SUPPORTING MATERIAL

Aldol-type Chirons From Asymmetric Hydrogenation of Trisubstituted Alkenes

Jian Zhao and Kevin Burgess*
Department of Chemistry, Texas A \& M University, Box 30012, College Station, TX 77841
E-mail: burgess@tamu.edu

TABLE OF CONTENTS

General Experimental Methods S1-S2
Experimental Procedures S2 -S20
References S22
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra S23-S47

General Experimental Methods

All reactions were carried out under an atmosphere of dry nitrogen. Glassware was ovendried prior to use. Unless otherwise indicated, common reagents or materials were obtained from commercial source and used without further purification. All the solvents were used after appropriate distillation or purification.

Flash column chromatography was performed using silica gel 60 (230-400 mesh). Analytical thin layer chromatography (TLC) was carried out on Merck silica gel plates with QF-254 indicator and visualized by UV. IR spectra were recorded on a Bruker Tensor 27 spectrometer. Optical rotations were measured on Jasco DIP-360 digital polarimeter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on a Varian $300\left(300 \mathrm{MHz}{ }^{1} \mathrm{H} ; 75 \mathrm{MHz}\right.$ $\left.{ }^{13} \mathrm{C}\right)$ spectrometer at room temperature. Chemical shifts were reported in ppm relative to the residual $\mathrm{CDCl}_{3}\left(\delta 7.26 \mathrm{ppm}{ }^{1} \mathrm{H} ; \delta 77.0 \mathrm{ppm}{ }^{13} \mathrm{C}\right.$). Coupling constants (J) were reported in Hertz.
Iridium catalysts L-1 and $\mathbf{D} \mathbf{- 1}$ were prepared using literature methods. ${ }^{1}$ Compound $\mathbf{2}$ was prepared using literature procedure. ${ }^{2}$

General Catalytic Hydrogenation Conditions

The alkene was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ and the iridium catalyst ($\mathbf{L}-\mathbf{1}$ or $\mathbf{D}-1$) (0.5 $\mathrm{mol} \%$) was then added. The resulting solution was degassed by three cycles of freeze-pump-thaw using nitrogen, then transferred to a Parr Bomb. The bomb was flushed with hydrogen for 1 min without stirring. The mixture was then stirred at 700 rpm under 5 atm of H_{2}. After 12 h , the bomb was vented and the solvent was evaporated. The crude product was passed through a silica plug (EtOAc/hexanes $=3 / 7$). The enantiomeric and diastereomeric ratios of the crude materials were measured via chiral capillary GC analysis using β - or a γ-CD column. ${ }^{3}$ GC conditions A: stable at $90^{\circ} \mathrm{C}$ for 10 min , then increase temperature to $200{ }^{\circ} \mathrm{C}$ at $5{ }^{\circ} \mathrm{C} / \mathrm{min}$, stable for 5 min ; GC conditions B: stable at $90^{\circ} \mathrm{C}$ for 30 min , then increase temperature to $200^{\circ} \mathrm{C}$ at $5^{\circ} \mathrm{C} / \mathrm{min}$, stable for 5 min .

E Ethyl 4-(tert-Butyl-diphenyl-silanyloxy)-3-methyl-but-2-enoate (3) ${ }^{4}$

To a solution of imidazole (6.5 mmol) and ethyl 4-hydroxy-3-methyl-but-2-enoate (5.0 mmol) in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, t-butyldiphenylsilyl chloride ($5.5 \mathrm{mmol}, 1.85 \mathrm{~mL}$) was added at $0{ }^{\circ} \mathrm{C}$ dropwise over 5 min . After stirring at $25{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was quenched with saturated NaHCO_{3} solution (10 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 20 ml). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with $\mathrm{EtOAc} /$ hexanes (5%) gave the protected ester (89%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.17(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{~d}, J=0.9,3 \mathrm{H}), 4.21-4.29(\mathrm{~m}, 4 \mathrm{H}), 6.31(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.73-7.77(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.3,15.3$, 19.1, 26.7, 59.4, 67.4, 113.4, 127.7, 129.7, 132.7, 135.3, 156.5, 166.9; IR (neat) 3071, 2958, 2932, 2858, $1716 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$ [M+Li] ${ }^{+}$389.2124. Found 389.2123.

