SUPPORTING MATERIAL

Aldol-type Chirons From Asymmetric Hydrogenation

of Trisubstituted Alkenes

Jian Zhao and Kevin Burgess*

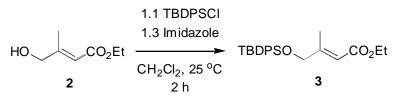
Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77841 E-mail: burgess@tamu.edu

TABLE OF CONTENTS

General Experimental Methods	S1-S2
Experimental Procedures	S2 – S20
References	S22
Copies of ¹ H and ¹³ C Spectra	S23 – S47

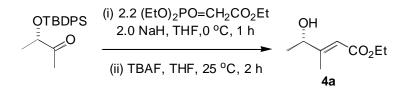
General Experimental Methods

All reactions were carried out under an atmosphere of dry nitrogen. Glassware was ovendried prior to use. Unless otherwise indicated, common reagents or materials were obtained from commercial source and used without further purification. All the solvents were used after appropriate distillation or purification.


Flash column chromatography was performed using silica gel 60 (230-400 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck silica gel plates with QF-254 indicator and visualized by UV. IR spectra were recorded on a Bruker Tensor 27 spectrometer. Optical rotations were measured on Jasco DIP-360 digital polarimeter. ¹H and ¹³C spectra were recorded on a Varian 300 (300 MHz ¹H; 75 MHz ¹³C) spectrometer at room temperature. Chemical shifts were reported in ppm relative to the residual CDCl₃ (δ 7.26 ppm ¹H; δ 77.0 ppm ¹³C). Coupling constants (*J*) were reported in Hertz.

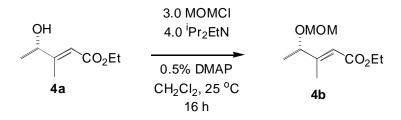
Iridium catalysts L-1 and D-1 were prepared using literature methods.¹ Compound 2 was prepared using literature procedure.²

General Catalytic Hydrogenation Conditions

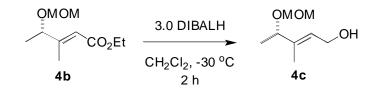

The alkene was dissolved in CH₂Cl₂ (0.2 M) and the iridium catalyst (**L-1** or **D-1**) (0.5 mol%) was then added. The resulting solution was degassed by three cycles of freezepump-thaw using nitrogen, then transferred to a Parr Bomb. The bomb was flushed with hydrogen for 1 min without stirring. The mixture was then stirred at 700 rpm under 5 atm of H₂. After 12 h, the bomb was vented and the solvent was evaporated. The crude product was passed through a silica plug (EtOAc/hexanes = 3/7). The enantiomeric and diastereomeric ratios of the crude materials were measured via chiral capillary GC analysis using β - or a γ -CD column.³ GC conditions A: stable at 90 °C for 10 min, then increase temperature to 200 °C at 5 °C/min, stable for 5 min; GC conditions B: stable at 90 °C for 30 min, then increase temperature to 200 °C at 5 °C/min, stable for 5 min.

E Ethyl 4-(tert-Butyl-diphenyl-silanyloxy)-3-methyl-but-2-enoate (3)⁴

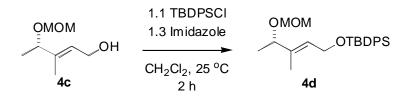
To a solution of imidazole (6.5 mmol) and ethyl 4-hydroxy-3-methyl-but-2-enoate (5.0 mmol) in 10 mL CH₂Cl₂, *t*-butyldiphenylsilyl chloride (5.5 mmol, 1.85 mL) was added at 0 °C dropwise over 5 min. After stirring at 25 °C for 2 h, the reaction mixture was quenched with saturated NaHCO₃ solution (10 ml) and extracted with CH₂Cl₂ (3 x 20 ml). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (5%) gave the protected ester (89%) as a colorless oil. ¹H NMR (CDCl₃) δ 1.17 (s, 9H), 1.36 (t, *J* = 7.2 Hz, 3H), 2.08 (d, *J* = 0.9, 3H), 4.21-4.29 (m, 4H), 6.31 (d, *J* = 1.5 Hz, 1H), 7.42-7.48 (m, 6H), 7.73-7.77 (m, 4H); ¹³C NMR (CDCl₃) δ 14.3, 15.3, 19.1, 26.7, 59.4, 67.4, 113.4, 127.7, 129.7, 132.7, 135.3, 156.5, 166.9; IR (neat) 3071, 2958, 2932, 2858, 1716 cm⁻¹; HRMS calcd for C₂₃H₃₀O₃Si [M+Li]⁺ 389.2124. Found 389.2123.


E-(*S*)-Ethyl 4-Hydroxy-3-methyl-pent-2-enoate (4a)⁵

To the solution of NaH (20.0 mmol) in 40 mL THF, ethyl diethylphosphonoacetate (22.0 mmol) was added dropwise at 0 °C. After stirring at 0 °C for 30 min, ketone (10.0 mmol) in 10 mL THF was added slowly.⁶ After 1 h at 0 °C, the reaction mixture was quenched with saturated NH₄Cl solution (20 ml) and extracted with Ether (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (5%) gave the protected ester (75%) as a colorless oil. The obtained compound was dissolved in 20 mL THF, followed by 9 mL of TBAF solution (1.0 M), and was stirred at 25 °C for

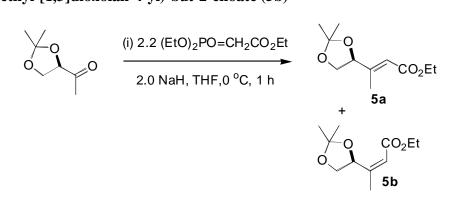

2 h, then quenched with Brine and extracted with Ether (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (50%) gave the alcohol (75%) as a colorless oil. $[\alpha]^{21}{}_{D}$ +4.3 (*c* 0.024, CHCl₃), (lit.⁵ $[\alpha]^{25}{}_{D}$ +3.6 (*c* 1.1, CHCl₃)); ¹H NMR (CDCl₃) δ 1.20-1.26 (m, 6H), 2.05 (d, *J* = 1.2 Hz, 3H), 2.76 (br, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 4.21 (q, *J* = 3.3 Hz, 1H), 5.89 (q, *J* = 1.2 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.1, 14.8, 21.5, 59.7, 72.1, 113.8, 161.5, 167.1; ¹³C NMR (CDCl₃) δ 14.3, 15.3, 19.1, 26.7, 59.4, 67.4, 113.4, 127.7, 129.7, 132.7, 135.3, 156.5, 166.9; IR (neat) 3437 (br), 2981, 2936, 1715, 1652 cm⁻¹; HRMS calcd for C₈H₁₄O₃ [M+H]⁺ 159.1016. Found 159.1025.

E-(*S*)-Ethyl 4-Methoxymethoxy-3-methyl-pent-2-enoate (4b)


Alcohol **4a** (5.0 mmol) obtained from previous procedure was dissolved in 20 mL CH₂Cl₂, then methoxy chloromethane (15.0 mmol) and ⁱPr₂NEt (20.0 mmol) were added sequentially followed by a catalytic amount of DMAP. The reaction solution was stirred at 25 °C for 16 h, then quenched with Brine and extracted with ether (3 x 20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (10%) gave the ester (72%) as a colorless oil. $[\alpha]^{21}_{D}$ -9.1 (*c* 0.0125, CHCl₃); ¹H NMR (CDCl₃) δ 1.20-1.25 (m, 6H), 2.05 (d, *J* = 1.5 Hz, 3H), 3.31 (s, 3H), 4.10 (q, *J* = 6.9 Hz, 3H), 4.51 (s, 2H), 5.83 (q, *J* = 0.9 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.2, 19.9, 55.3, 59.6, 76.1, 94.1, 115.8, 158.5, 166.5; IR (neat) 2981, 2936, 2824, 1717, 1654 cm⁻¹; HRMS calcd for C₁₀H₁₈O₄ [M+Li]⁺ 209.1365 Found 209.1391.

E-(*S*)-4-Methoxymethoxy-3-methyl-pent-2-en-1-ol (4c)

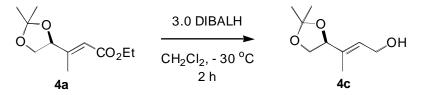
DIBALH (6 mL, 1.0 M in hexane) solution (6.0 mmol) was added to a solution of ester **4b** (2.0 mmol) in 20 mL CH₂Cl₂ at -78 °C dropwise over 10 min. The reaction solution was then warmed to -30 °C. After stirring for 2 h, the reaction solution was warmed to 25 °C, and was quenched with methanol (5 mL) and saturated potassium sodium tartrate tetrahydrate (20 mL). After stirring for 1 h, the aqueous phase was extracted with CH₂Cl₂ (2 x 20 mL), and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (50%) gave the alcohol (89%) as a colorless oil. $[\alpha]^{21}_{D}$ -11.5 (*c* 0.021, CHCl₃); ¹H NMR (CDCl₃) δ 1.05 (d, *J* = 6.6 Hz, 3H), 1.41 (d, *J* = 0.6 Hz, 3H), 3.15 (s, 3H), 3.56 (br, 1H), 3.88-3.96 (m, 3H), 4.29 (d, *J* = 6.6 Hz, 1H), 4.39 (d, *J* = 6.9 Hz, 1H), 5.36-5.40 (m, 1H); ¹³C NMR (CDCl₃) δ 10.6, 19.3, 54.7, 58.0, 76.4, 93.0, 126.5, 137.0; ; IR (neat) 3417(br), 2978, 2934, 2888, 1669 cm⁻¹; HRMS calcd for C₈H₁₆O₃ [M+Li]⁺ 167.1259. Found 167.1257.


