1} \mathrm{H}$ NMR was employed for characterization. Coalescence was observed at $50^{\circ} \mathrm{C}$.
(28) An apodization function was applied to the spectrum to resolve the splitting of this peak (MestRe-C 4.9.9.6; Gaussian 0.70 Hz , SineBell 0.00 Deg).
(29) O'Neil, G. W.; Phillips, A. J. Tetrahedron Lett. 2004, 45, 4253-4256.
(30) Marshall, J. A.; Yanik, M. M. Org. Lett. 2000, 2, 2173-2175.

F-1

1c

3c

3c. crude NMR reaction
1H spectrum
~
\approx

$10581 \cdot<$

Ex

$3 g$

3 g
容

3h

1h

irasi:-

$$
\begin{aligned}
& \text { 3h, crude NMR reaction } \\
& \text { 1H spectrum } \\
& \text { s }
\end{aligned}
$$

10. crude before purification
1 H spectrum
8

$$
\operatorname{cosec}
$$

\qquad ppm s © 9


```
Date:8/19/2008
Time:6:43:58 PM
Method Name:Kay-Woerpel
Run Name:KB-II-32-sample2-8
Runinfo:10% 2-propanol, AD column, 220nm 1.000 ml/min (trial 2)
```


Index	Name	Time	Area	Height	Width	Area
		$[$ Min $]$	$[\mathrm{mAU*min}]$	$[\mathrm{mAU}]$	$[\mathrm{Min}]$	$[\%]$
1	UNKNOWN	13.3721	7.5994	27.40	0.26	50.161
2	UNKNOWN	14.2636	7.5505	25.50	0.28	49.839
Total			15.1500			100.000

(\pm)-12, 0\% ee

Date:8/20/2008
Time:7:45:50 PM
Method Name:Kay-Woerpel
Run Name:KB-II-38-5
Runinfo:10\% 2-propanol, AD column, $220 \mathrm{~nm} 1.000 \mathrm{ml} / \mathrm{min}$

Index	Name	Time	Area	Height	Width	Area
		$[\mathrm{Min}]$	$[\mathrm{mAU}$ *min]	$[\mathrm{mAU}]$	$[\mathrm{Min}]$	$[\%]$
1	UNKNOWN	13.9050	62.4472	202.01	0.29	98.059
2	UNKNOWN	14.8837	1.2358	4.24	0.28	1.941
Total			63.6831			100.000