E-(S)-Ethyl 4-Hydroxy-3-methyl-pent-2-enoate (4a) ${ }^{5}$

To the solution of $\mathrm{NaH}(20.0 \mathrm{mmol})$ in 40 mL THF, ethyl diethylphosphonoacetate (22.0 mmol) was added dropwise at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , ketone (10.0 mmol) in 10 mL THF was added slowly. ${ }^{6}$ After 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 ml) and extracted with Ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (5\%) gave the protected ester (75\%) as a colorless oil. The obtained compound was dissolved in 20 mL THF, followed by 9 mL of TBAF solution (1.0 M), and was stirred at $25^{\circ} \mathrm{C}$ for

2 h , then quenched with Brine and extracted with Ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (50\%) gave the alcohol (75%) as a colorless oil. $[\alpha]^{21}{ }_{\mathrm{D}}+4.3\left(c 0.024, \mathrm{CHCl}_{3}\right),\left(\right.$ lit. $^{5}[\alpha]^{25}{ }_{\mathrm{D}}+3.6$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right)$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.26(\mathrm{~m}, 6 \mathrm{H}), 2.05(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.76(\mathrm{br}, 1 \mathrm{H})$, $4.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.1,14.8,21.5,59.7,72.1,113.8,161.5,167.1 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.3$, $15.3,19.1,26.7,59.4,67.4,113.4,127.7,129.7,132.7,135.3,156.5,166.9$; IR (neat) 3437 (br), 2981, 2936, 1715, $1652 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$159.1016. Found 159.1025.

E-(S)-Ethyl 4-Methoxymethoxy-3-methyl-pent-2-enoate (4b)

Alcohol 4a (5.0 mmol) obtained from previous procedure was dissolved in 20 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then methoxy chloromethane (15.0 mmol) and ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(20.0 \mathrm{mmol})$ were added sequentially followed by a catalytic amount of DMAP. The reaction solution was stirred at $25{ }^{\circ} \mathrm{C}$ for 16 h , then quenched with Brine and extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (10%) gave the ester (72%) as a colorless oil. $[\alpha]^{21}{ }^{\mathrm{D}}-9.1\left(c 0.0125, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.25(\mathrm{~m}, 6 \mathrm{H}), 2.05(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 5.83(\mathrm{q}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.2,19.9,55.3,59.6$, 76.1, $94.1,115.8,158.5,166.5$; IR (neat) 2981, 2936, 2824, $1717,1654 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Li}]^{+}$209.1365 Found 209.1391.

E-(S)-4-Methoxymethoxy-3-methyl-pent-2-en-1-ol (4c)

DIBALH ($6 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane) solution (6.0 mmol) was added to a solution of ester 4b (2.0 mmol) in $20 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ dropwise over 10 min . The reaction solution was then warmed to $-30^{\circ} \mathrm{C}$. After stirring for 2 h , the reaction solution was warmed to 25 ${ }^{\circ} \mathrm{C}$, and was quenched with methanol (5 mL) and saturated potassium sodium tartrate tetrahydrate $(20 \mathrm{~mL})$. After stirring for 1 h , the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (50\%) gave the alcohol (89\%) as a colorless oil. $[\alpha]^{21}{ }_{\mathrm{D}}-11.5$ (c $\left.0.021, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H})$, $3.15(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{br}, 1 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 3 \mathrm{H}), 4.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.36-5.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.6,19.3,54.7,58.0,76.4,93.0,126.5$, 137.0; ; IR (neat) 3417 (br), 2978, 2934, 2888, $1669 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{Li}]^{+} 167.1259$. Found 167.1257.