E- (*S*)-*tert*-Butyl-(4-methoxymethoxy-3-methyl-pent-2-enyloxy)-diphenyl-silane (4d)

This compound was prepared using the same procedure as described in compound **3**. $[\alpha]^{21}{}_{D}-29.5 (c \ 0.044, CHCl_3); {}^{1}H \ NMR \ (CDCl_3) \ \delta \ 1.04 \ (s, 9H), \ 1.22 \ (d, J = \ 6.6 \ Hz, 3H), \ 1.39 \ (d, J = \ 1.2 \ Hz, 3H), \ 3.37 \ (s, 3H), \ 4.10 \ (q, J = \ 6.6 \ Hz, 1H), \ 4.25-4.28 \ (m, 2H), \ 4.48$ (d, J = 6.3 Hz, 1H), 4.57 (d, J = 6.6 Hz, 1H), 5.59-5.64 (m, 1H), 7.35-7.43 (m, 6H), 7.67-7.70 (m, 4H); ¹³C NMR (CDCl₃) δ 11.1, 19.1, 19.8, 26.8, 55.3, 60.7, 76.5, 93.5, 127.1, 127.6, 129.6, 133.8, 135.5, 136.3; IR (neat) 2931, 2857, 1472, 1428, 1111, 1027 cm⁻¹; HRMS calcd for C₂₄H₃₄O₃Si [M+Li]⁺ 405.2427. Found 405.2422.

E-(S)-Ethyl 3-(2,2-dimethyl-[1,3]dioxolan-4-yl)-but-2-enoate (5a) and Z-(S)-Ethyl 3-

(2,2-dimethyl-[1,3]dioxolan-4-yl)-but-2-enoate (5b)



NaH (40.0 mmol) was added into 100 mL CH₂Cl₂, and ethyl diethylphosphonoacetate (44.0 mmol) was added dropwise at 0 °C. The solution obtained was stirred for 30 min. The ketone solution in CH₂Cl₂ obtained by literature procedure (100 mL, 0.2 M, this ketone is very volatile, removing solvent by rotavap caused substantial loss of material)⁷ was added into the reaction solution over 20 min. After 1 h stirring at 0 °C, the reaction mixture was quenched with saturated NH₄Cl solution (50 ml). The organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (8%) gave the *E* ester (70%) and *Z* ester (10%) as colorless oil, respectively.

E isomer: $[\alpha]_{D}^{21}+31.1$ (*c* 0.018, CHCl₃); ¹H NMR (CDCl₃) δ 1.22 (t, *J* = 7.2 Hz, 3H), 1.35 (s, 3H), 1.41 (s, 3H), 2.04 (d, *J* = 1.2 Hz, 3H), 3.59 (q, *J* = 7.2, 1H), 4.07-4.18 (m, 3H), 4.44-4.50 (m, 1H), 5.95-5.97 (m, 1H); ¹³C NMR (CDCl₃) δ 14.1, 14.7, 25.4, 26.0, 59.7, 68.5, 76.6, 110.1, 115.3, 154.7, 166.4; IR (neat) 2986, 2938, 1716, 1660 cm⁻¹; HRMS calcd for C₁₁H₁₈O₄ [M+H]⁺ 215.1283. Found 215.1289.

Z isomer: $[\alpha]^{21}{}_{D}$ +18.9 (*c* 0.020, CHCl₃); ¹H NMR (CDCl₃) δ 1.16 (t, *J* = 6.9 Hz, 3H), 1.28 (s, 3H), 1.37 (s, 3H), 1.83 (d, *J* = 1.5 Hz, 3H), 3.45 (q, *J* = 6.9 Hz, 1H), 4.02 (q, *J* = 6.6 Hz, 2H), 4.26-4.31 (m, 1H), 5.59-5.65 (m, 2H); ¹³C NMR (CDCl₃) δ 14.0, 19.7, 24.8, 25.9, 59.7, 68.6, 68.7, 74.4, 109.5, 117.1, 158.4, 165.4; IR (neat) 2985, 2937, 1712, 1646 cm⁻¹; HRMS calcd for C₁₁H₁₈O₄ [M+Li]⁺ 221.1365. Found 221.1370.

(E)-(S)- 3-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-but-2-en-1-ol (5c)

This compound was prepared using the same procedure described in **4c**. $[\alpha]^{21}_{D}+20.5$ (*c* 0.024, CHCl₃); ¹H NMR (CDCl₃) δ 1.34 (d, *J* = 0.6 Hz, 3H), 1.40 (d, *J* = 0.6 Hz, 3H), 1.61 (d, *J* = 0.6 Hz, 3H), 2.31 (br, 1H), 3.57-3.62 (m, 1H), 4.00-4.15 (m, 3H), 4.44 (t, *J* = 6.9, 1H), 5.65-5.70 (m, 1H); ¹³C NMR (CDCl₃) δ 11.6, 25.3, 26.2, 58.7, 67.9, 80.2, 109.3, 126.7, 135.0; IR (neat) 3483 (br), 2986, 2935, 2879, 1674 cm⁻¹; HRMS calcd for C₉H₁₆O₃ [M+Li]⁺ 179.1259. Found 179.1252.

(S)- Ethyl 4-Hydroxy-3-methyl-butyrate

 $[\alpha]^{19}{}_{D}$ = -9.3 (c = 0.015, CHCl₃); ¹H NMR (CDCl₃) δ 0.96 (d, J = 6.6 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.97 (br, 1H), 2.10-2, 24 (m, 2H), 2.39-2.46 (m, 1H), 3.42-3.59 (m, 2H), 4.13(q, J = 7.2 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.2, 16.7, 33.0, 38.6, 60.4, 67.5, 173.5; IR

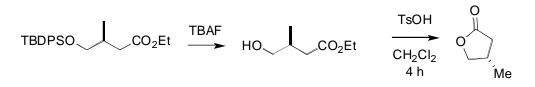
(neat) 3504 (br), 2964, 3935, 2877, 1733 cm⁻¹; HRMS calcd for $C_7H_{14}O_3$ [M+Li]⁺ 153.1103. Found 153.1105.

Determination of relative stereochemistry:

The alcohol product form alkene 2 was transformed to a lactone and its optical rotation data was compared with data reported

HO
$$CO_2Et$$
 \xrightarrow{TsOH} O
 CH_2Cl_2 $4 h$ Me

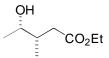
 $[\alpha]^{19}{}_{D} = -23.6 \ (c = 2.72, MeOH) \ ((lit.⁸ [\alpha]^{25}{}_{D} - 17.2. \ (c \ 1.3, MeOH))$


The alcohol was subjected to GC using conditions B. Enantiomeric excess = 96%.

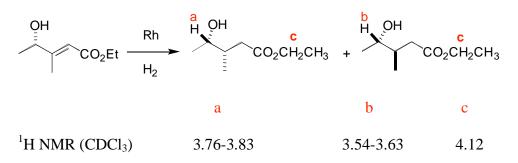
Retention time (min)	46.9	47.1
Area	6.45	302.6

(S)-4-(tert-Butyl-diphenyl-silanyloxy)-3-methyl-butyrate

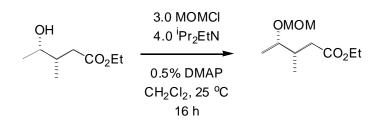
 $[\alpha]^{21}{}_{D}$ -3.7 (*c* 0.043, CHCl₃);¹H NMR (CDCl₃) δ 0.98 (d, *J* = 6.6 Hz, 3H), 1.08 (s, 9H), 1.26 (t, *J* = 6.6 Hz, 3H), 2.12-2.28 (m, 2H), 2.60 (dd, *J* = 14.7, 5.1 Hz, 1H), 3.47-3.60 (m, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 7.36-7.47 (m, 6H), 7.66-7.69 (m, 4H); ¹³C NMR (CDCl₃) δ 14.2, 16.6, 19.3, 26.8, 33.0, 38.3, 60.1, 68.0, 127.6, 129.6, 133.7, 135.5, 173.2; IR (neat) 2960, 2895, 2859, 1736 cm⁻¹; HRMS calcd for C₂₃H₃₂O₃Si [M+Li]⁺ 391.2281. Found 391.2281.


Determination of relative stereochemistry:

The ester product was deprotected and then transformed to the lactone. $[\alpha]^{19}{}_{\rm D} = -18.5$ (c = 0.24, MeOH) ((lit. $[\alpha]^{25}{}_{\rm D} - 17.2$. (*c* 1.3, MeOH)). The alcohol obtained from TBAF deprotection was subjected to GC conditions B. Enantiomeric excess = 93%.