E- (S)-tert-Butyl-(4-methoxymethoxy-3-methyl-pent-2-enyloxy)-diphenyl-silane (4d)

This compound was prepared using the same procedure as described in compound $\mathbf{3}$. $[\alpha]^{21}{ }_{\mathrm{D}}-29.5\left(c 0.044, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.39(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.48$
$(\mathrm{d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.64(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.67-$ $7.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.1,19.1,19.8,26.8,55.3,60.7,76.5,93.5,127.1$, $127.6,129.6,133.8,135.5,136.3$; IR (neat) 2931, 2857, 1472, 1428, 1111, $1027 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Li}]^{+}$405.2427. Found 405.2422.

E-(S)-Ethyl 3-(2,2-dimethyl-[1,3]dioxolan-4-yl)-but-2-enoate (5a) and Z-(S)-Ethyl 3-(2,2-dimethyl-[1,3]dioxolan-4-yl)-but-2-enoate (5b)

$\mathrm{NaH}(40.0 \mathrm{mmol})$ was added into $100 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and ethyl diethylphosphonoacetate (44.0 mmol) was added dropwise at $0^{\circ} \mathrm{C}$. The solution obtained was stirred for 30 min . The ketone solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ obtained by literature procedure ($100 \mathrm{~mL}, 0.2 \mathrm{M}$, this ketone is very volatile, removing solvent by rotavap caused substantial loss of material) ${ }^{7}$ was added into the reaction solution over 20 min . After 1 h stirring at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 ml). The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification by flash chromatography eluting with EtOAc/hexanes (8\%) gave the E ester (70\%) and Z ester (10\%) as colorless oil, respectively.
E isomer: $[\alpha]^{21}{ }_{\mathrm{D}}+31.1\left(c 0.018, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.59(\mathrm{q}, J=7.2,1 \mathrm{H}), 4.07-4.18(\mathrm{~m}$,
$3 \mathrm{H}), 4.44-4.50(\mathrm{~m}, 1 \mathrm{H}), 5.95-5.97(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.1,14.7,25.4,26.0$, 59.7, 68.5, 76.6, 110.1, 115.3, 154.7, 166.4; IR (neat) 2986, 2938, 1716, $1660 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$215.1283. Found 215.1289. Z isomer: $[\alpha]^{21}{ }_{\mathrm{D}}+18.9\left(c 0.020, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.16(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.45(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.31(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.0,19.7,24.8$, 25.9, 59.7, 68.6, 68.7, 74.4, 109.5, 117.1, 158.4, 165.4; IR (neat) 2985, 2937, 1712, 1646 $\mathrm{cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Li}]^{+}$221.1365. Found 221.1370.

(E)-(S)- 3-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-but-2-en-1-ol (5c)

This compound was prepared using the same procedure described in $\mathbf{4 c} .[\alpha]^{21}{ }_{\mathrm{D}}+20.5(c$ $\left.0.024, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.61(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.31(\mathrm{br}, 1 \mathrm{H}), 3.57-3.62(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.15(\mathrm{~m}, 3 \mathrm{H}), 4.44(\mathrm{t}, J=$ $6.9,1 \mathrm{H}), 5.65-5.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.6,25.3,26.2,58.7,67.9,80.2$, 109.3, 126.7, 135.0; IR (neat) 3483 (br), 2986, 2935, 2879, $1674 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$179.1259. Found 179.1252.

(S)- Ethyl 4-Hydroxy-3-methyl-butyrate

$[\alpha]^{19}{ }^{\mathrm{D}}=-9.3\left(\mathrm{c}=0.015, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{br}, 1 \mathrm{H}), 2.10-2, .24(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.46(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.59(\mathrm{~m}, 2 \mathrm{H})$, $4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.2,16.7,33.0,38.6,60.4,67.5,173.5 ; \mathrm{IR}$
(neat) 3504 (br), 2964, 3935, 2877, $1733 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$ 153.1103. Found 153.1105.