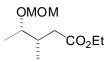

Retention time (min)	46.9	47.1
Area	13.1	383.4

(S)- Ethyl 4-Hydroxy-3-methyl-pentanoate

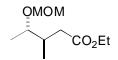


 $[\alpha]^{19}_{D}$ -16.2 (*c* 0.021, MeOH), (lit.⁶ $[\alpha]^{25}_{D}$ -17.2. (*c* 1.3, MeOH)); ¹H NMR (CDCl₃) δ 0.91 (d, *J* = 6.9 Hz, 3H), 1.11 (d, *J* = 6.3 Hz, 3H), 1.23 (t, *J* = 6.9 Hz, 3H), 2.00-2.19 (m, 3H), 2.47 (dd, *J* = 14,7, 6,0 Hz, 1H), 3.74-3.81 (m, 1H), 4.11 (q, *J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.2, 14.4, 19.4, 36.6, 37.6, 60.4, 70.3, 173.8; IR (neat) 3447 (br), 3055, 2921, 2850, 1732, 1647 cm⁻¹; HRMS calcd for C₈H₁₆O₃ [M+Li]⁺ 167.1259. Found 167.1254.

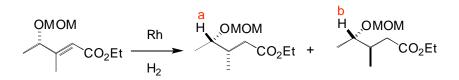
Determination of relative stereochemistry:⁹



Literature reported (*syn*):⁷ 3.71 (m, 1H) - 4.06 For *syn* compound: $[\alpha]^{19}{}_{D}$ -16.2 (*c* 0.021, MeOH), (lit.⁷ $[\alpha]^{25}{}_{D}$ -17.2. (*c* 1.3, MeOH)) Determination of diastereomeric excess is achieved by protecting the alcohol with MOM, and then subjected to GC with conditions A.

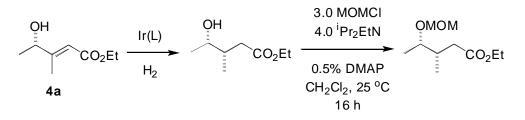

Retention time (min)	18.4	18.7
Area	848.8	8.3

(S, S)- Ethyl 4-Methoxymethoxy-3-methyl-pentanoate



 $[\alpha]^{19}{}_{D}$ +4.0 (*c* 0.010, MeOH); ¹H NMR (CDCl₃) δ 0.93 (d, J = 6.6 Hz, 3H), 1.11 (d, J = 6.3 Hz, 3H), 1.25 (t, J = 6.9 Hz, 3H), 2.09-2.19 (m, 2H), 2.46-2.52 (m, 1H), 3.36 (s, 3H), 3.61-3.69 (m, 1H), 4.13 (q, J = 6.9 Hz, 2H), 4.63 (dd, J = 15.9, 6.9 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.2, 14.9, 16.4, 35.2, 37.3, 55.4, 60.2, 75.4, 95.0, 173.4; IR (neat) 2978, 2933, 1736, 1038 cm⁻¹; HRMS calcd for C₁₀H₂₀O₄ [M+Li]⁺ 211.1522. Found 211.1514.

(S, R)- Ethyl 4-Methoxymethoxy-3-methyl-pentanoate

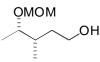

[α]¹⁹_D-1.1 (*c* 0.019, CHCl₃); ¹H NMR (CDCl₃) δ 0.96 (d, J = 6.3 Hz, 3H), 1.14 (d, J = 6.3 Hz, 3H), 1.26 (t, J = 6.9 Hz, 3H), 2.07-2.18 (m, 2H), 2.44-2.54 (m, 1H), 3.37 (s, 3H), 3.48-3.56 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H), 4.64 (dd, J = 23.4, 6.9 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.2, 15.7, 35.8, 37.8, 55.4, 55.5, 60.2, 76.4, 95.2, 173.3; ; IR (neat) 2978, 2933, 1735, 1038 cm⁻¹; HRMS calcd for C₁₀H₂₀O₄ [M+Li]⁺ 211.1522. Found 211.1521. *Determination of relative stereochemistry:*

Alkene **4b** was hydrogenated using Rh/Al catalyst to afford a mixture of *syn* and *anti* isomers in a 1.8:1.0 ratio. Protons a and b showed different proton chemical shift. The major isomer corresponds to a set of peak between 3.61-3.69 ppm, which has been confirmed by a comparison with the authentic sample.

	а	b
¹ H NMR (CDCl ₃)	3.61-3.69 (0.57 H)	3.48-3.56 (0.31 H)
Retention time (Area)	18.4 (154)	18.7 (94)

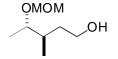
The authentic sample was prepared by the following method:

Comparison of authentic sample with the product from L-1 (GC conditions A).

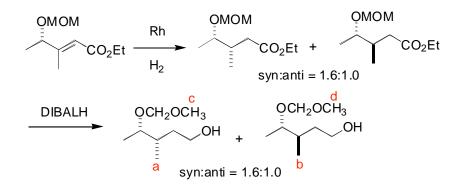

	¹ H NMR (CDCl ₃)	Retention time(Area)
Authentic sample	3.61-3.69 (1 H)	18.4

This compound 3.61-3.69(1H)		18.4(1288.1), 18.7 (47.5)

The crude product from **1-D** has been purified by flash chromatograph, and the diastereomeric excess has been determined by GC (Conditions A).


Retention time (min)	18.4	18.7
Area	2.97	92.6

(S, S)- 4-Methoxymethoxy-3-methyl-pentan-1-ol



 $[\alpha]^{19}{}_{D}$ -2.0 (*c* 0.045, CHCl₃); ¹H NMR (CDCl₃) δ 0.90 (d, *J* = 6.9 Hz, 3H), 1.12 (d, *J* = 6.3 Hz, 3H), 1.35-1.46 (m, 1H), 1.69-1.86 (m, 2H), 2.36 (br, 1H), 3.36 (s, 3H), 3.56-3.76 (m, 3H), 4.60-4.69 (m, 2H); ¹³C NMR (CDCl₃) δ 15.6, 34.9, 35.4, 55.4, 61.4, 77.4, 95.0; IR (neat) 3422,2934, 2887, 1101 cm⁻¹; HRMS calcd for C₈H₁₈O₃ [M+Li]⁺ 169.1416. Found 167.1418.

(S, R)- 4-Methoxymethoxy-3-methyl-pentan-1-ol

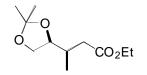
 $[\alpha]^{19}{}_{D}+38.7 (c \ 0.016, CHCl_3);$ ¹H NMR (CDCl₃) δ 0.92 (d, J = 6.6 Hz, 3H), 1.12 (d, J = 6.3 Hz, 3H), 1.38-1.49 (m, 1H), 1.63-1.82 (m, 2H), 2.14 (br, 1H), 3.36 (s, 3H), 3.52-3.75 (m, 3H), 4.60-470 (m, 2H); 15.8, 16.4, 35.2, 35.6, 55.6, 61.6, 77.6, 95.2; IR (neat) 3418, 2933, 2884, 1104 cm⁻¹; HRMS calcd for C₈H₁₈O₃ [M+Li]⁺ 169.1416. Found 169.1415. *Determination of relative stereochemistry:*

Alkene **4b** was hydrogenated by Rh/Al, afforded *syn* and *anti* isomers in a 1.6:1.0 ratio. The mixture was reduced to alcohol by DIBALH, and the major isomer was presumed to be *syn*. Apparently, 0.79 and 3.15 are corresponding to *syn*; 0.85, 3.17 are corresponding to *anti*.

	a	b	С	d
¹ H NMR (C_6D_6)	0.79 (1.6)	0.85 (1.0)	3.17 (1.0)	3.15 (1.6)
This compound				
¹ H NMR (C_6D_6)	0.79 (3H)			3.15 (3H)

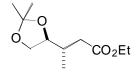
Determination of diastereomeric excess:

The obtained alcohol was transformed to methyl ether and then subjected to GC under conditions A.

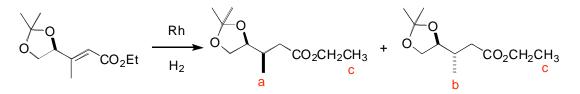

OMOM	MeOTf, Pyridine	
ОН		OMe
	CH ₂ Cl ₂ , 25 ^o C, 24 h	-

Hydrogenation catalyst	Retention time(Area)	Retention time(Area)
Rh/Al	18.4 (14.3)	18.6 (7.8)
Cat L	18.4 (6.7)	18.6 (0.39)
Cat D	18.5 (0.89)	18.7 (9.2)

(S, S)- tert-Butyl-(4-methoxymethoxy-3-methyl-pentyloxy)-diphenyl-silane


The obtained crude compound from hydrogenation was subjected to 1.2 eq. of TBAF (1.0 M in THF) and stirred for 4 h. Subsequent work up and purification afford (S, S)- 4-methoxymethoxy-3-methyl-pentan-1-ol as the major isomer.

(S, R) Ethyl 3-(2,2-dimethyl-[1,3]dioxolan-4-yl)-butyrate



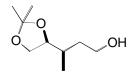
 $[\alpha]^{19}{}_{D}$ +8.2 (*c* 0.020, CHCl₃), (lit.¹⁰ $[\alpha]^{25}{}_{D}$ +8.43. (*c* 1.12, CHCl₃)); ¹H NMR (CDCl₃) δ 0.95 (d, *J* = 6.6 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H), 1.29 (s, 3H), 1.35 (s, 3H), 2.04-2.20 (m, 2H), 2.32-2.39 (m, 1H), 3.55-3.63 (m, 1H), 3.91-4.00 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.1, 15.3, 25.1, 16.3, 32.9, 37.4, 60.2, 66.6, 78.7, 108.8, 172.5; IR (neat) 2985, 2936, 1735 cm⁻¹; HRMS calcd for C₁₁H₂₀O₄ [M+Li]⁺ 223.1521. Found 223.1520.

(S, S) Ethyl 3-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-butyrate

 $[\alpha]^{19}{}_{D}$ +4.6 (*c* 0.055, CHCl₃); ¹H NMR (CDCl₃) δ 0.89 (d, *J* = 6.6 Hz, 3H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.32 (s, 3H), 1.37 (s, 3H), 2.08-2.16 (m, 2H), 2.56-2.65 (m, 1H), 3.58-3.63 (m, 1H), 3.80-3.87 (m, 1H), 4.00-4.08 (m, 1H), 4.12 (q, *J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.5, 16.2, 25.7, 26.8, 34.5, 38.4, 60.5, 68.1, 79.7, 109.2, 173.1; IR (neat) 2985, 2937, 2879, 1735 cm⁻¹; HRMS calcd for C₁₁H₂₀O₄ [M+Li]⁺ 223.1521. Found 223.1522.

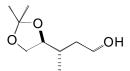
Alkene **5a** was hydrogenated with Rh/Al catalyst, affords two diastereoisomers in a 2.0:1.0 ratio. The major isomer spectra is identical to the reported *syn* compound,⁸ thus the minor isomer should be *anti*.

¹ H NMR (CDCl ₃)	a	b	С
	0.94 (2H)	0.86 (0.9H)	1.20 (3H)
Literature value (syn):	0.94 (3H)		1.20 (3H)

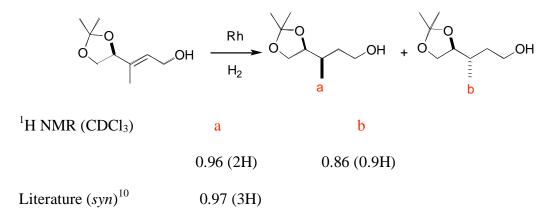

Diastereomeric excess has been determined under conditions A.

Hydrogenation catalyst	Retention time(Area)	Retention time(Area)	
	anti	syn	
Rh/Al	20.3 (304)	20.7 (683)	
L-1	20.3 (1549)	20.7 (65.2)	
D-1	20.3 (43.1)	20.7 (1059)	

After purified by column.


Hydrogenation catalyst	Retention time(Area)	Retention time(Area)
L-1	20.3 (13885)	20.7 (343)
D-1	20.3 (7.3)	20.7 (368)

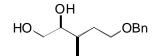
(S, R) 3-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-butan-1-ol


 $[\alpha]^{19}{}_{\rm D}$ +18.0 (*c* 0.021, CHCl₃), (lit.¹¹ $[\alpha]^{25}{}_{\rm D}$ +18.1. (*c* 1.12, CHCl₃)); ¹H NMR (CDCl₃) δ 0.95 (d, *J* = 6.9 Hz, 3H), 1.33 (s, 3H), 1.39 (s, 3H), 1.57-1.1.85 (m, 2H), 2.50 (br, 1H), 3.57-3.75 (m, 3H), 3.93-4.01 (m, 1H), 3.80-3.96(m, 1H); ¹³C NMR (CDCl₃) δ 15.1, 25.3, 26.4, 32.7, 35.5, 60.2, 67.1, 79.6, 108.7; IR (neat) 3446 (br), 2934, 2881, 1059 cm⁻¹; HRMS calcd for C₉H₈O₃ [M+Li]⁺ 181.1416. Found 181.1421.

(S, R) 3-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-butan-1-ol

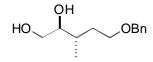
 $[\alpha]^{19}{}_{\rm D}$ +14.2 (*c* 0.063, CHCl₃); ¹H NMR (CDCl₃) δ 0.85 (d, *J* = 6.6 Hz, 3H), 1.34 (s, 3H), 1.38 (s, 3H), 1.42-1.50 (m, 1H), 1.69-1.1.78 (m, 2H), 3.12 (br, 1H), 3.55-3.64 (m, 3H), 3.80-3.87 (m, 1H), 3.99-4.04 (m, 1H); ¹³C NMR (CDCl₃) δ 15.9, 25.5, 26.4, 34.3, 37.1, 60.5, 68.0, 80.3, 108.7; IR (neat) 3421 (br), 2985, 2935, 2879, 1065 cm⁻¹; HRMS calcd for C₉H₈O₃ [M+Li]⁺ 181.1416. Found 181.1420.

Determination of relative stereochemistry:

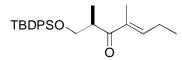

Alkene **5c** was hydrogenated using Rh/Al catalyst, afforded two diastereoisomers in a 2.0:0.9 ratio, thus the major isomer is *syn* and minor is *anti*.

Determination of diastereomeric excess:

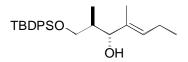
The obtained alcohol product from the hydrogenation was transformed to corresponding methyl ether and then subjected to GC using conditions A.


Hydrogenation catalyst	Retention time(Area)	Retention time(Area)	
	anti	syn	
Rh/Al	13.5(8.4)	13.9 (20.4)	
D-1	13.5 (0.51)	13.9 (5.6)	
L-1	13.0 (373)	13.5 (7.2)	

(S, R) 5-Benzyloxy-3-methyl-pentane-1,2-diol (6a)


 $[\alpha]^{19}{}_{D}$ -1.4 (*c* 0.028, CHCl₃); ¹H NMR (CDCl₃) δ 0.87 (d, *J* = 6.6 Hz, 3H), 1.46-1.60 (m, 1H), 1.69-1.89 (m, 2H), 3.40-3.63 (m, 5H), 4.09 (br, 2H), 4.48 (d, *J* = 0.9 Hz, 2H), 7.24-7.36 (m, 5H); ¹³C NMR (CDCl₃) δ 15.9, 32.4, 33.4, 64.4, 68.1, 72.9, 75.9, 127.6. 128.3, 137.8; IR (neat) 3386 (br), 3030, 2926, 2872, 1496 cm⁻¹; HRMS calcd for C₁₃H₂₀O₃ [M+Li]⁺ 231.1572. Found 231.1571.

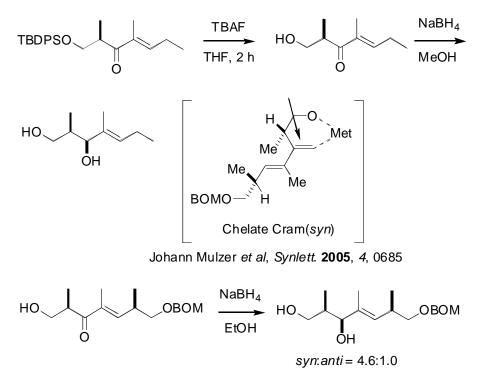
(S, S) 5-Benzyloxy-3-methyl-pentane-1,2-diol (6b)¹¹


 $[\alpha]^{19}{}_{\rm D}$ +11.1 (*c* 0.020, CHCl₃); ¹H NMR (CDCl₃) δ 0.91 (d, *J* = 6.0 Hz, 3H), 1.56-1.81 (m, 5H), 3.47-3.67(m, 2H), 4.52 (s, 2H), 7.30-7.36 (m, 5H); ¹³C NMR (CDCl₃) δ 14.3, 29.7, 33.4, 64.9, 68.2, 73.2, 74.9, 127.7, 127.8, 128.4, 137.8 ; IR (neat) 3386 (br), 2913, 2926, 2850, 1074 cm⁻¹; HRMS calcd for C₁₃H₂₀O₃ [M+Li]⁺ 231.1572. Found 231.1574.

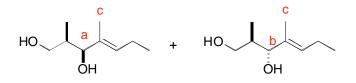
(R) 1-(tert-Butyl-diphenyl-silanyloxy)-2,4-dimethyl-hept-4-en-3-one (7)

 $[\alpha]^{19}{}_{D}$ -21.5 (*c* 0.039, CHCl₃); ¹H NMR (CDCl₃) δ 1.05-1.12 (m, 15H), 1.82 (d, *J* = 0.9 Hz, 3H), 2.22-2.32 (m, 2H), 3.54-3.68 (m, 2H), 3.89-3.95 (m, 1H), 6.61-6.66 (m, 1H), 7.39-7.45 (m, 6H), 7.66-7.70 (m, 4H); ¹³C NMR (CDCl₃) δ 11.3, 13.0, 14.5, 19.1, 22.3, 26.7, 41.5, 67.0, 127.6, 129.5, 133.4, 133.6, 135.5, 136.8, 144.4, 204.7; IR (neat) 3071, 3049, 2963, 2932, 2858, 1665, 1638 cm⁻¹; HRMS calcd for C₂₅H₃₄O₂Si [M+Li]⁺ 401.2488. Found 401.2487.