Determination of relative stereochemistry:
The alcohol product form alkene $\mathbf{2}$ was transformed to a lactone and its optical rotation data was compared with data reported

$[\alpha]^{19}{ }_{\mathrm{D}}=-23.6(\mathrm{c}=2.72, \mathrm{MeOH})\left(\left(\mathrm{lit} .^{8}[\alpha]^{25}{ }_{\mathrm{D}}-17.2 .(c 1.3, \mathrm{MeOH})\right)\right.$
The alcohol was subjected to GC using conditions B. Enantiomeric excess $=96 \%$.

Retention time (min)	46.9	47.1
Area	6.45	302.6

(S)-4-(tert-Butyl-diphenyl-silanyloxy)-3-methyl-butyrate

$[\alpha]^{21}{ }_{\mathrm{D}}-3.7\left(c 0.043, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H})$, $1.26(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.12-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=14.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.60(\mathrm{~m}$, $2 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.66-7.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $14.2,16.6,19.3,26.8,33.0,38.3,60.1,68.0,127.6,129.6,133.7,135.5,173.2$; IR (neat) 2960, 2895, 2859, $1736 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Li}]^{+}$391.2281. Found 391.2281.

Determination of relative stereochemistry:

The ester product was deprotected and then transformed to the lactone. $[\alpha]^{19} \mathrm{D}=-18.5$ (c $=0.24, \mathrm{MeOH})\left(\left(\mathrm{lit} .[\alpha]_{\mathrm{D}}^{25}\right.\right.$-17.2. (c 1.3, MeOH)). The alcohol obtained from TBAF deprotection was subjected to GC conditions B. Enantiomeric excess $=93 \%$.

Retention time (min)	46.9	47.1
Area	13.1	383.4

(S)- Ethyl 4-Hydroxy-3-methyl-pentanoate

$[\alpha]^{19}{ }_{\mathrm{D}}-16.2(c \quad 0.021, \mathrm{MeOH}),\left(\right.$ lit. ${ }^{6}[\alpha]^{25}{ }_{\mathrm{D}}-17.2$. $\left.(c \quad 1.3, \mathrm{MeOH})\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.00-2.19(\mathrm{~m}$, $3 \mathrm{H}), 2.47(\mathrm{dd}, J=14,7,6,0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.81(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 14.2,14.4,19.4,36.6,37.6,60.4,70.3,173.8$; IR (neat) 3447 (br), 3055, 2921, 2850, 1732, $1647 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$167.1259. Found 167.1254.

Determination of relative stereochemistry: ${ }^{9}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$
3.76-3.83
3.54-3.63
4.12
$\begin{array}{lll}\text { Literature reported }(\text { syn }):^{7} \quad 3.71(\mathrm{~m}, 1 \mathrm{H}) & 4.06\end{array}$
For syn compound: $[\alpha]^{19}{ }_{\mathrm{D}}-16.2(c 0.021, \mathrm{MeOH}),\left(\mathrm{lit} .{ }^{7}[\alpha]^{25}{ }_{\mathrm{D}}-17.2 .(c 1.3, \mathrm{MeOH})\right)$
Determination of diastereomeric excess is achieved by protecting the alcohol with MOM, and then subjected to GC with conditions A.

Retention time (min)	18.4	18.7
Area	848.8	8.3

(S, S)- Ethyl 4-Methoxymethoxy-3-methyl-pentanoate

$[\alpha]^{19}{ }_{\mathrm{D}}+4.0(c 0.010, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.09-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.52(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, 3.61-3.69 (m, 1H), $4.13(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{dd}, J=15.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.2,14.9,16.4,35.2,37.3,55.4,60.2,75.4,95.0,173.4 ;$ IR (neat) 2978, 2933, 1736, $1038 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Li}]^{+}$211.1522. Found 211.1514.
(S, R)- Ethyl 4-Methoxymethoxy-3-methyl-pentanoate

$[\alpha]^{19}{ }_{\mathrm{D}}-1.1\left(c 0.019, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.07-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.54(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$, 3.48-3.56(m, 1H), $4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{dd}, J=23.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.2,15.7,35.8,37.8,55.4,55.5,60.2,76.4,95.2,173.3 ;$ IR (neat) 2978, 2933, 1735, $1038 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Li}]^{+}$211.1522. Found 211.1521.

Determination of relative stereochemistry:

Alkene 4b was hydrogenated using $\mathrm{Rh} / \mathrm{Al}$ catalyst to afford a mixture of syn and anti isomers in a 1.8:1.0 ratio. Protons a and b showed different proton chemical shift. The major isomer corresponds to a set of peak between 3.61-3.69 ppm, which has been confirmed by a comparison with the authentic sample.
a
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$
Retention time (Area)
The authentic sample was prepared by the following method:

Comparison of authentic sample with the product from $\mathbf{L}-\mathbf{1}$ (GC conditions A).

	${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$	Retention time(Area)
Authentic sample	$3.61-3.69(1 \mathrm{H})$	18.4

|3.61-3.69(1H)

The crude product from 1-D has been purified by flash chromatograph, and the diastereomeric excess has been determined by GC (Conditions A).

Retention time (min)	18.4	18.7
Area	2.97	92.6

(S, S)-4-Methoxymethoxy-3-methyl-pentan-1-ol

$[\alpha]^{19}{ }_{\mathrm{D}}-2.0\left(c 0.045, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.86(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{br}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.76$ (m, 3H), 4.60-4.69 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.6,34.9,35.4,55.4,61.4,77.4,95.0$; IR (neat) $3422,2934,2887,1101 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$169.1416. Found 167.1418.
(S, R)- 4-Methoxymethoxy-3-methyl-pentan-1-ol

$[\alpha]^{19}{ }_{\mathrm{D}}+38.7\left(c 0.016, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{br}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.75$ $(\mathrm{m}, 3 \mathrm{H}), 4.60-470(\mathrm{~m}, 2 \mathrm{H}) ; 15.8,16.4,35.2,35.6,55.6,61.6,77.6,95.2$; IR (neat) 3418, 2933, 2884, $1104 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$169.1416. Found 169.1415.

Determination of relative stereochemistry:

Alkene 4b was hydrogenated by $\mathrm{Rh} / \mathrm{Al}$, afforded syn and anti isomers in a 1.6:1.0 ratio. The mixture was reduced to alcohol by DIBALH, and the major isomer was presumed to be syn. Apparently, 0.79 and 3.15 are corresponding to syn; $0.85,3.17$ are corresponding to anti.

	a	b	c	d
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$	$0.79(1.6)$	$0.85(1.0)$	$3.17(1.0)$	$3.15(1.6)$
This compound				
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$	$0.79(3 \mathrm{H})$			$3.15(3 \mathrm{H})$

Determination of diastereomeric excess:
The obtained alcohol was transformed to methyl ether and then subjected to GC under conditions A.

Hydrogenation catalyst	Retention time(Area)	Retention time(Area)
$\mathrm{Rh} / \mathrm{Al}$	$18.4(14.3)$	$18.6(7.8)$
Cat L	$18.4(6.7)$	$18.6(0.39)$
Cat D	$18.5(0.89)$	$18.7(9.2)$

(S, S)- tert-Butyl-(4-methoxymethoxy-3-methyl-pentyloxy)-diphenyl-silane

The obtained crude compound from hydrogenation was subjected to 1.2 eq. of TBAF (1.0 M in THF) and stirred for 4 h . Subsequent work up and purification afford (S, S)- 4-methoxymethoxy-3-methyl-pentan-1-ol as the major isomer.

(S, R) Ethyl 3-(2,2-dimethyl-[1,3]dioxolan-4-yl)-butyrate

$[\alpha]^{19}{ }_{\mathrm{D}}+8.2\left(c \quad 0.020, \mathrm{CHCl}_{3}\right),\left(\right.$ lit. ${ }^{10}[\alpha]_{\mathrm{D}}^{25}+8.43$. (c 1.12, $\left.\left.\mathrm{CHCl}_{3}\right)\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.20(\mathrm{~m}$, $2 \mathrm{H}), 2.32-2.39(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.91-4.00(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.1,15.3,25.1,16.3,32.9,37.4,60.2,66.6,78.7,108.8,172.5 ; \mathrm{IR}$ (neat) 2985, 2936, $1735 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Li}]^{+}$223.1521. Found 223.1520 .