(R, R) 1-(tert-Butyl-diphenyl-silanyloxy)-2,4-dimethyl-hept-4-en-3-ol (8)

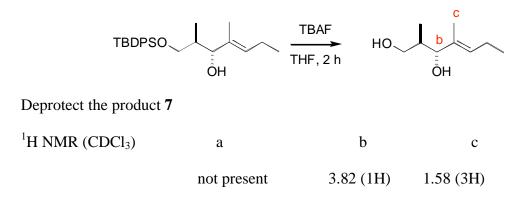


 $[\alpha]^{19}{}_{D}$ -21.3 (*c* 0.046, CHCl₃); ¹H NMR (CDCl₃) δ 0.79 (d, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.5 Hz, 3H), 1.09 (s, 9H), 1.64 (s, 3H), 1.90-2.12 (m, 3H), 3.66 (dd, *J* = 10.2, 7.8 Hz, 1H), 3.81 (dd, *J* = 10.2, 4.2 Hz, 1H), 3.93 (d, *J* = 8.4 Hz, 1H), 5.44 (t, *J* = 6.9 Hz, 1H), 7.39-7.46 (m, 6H), 7.70-7.73 (m, 4H); ¹³C NMR (CDCl₃) 10.9, 13.6, 14.0, 19.0, 20.8, 26.8,

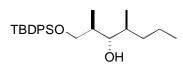

37.4, 69.2, 83.5, 127.7, 129.8, 130.0, 132.0, 132.8, 134.9, 135.5, 135.6; IR (neat) 3492 (br), 3071, 3056, 2961, 2931, 2858,1471 cm⁻¹; HRMS calcd for $C_{25}H_{36}O_2Si [M+H]^+$ 403.2645. Found 403.2658.

Determination of relative stereochemistry:

Alkene **7** was treated with TBAF to afford an alcohol. According to the literature reported results, the hydride reduction of this type of alcohol favors *syn* product, presumably due to the chelate-Cram transient state. Indeed, a 4.6:1.0 ratio was observed while this alcohol was reduced by NaBH₄, and the major isomer was presumed to be *syn*.

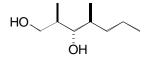


The chemical shift of protons a and b is different, which can be used to determine the relative stereochemistry. Since the major isomer is at 4.07 ppm, this chemical shift should correspond to the *syn* product.



¹ H NMR (CDCl ₃)	a	b	c
	4.07 (0.79H)	3.83 (0.17H)	1.58 (3H)

Compound **8** was treated with TBAF, and the diol obtained was isolated. A chemical shift of 3.82 ppm was observed, clearly indicating that the major compound is the *anti* isomer, plus, the NMR spectrum also indicates that the *anti*:*syn* ratio is >20:1.



(R, R, S) 1-(tert-Butyl-diphenyl-silanyloxy)-2,4-dimethyl-heptan-3-ol (9)

 $[\alpha]^{19}{}_{D}$ -30.1 (*c* 0.011, CHCl₃); ¹H NMR (CDCl₃) δ 0.86 (d, *J* = 6.9 Hz, 3H), 0.91-0.95 (m, 6H); 10.6 (s, 9H), 1.18-1.27 (m, 2H), 1.46-1.63 (m, 3H), 1.85-1.94 (m, 1H), 3.35-3.39 (m, 1H), 3.62-3.82 (m, 2H), 7.38-7.45 (m, 6H), 7.67-7.70 (m, 4H); ¹³C NMR (CDCl₃) 14.1, 14.4, 16.8, 19.1, 20.4, 26.5, 26.8, 32.1, 35.5, 36.8, 68.9, 81.1, 127.8, 129.8, 135.6, 135.6; IR (neat) 3508, 3071, 2958, 2931, 2859, 1589, 1471 cm⁻¹; HRMS calcd for C₂₅H₃₈O₂Si [M+Li]⁺ 405.2801. Found 405.2806.

(R, R, S) 2,4-Dimethyl-heptane-1,3-diol

¹H NMR (CDCl₃) δ 0.88-0.96 (m, 9H), 1.11-1.23 (m, 2H), 1.41-1.48 (m, 2H), 1.65-1.68 (m, 1H), 1.85-1.93 (m, 1H), 3.36-3.40 (m, 1H), 3.61-3.78 (m, 2H);

Determination of relative stereochemistry:

Compound 9 was treated with TBAF and the diol obtained was isolated and compared with the known *anti/syn* compound ¹² and the diastereoisomers prepared by Rh/a hydrogenation. Since our compound does nto have the same H NMR shifts as the known compound, we concluded that our compound 9 is the *anti/anti* isomer.

TBDPSO ŌН

HNMR 0.81(d) - 0.94 (d)

HO ŌΗ

но

0.81 (d) 0.87(d) 0.91(t) literature

0.88 (d) 0.91(t) 0.94(d) this compound

References

(1) Powell, M. T.; Hou, D.-R.; Perry, M. C.; Cui, X.; Burgess, K. J. Am. Chem. Soc. 2001, *123*, 8878.

(2) Miyaoka, H.; Isaji, Y.; Kajiwara, Y.; Kunimune, I.; Yamada, Y. *Tetrahedron Lett.* **1998**, *39*, 6503.

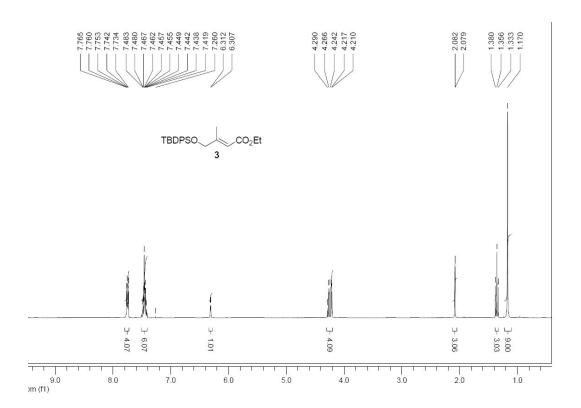
(3) Staerk D. U., Shitangkoon A., Vigh G., J. Chromatogr. A. 1995, 702, 251.

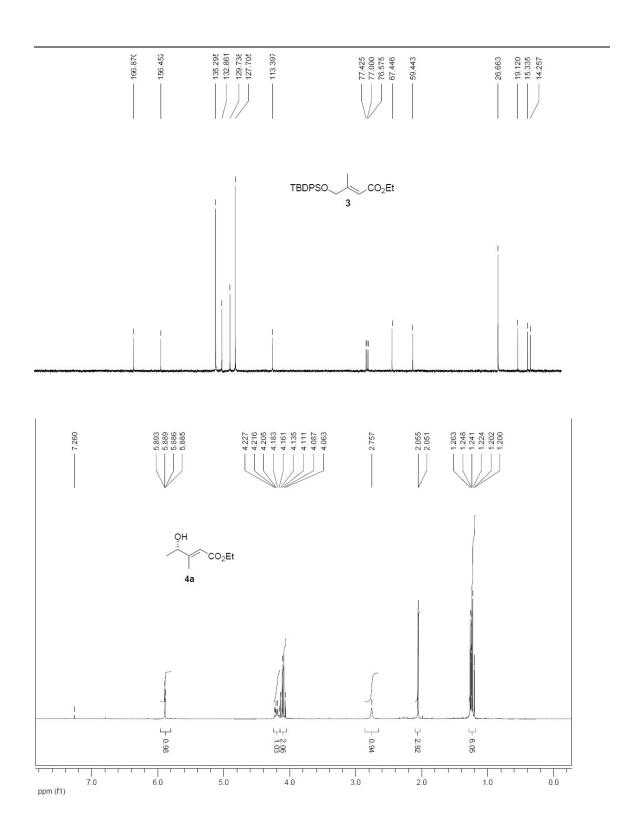
(4) Xia, C.; Heng, L.; Ma, D. Tetrahedron Lett. 2002, 43, 9405.