(S, S) Ethyl 3-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-butyrate

$[\alpha]^{19}{ }_{\mathrm{D}}+4.6\left(c 0.055, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.65(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.80-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.5,16.2,25.7,26.8,34.5,38.4,60.5,68.1,79.7,109.2,173.1$; IR (neat) 2985, 2937, 2879, $1735 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Li}]^{+}$223.1521. Found 223.1522.

Determination of stereochemistry: ${ }^{10}$

Alkene 5a was hydrogenated with $\mathrm{Rh} / \mathrm{Al}$ catalyst, affords two diastereoisomers in a 2.0:1.0 ratio. The major isomer spectra is identical to the reported syn compound, ${ }^{8}$ thus the minor isomer should be anti.

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$	a	b	c
	$0.94(2 \mathrm{H})$	$0.86(0.9 \mathrm{H})$	$1.20(3 \mathrm{H})$
Literature value (syn):	$0.94(3 \mathrm{H})$		$1.20(3 \mathrm{H})$

Diastereomeric excess has been determined under conditions A.

Hydrogenation catalyst	Retention time(Area) anti	Retention time(Area) syn
$\mathrm{Rh} / \mathrm{Al}$	$20.3(304)$	$20.7(683)$
$\mathbf{L - 1}$	$20.3(1549)$	$20.7(65.2)$
$\mathbf{D - 1}$	$20.3(43.1)$	$20.7(1059)$

After purified by column.

Hydrogenation catalyst	Retention time(Area)	Retention time(Area)
L-1	$20.3(13885)$	$20.7(343)$
D-1	$20.3(7.3)$	$20.7(368)$

(S, R) 3-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-butan-1-ol

$[\alpha]^{19}{ }_{\mathrm{D}}+18.0\left(c\right.$ 0.021, $\left.\mathrm{CHCl}_{3}\right),\left(\right.$ lit. ${ }^{11}[\alpha]^{25}{ }_{\mathrm{D}}+18.1 .\left(c\right.$ 1.12, $\left.\left.\mathrm{CHCl}_{3}\right)\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.1 .85(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{br}, 1 \mathrm{H})$, 3.57-3.75 (m, 3H), 3.93-4.01 (m, 1H), 3.80-3.96(m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.1,25.3$, $26.4,32.7,35.5,60.2,67.1,79.6,108.7$; IR (neat) 3446 (br), 2934, 2881, $1059 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$181.1416. Found 181.1421.

(S, R) 3-(2,2-Dimethyl-[1,3]dioxolan-4-yl)-butan-1-ol

$[\alpha]^{19}{ }_{\mathrm{D}}+14.2\left(c 0.063, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.1 .78(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{br}, 1 \mathrm{H}), 3.55-3.64(\mathrm{~m}, 3 \mathrm{H})$, 3.80-3.87 (m, 1H), 3.99-4.04 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.9,25.5,26.4,34.3,37.1$, $60.5,68.0,80.3,108.7$; IR (neat) 3421 (br), 2985, 2935, 2879, $1065 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$181.1416. Found 181.1420.

Determination of relative stereochemistry:

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$

$$
\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
0.96(2 \mathrm{H}) & 0.86(0.9 \mathrm{H})
\end{array}
$$

Literature (syn) ${ }^{10} \quad 0.97(3 \mathrm{H})$

Alkene 5c was hydrogenated using $\mathrm{Rh} / \mathrm{Al}$ catalyst, afforded two diastereoisomers in a 2.0:0.9 ratio, thus the major isomer is syn and minor is anti.

Determination of diastereomeric excess:

The obtained alcohol product from the hydrogenation was transformed to corresponding methyl ether and then subjected to GC using conditions A.