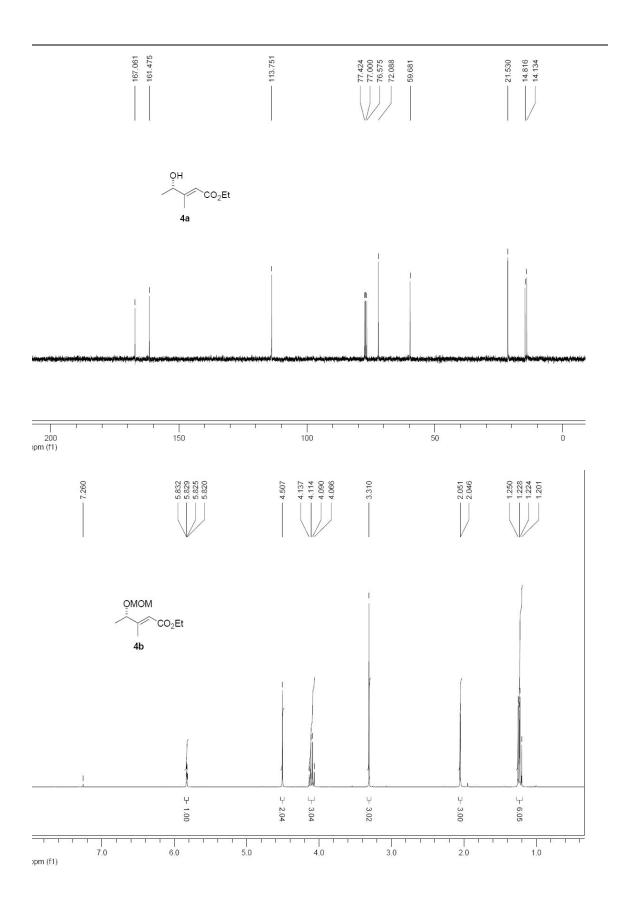
(5) Hanaki, N.; Link, J. T.; MacMillan, D. W. C.; Overman, L. E.; Trankle, W. G.; Wurster, J. A. *Org. Lett.* **2000**, *2*, 223.

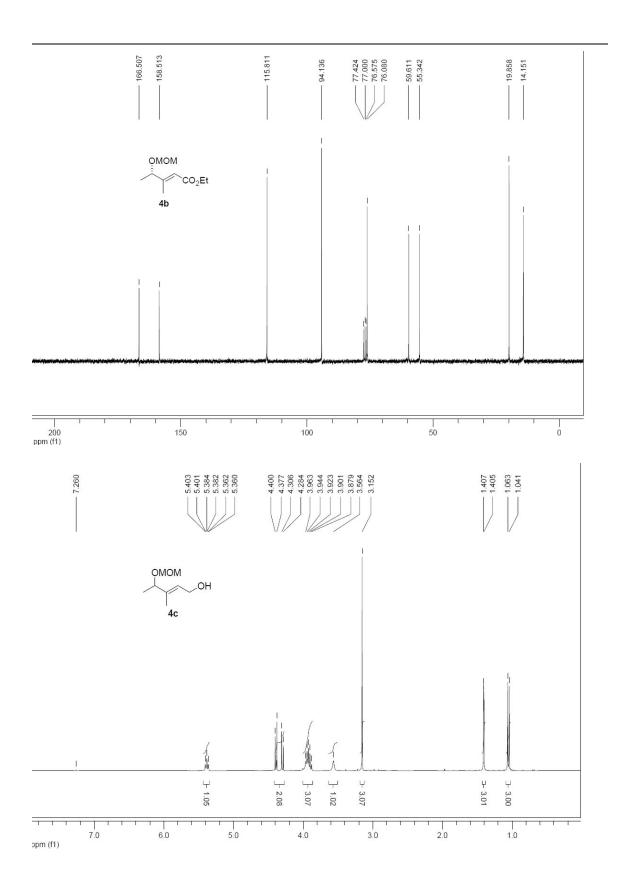
(6) MacMillan, D. W. C.; Overman, L. E.; Pennington, L. D. J. Am. Chem. Soc. 2001, 123, 9033.

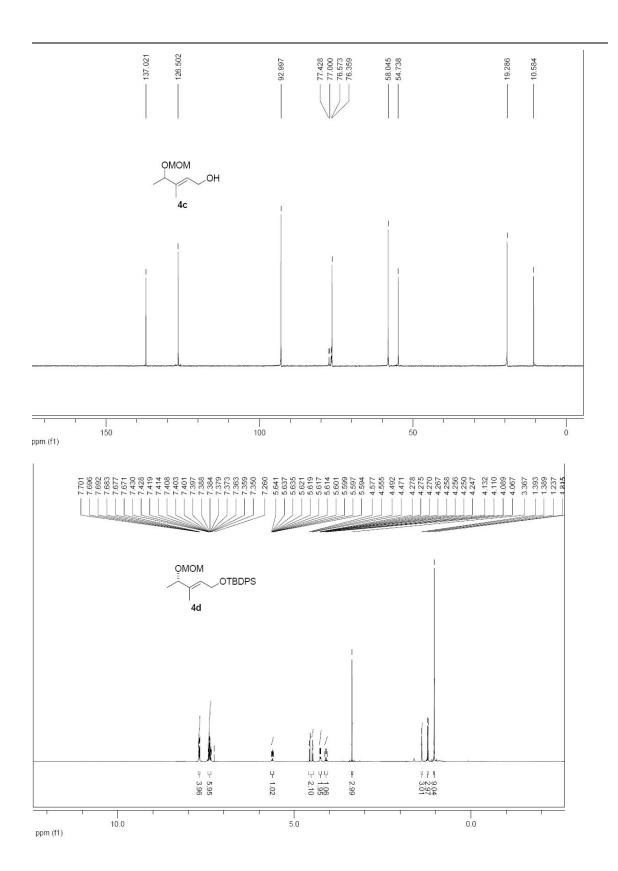
(7) Leyes, A. E.; Poulter, C. D. Org. Lett. 1999, 1, 1067.

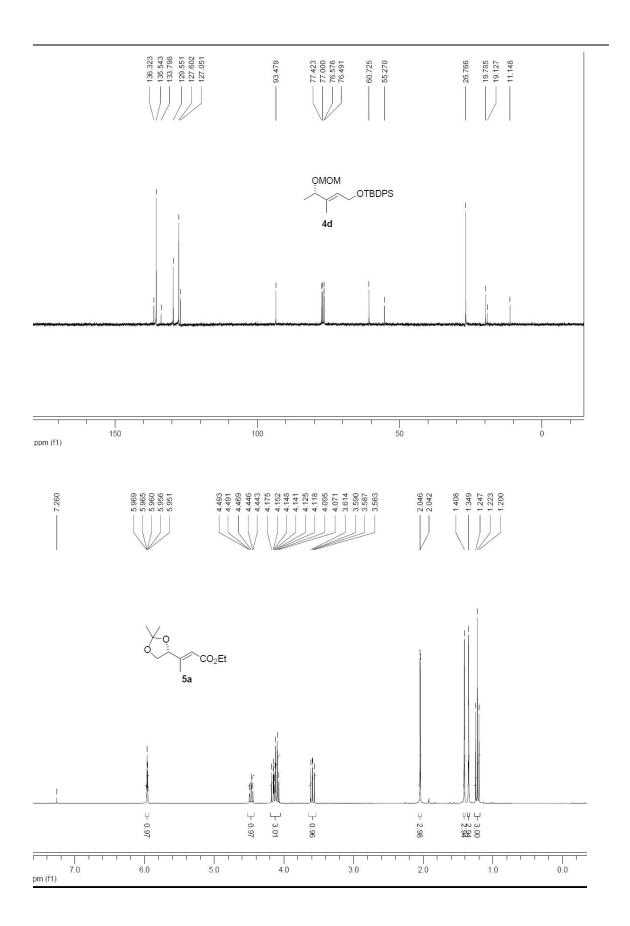

(8) Howell, G. P.; Fletcher, S. P.; Geurts, K.; Horst, B.; Feringa, B. L. J. Am. Chem. Soc. **2006**, *128*, 14977.

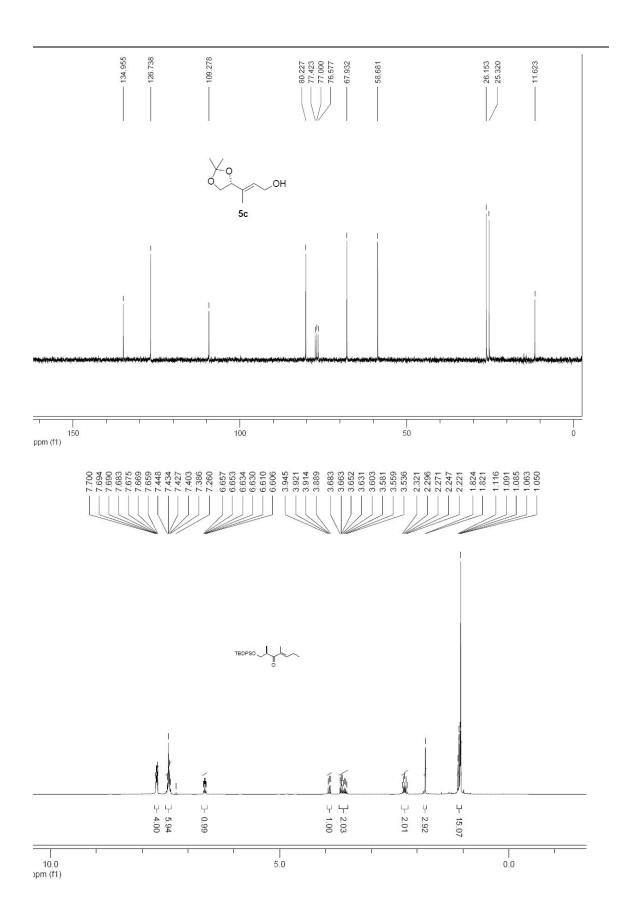

(9) Koul, S.; Crout, D. H. G.; Errington, W.; Tax, J. J. Chem. Soc. Perkin Transactions 1, **1995**, 23, 2969.

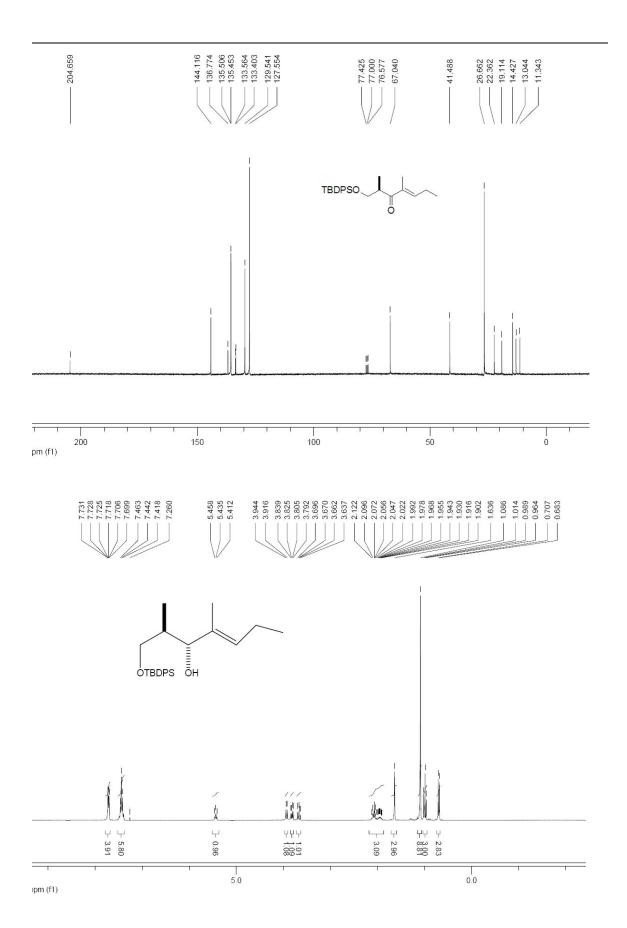

(10) Al Dulayymi, J. R.; Baird, M. S.; Roberts, E.; Deysel, M.; Verschoor, J. *Tetrahedron* **2007**, *63*, 2571.

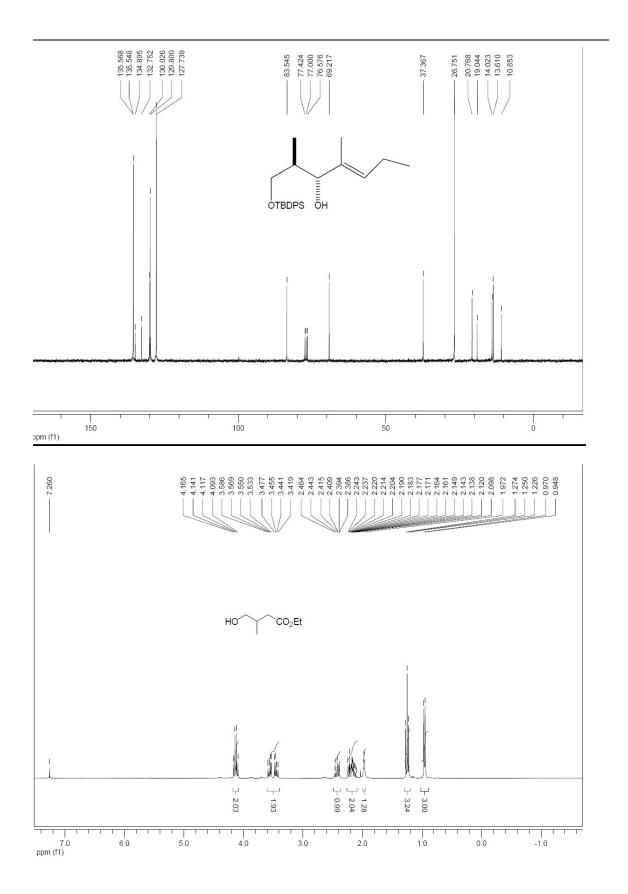

(11) Amano, S.; Fujiwara, K.; Murai, A. Synlett. 1997, 11, 1300.

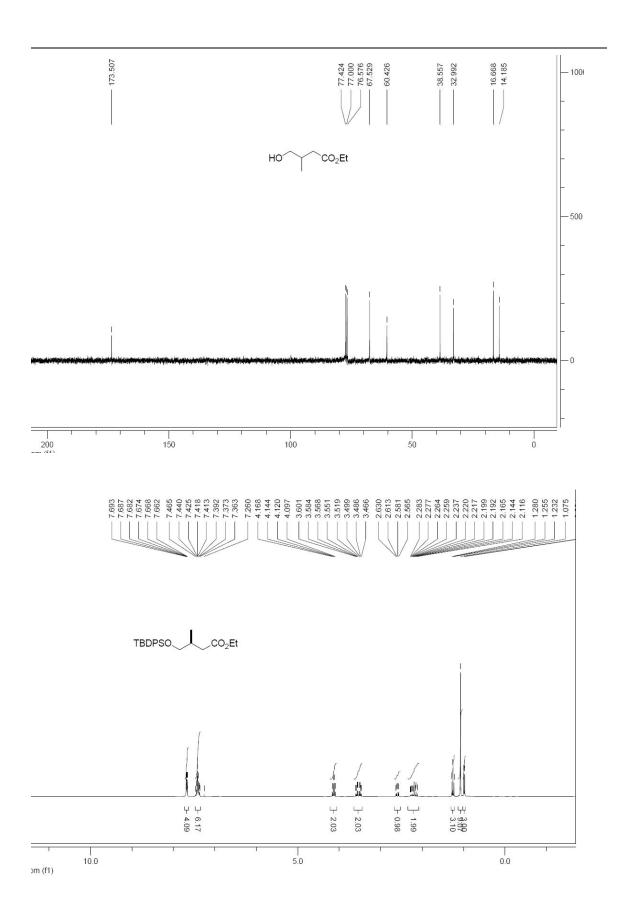

(12) Pilli, R. A.; Murta, M. M. J. Org. Chem. 1993, 58, 338.