Hydrogenation catalyst	Retention time(Area) anti	Retention time(Area) syn
$\mathrm{Rh} / \mathrm{Al}$	$13.5(8.4)$	$13.9(20.4)$
$\mathbf{D - 1}$	$13.5(0.51)$	$13.9(5.6)$
$\mathbf{L - 1}$	$13.0(373)$	$13.5(7.2)$

(S, R) 5-Benzyloxy-3-methyl-pentane-1,2-diol (6a)

$[\alpha]^{19}{ }^{\mathrm{D}}-1.4\left(c 0.028, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.69-1.89(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.63(\mathrm{~m}, 5 \mathrm{H}), 4.09(\mathrm{br}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-$ $7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.9,32.4,33.4,64.4,68.1,72.9,75.9,127.6 .128 .3$, 137.8; IR (neat) 3386 (br), 3030, 2926, 2872, $1496 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{Li}]^{+}$231.1572. Found 231.1571.
(S, S) 5-Benzyloxy-3-methyl-pentane-1,2-diol (6b) ${ }^{11}$

$[\alpha]^{19}{ }_{\mathrm{D}}+11.1\left(c 0.020, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.81(\mathrm{~m}$, $5 \mathrm{H}), 3.47-3.67(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.3,29.7$, 33.4, 64.9, 68.2, 73.2, 74.9, 127.7, 127.8, 128.4, 137.8 ; IR (neat) 3386 (br), 2913, 2926, 2850, $1074 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Li}]^{+}$231.1572. Found 231.1574.
(R) 1-(tert-Butyl-diphenyl-silanyloxy)-2,4-dimethyl-hept-4-en-3-one (7)

$[\alpha]^{19}{ }_{\mathrm{D}}-21.5\left(c 0.039, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.05-1.12(\mathrm{~m}, 15 \mathrm{H}), 1.82(\mathrm{~d}, J=0.9$ $\mathrm{Hz}, 3 \mathrm{H}), 2.22-2.32(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.95(\mathrm{~m}, 1 \mathrm{H}), 6.61-6.66(\mathrm{~m}, 1 \mathrm{H})$, 7.39-7.45 (m, 6H), 7.66-7.70 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.3,13.0,14.5,19.1,22.3$, $26.7,41.5,67.0,127.6,129.5,133.4,133.6,135.5,136.8,144.4,204.7$; IR (neat) 3071 , 3049, 2963, 2932, 2858, 1665, $1638 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Li}]^{+}$ 401.2488. Found 401.2487.
(R, R) 1-(tert-Butyl-diphenyl-silanyloxy)-2,4-dimethyl-hept-4-en-3-ol (8)

$[\alpha]^{19}{ }_{\mathrm{D}}-21.3\left(c 0.046, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.90-2.12(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=10.2,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{dd}, J=10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-$ $7.46(\mathrm{~m}, 6 \mathrm{H}), 7.70-7.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 10.9,13.6,14.0,19.0,20.8,26.8$,
$37.4,69.2,83.5,127.7,129.8,130.0,132.0,132.8,134.9,135.5,135.6$; IR (neat) 3492 (br), 3071, 3056, 2961, 2931, 2858,1471 cm ${ }^{-1}$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 403.2645. Found 403.2658.

Determination of relative stereochemistry:
Alkene 7 was treated with TBAF to afford an alcohol. According to the literature reported results, the hydride reduction of this type of alcohol favors syn product, presumably due to the chelate-Cram transient state. Indeed, a 4.6:1.0 ratio was observed while this alcohol was reduced by NaBH_{4}, and the major isomer was presumed to be syn.

The chemical shift of protons a and b is different, which can be used to determine the relative stereochemistry. Since the major isomer is at 4.07 ppm , this chemical shift should correspond to the syn product.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$
a
4.07 (0.79 H)
b
c
3.83 (0.17H)
1.58 (3H)

Compound $\mathbf{8}$ was treated with TBAF, and the diol obtained was isolated. A chemical shift of 3.82 ppm was observed, clearly indicating that the major compound is the anti isomer, plus, the NMR spectrum also indicates that the anti:syn ratio is $>20: 1$.

Deprotect the product 7
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$
a
b
c
not present
$3.82(1 \mathrm{H}) \quad 1.58(3 \mathrm{H})$

(R, R, S) 1-(tert-Butyl-diphenyl-silanyloxy)-2,4-dimethyl-heptan-3-ol (9)

$[\alpha]^{19}{ }_{\mathrm{D}}-30.1\left(c 0.011, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.95(\mathrm{~m}$, $6 \mathrm{H}) ; 10.6(\mathrm{~s}, 9 \mathrm{H}), 1.18-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.94(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.39(\mathrm{~m}$, $1 \mathrm{H}), 3.62-3.82(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 14.1, $14.4,16.8,19.1,20.4,26.5,26.8,32.1,35.5,36.8,68.9,81.1,127.8,129.8,135.6,135.6 ;$

IR (neat) $3508,3071,2958,2931,2859,1589,1471 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Li}]^{+} 405.2801$. Found 405.2806.

(R, R, S) 2,4-Dimethyl-heptane-1,3-diol

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88-0.96(\mathrm{~m}, 9 \mathrm{H}), 1.11-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.68$ $(\mathrm{m}, 1 \mathrm{H}), 1.85-1.93(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.78(\mathrm{~m}, 2 \mathrm{H})$;

Determination of relative stereochemistry:
Compound 9 was treated with TBAF and the diol obtained was isolated and compared with the known anti/syn compound ${ }^{12}$ and the diastereoisomers prepared by Rh / a hydrogenation. Since our compound does nto have the same H NMR shifts as the known compound, we concluded that our compound 9 is the anti/anti isomer.

HNMR 0.81(d) - 0.94 (d)

0.81 (d) $\begin{gathered}0.87(\mathrm{~d}) \\ \text { literature }\end{gathered} 0.91(\mathrm{t})$

0.88 (d) $0.91(\mathrm{t}) 0.94(\mathrm{~d})$
this compound

References

(1) Powell, M. T.; Hou, D.-R.; Perry, M. C.; Cui, X.; Burgess, K. J. Am. Chem. Soc. 2001, 123, 8878.
(2) Miyaoka, H.; Isaji, Y.; Kajiwara, Y.; Kunimune, I.; Yamada, Y. Tetrahedron Lett. 1998, 39, 6503.
(3) Staerk D. U., Shitangkoon A., Vigh G., J. Chromatogr. A. 1995, 702, 251.
(4) Xia, C.; Heng, L.; Ma, D. Tetrahedron Lett. 2002, 43, 9405.
(5) Hanaki, N.; Link, J. T.; MacMillan, D. W. C.; Overman, L. E.; Trankle, W. G.; Wurster, J. A. Org. Lett. 2000, 2, 223.
(6) MacMillan, D. W. C.; Overman, L. E.; Pennington, L. D. J. Am. Chem. Soc. 2001, 123, 9033.
(7) Leyes, A. E.; Poulter, C. D. Org. Lett. 1999, 1, 1067.
(8) Howell, G. P.; Fletcher, S. P.; Geurts, K.; Horst, B.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 14977.
(9) Koul, S.; Crout, D. H. G.; Errington, W.; Tax, J. J. Chem. Soc. Perkin Transactions 1, 1995, 23, 2969.
(10) Al Dulayymi, J. R.; Baird, M. S.; Roberts, E.; Deysel, M.; Verschoor, J. Tetrahedron 2007, 63, 2571.
(11) Amano, S.; Fujiwara, K.; Murai, A. Synlett. 1997, 11, 1300.
(12) Pilli, R. A. ; Murta, M. M. J. Org. Chem. 1993, 58, 338.

van.

1	1	1	1	1		1	1	1	1	1	1	1	1	1		1	1	1	1	\|
200					150					100					50					0
).pm (f1)																				

m (f1)