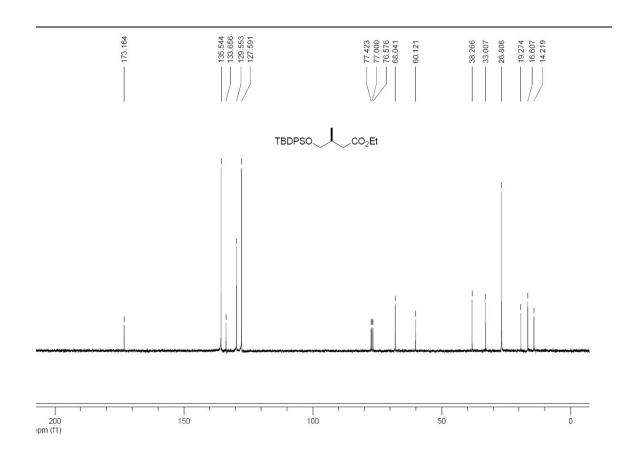


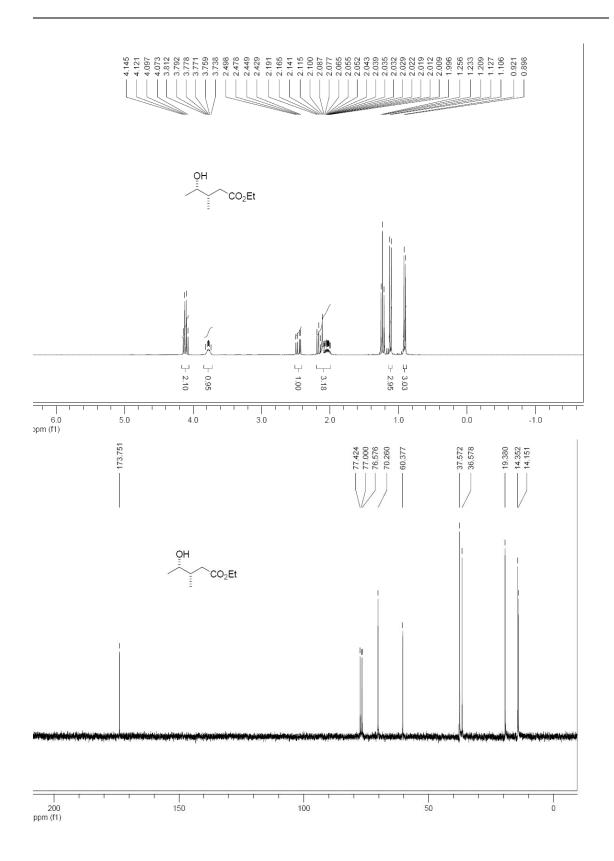


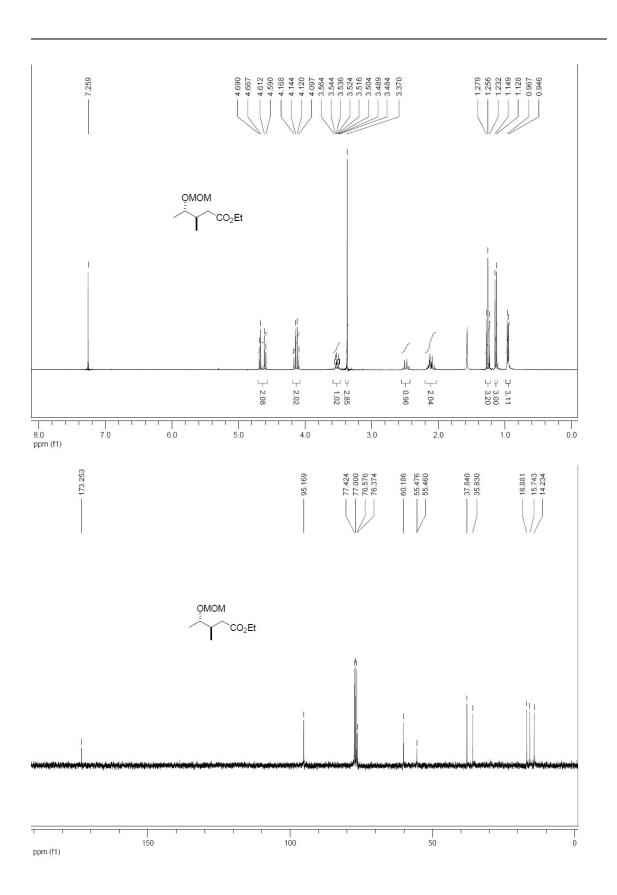


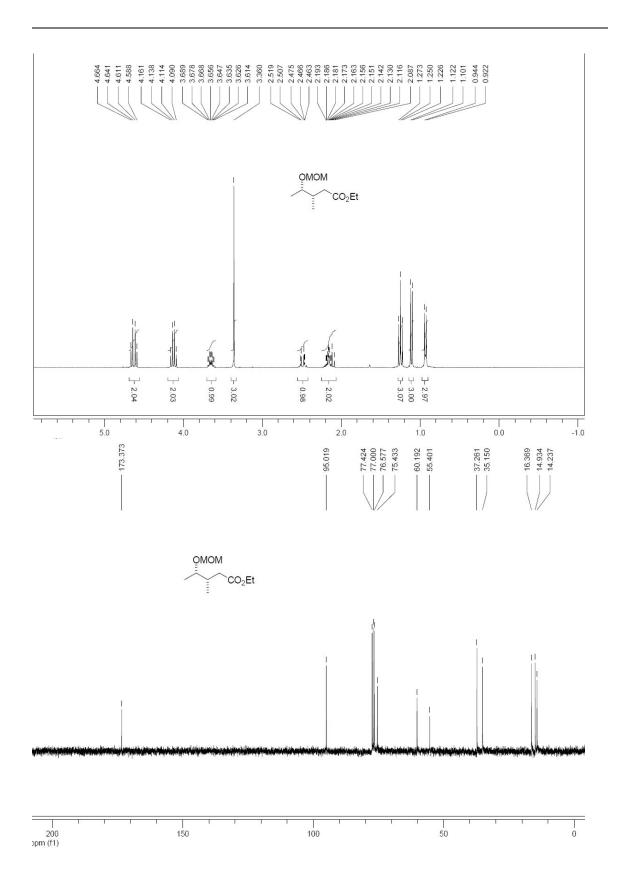


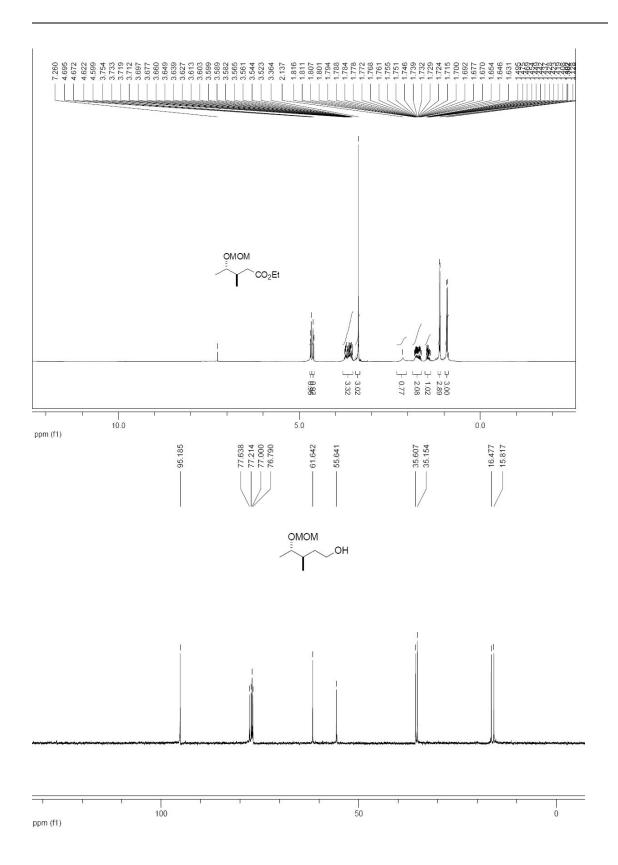


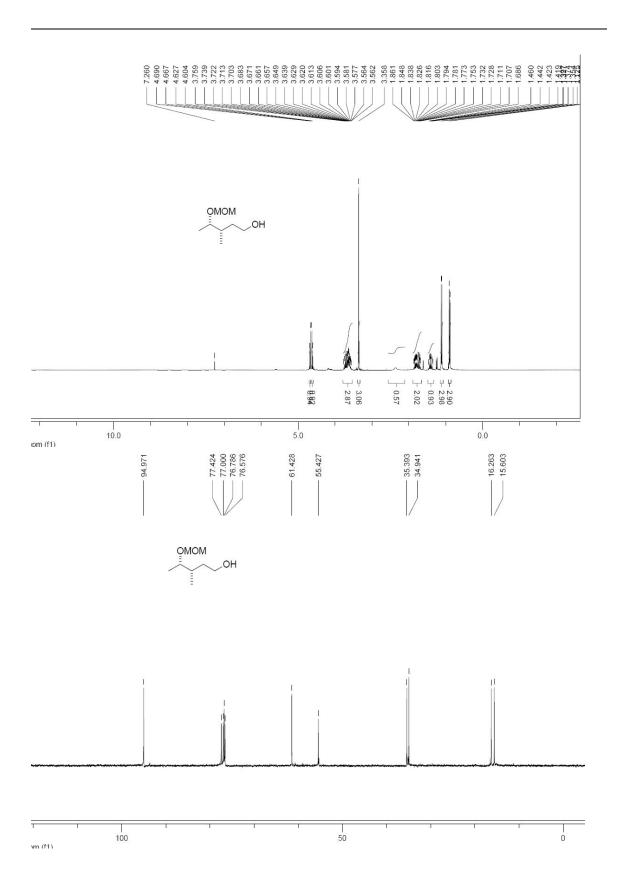


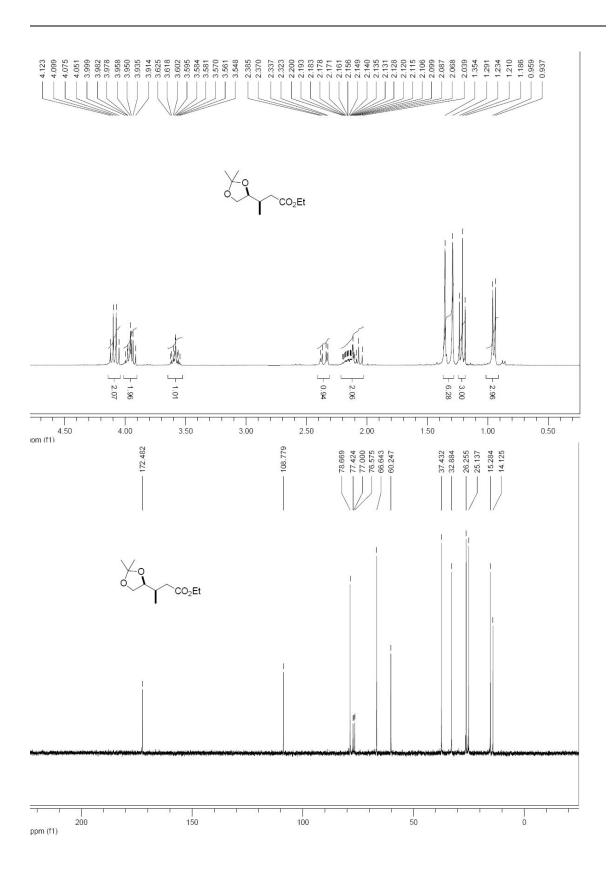











S35

