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General 
1H and 13C NMR spectra were recorded on a JEOL JNM-EX400 instrument at 400 and 100 

MHz, respectively.  The chemical shift values were expressed relative to Me4Si as an internal 

standard.  High-resolution mass spectra (HRMS) were obtained on a JEOL JMS-SX102A 

spectrometer.  Analytical thin-layer chromatography (TLC) was performed with silica gel 60 

Merck F254 plates.  Column chromatography was performed with Wakogel C-300 silica gel.  Gel 

permeation chromatography (GPC) was carried out on a TOSOH 8020 (TSKgel G3000HXL 

column) instrument using CHCl3 as an eluent after calibration with standard polystyrene samples.  

UV-vis absorption spectra were obtained on a SHIMADZU UV3600 spectrophotometer.  

Photoluminescence spectra were obtained on a Perkin-Elmer LS50B luminescence spectrometer 

and a Horiba FluoroMax-4 luminescence spectrometer.  Thermogravimetric analysis (TGA) was 

made on a Seiko EXSTAR 6000 instrument (10 °C/min).  Differential scanning calorimetry (DSC) 

thermograms were recorded on a Seiko DSC200 instrument (10 °C/min).  Fluorescence lifetime 

measurement was performed on a Hamamatsu Photonics C4780 picosecond fluorescence lifetime 

measurement system with an integrated streak scope (Hamamatsu Photonics C4334) and a N2 pulse 

laser (337 nm) as an excitation light source.  Elemental analyses were performed with an 

Elementar Analysensysteme varioMICRO V1.5.8 system using the CHN mode or performed at the 

Microanalytical Center of Kyoto University. 

 

Materials.  THF, Et2O, and Et3N were purchased and purified by passage through 

purification column under Ar pressure.1  Pd(PPh3)4 and CuI were obtained commercially, and used 

without further purification.  Pseudo-p-diethynyl[2.2]paracyclophane 1 was prepared from 

commercially available [2.2]paracyclophane as described in the literature.2  

4,5-Dibromo-2,7-di-tert-butyl-9,9-dimethylxanthene (S1) was obtained commercially and used 

without further purification.  1-Ethynyl-4-nitrobenene (3),3 and 4-ethynyl[2.2]paracyclophane (4),4 

were prepared as described in the literature.  1-Methoxy-2-p-nitrophenylethynylbenzene (7) was 

prepared by the modified procedure as described in the literature.5  All reactions were performed 

under Ar atmosphere. 
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Synthetic Procedures 

2,7-Di-tert-butyl-4,5-diiodo-9,9-dimethylxanthene (2).   

 

 

 

 

To cooled solution (–5 °C) of 4,5-dibromo-2,7-di-tert-butyl-9,9-dimethylxanthene (S1) (2.4 g, 

5.0 mmol) in Et2O (200 mL) was added BunLi (4.5 mL of 2.6 M hexane solution, 12 

mmol)/TMEDA (2.0 mL) from a dropping funnel dropwise under Ar.  After 20 min, a solution of 

iodine (2.8 g, 11 mmol) in Et2O (30 mL) was added dropwise over a period of 1 h at –20 °C.  This 

solution was stirred for 30 min at 0 °C and for 2 h at room temperature.  The reaction was 

quenched by the addition of saturated aqueous Na2SO3 (150 mL).  The organic layer was separated 

and the aqueous layer was extracted with Et2O several times.  The combined organic layers were 

dried over MgSO4.  The solvent was removed on a evaporator to give the pale yellow solid residue, 

which was recrystallized from hot hexane to obtained pure 2 (2.0 g, 3.6 mmol, 70%) as white 

crystals.  

Mp 148.1–158.1 °C.  1H NMR (CDCl3, 400 MHz): δ 7.47 (d, J = 2.2 Hz, 2H), 7.33 (d, J = 

2.2 Hz, 2H), 1.62 (s, -Me, 6H), 1.32 (s, 18H); 13C NMR (CDCl3, 100 MHz): δ 147.2, 131.1, 128.5, 

121.5, 110.4, 77.2, 35.7, 34.5, 32.0, 31.4.  Anal. calcd for C23H28I2O: C 48.10; H 4.91.  Found: C 

48.07; H 4.95. 

 

Polymerization.   
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A typical procedure is as follows.  Pseudo-p-diethynyl[2.2]paracyclophane (1) (23.1 mg, 

0.090 mmol), 2,7-di-t-butyl-4,5-diiodo-9,9-dimethylxanthene (2) (57.4 mg, 0.100 mmol), 

4-ethynyl[2.2]paracyclophane (4) (4.6 mg, 0.020 mmol), Pd(PPh3)4 (11.6 mg, 0.010 mmol), and 

CuI (1.9 mg, 0.010 mmol) were placed in a 10 mL Pyrex tube equipped with a magnetic stirrer and 

a reflux condenser.  The equipment was purged with Ar, followed by adding THF (4.0 mL) and 

Et3N (2.0 mL).  The reaction was carried out at 50 °C for 48 h.  After cooling, the reaction 

mixture was diluted with CHCl3, and washed with NH3 aqueous solution, water and brine.  The 

organic layer was dried over Na2SO4.  And then, it was concentrated and reprecipitated from a 

large amount of methanol.  The obtained polymer contained low molecular weight residues; it was 

purified by HPLC by using CHCl3 as an eluent.  The polymer was dried in vacuo to afford P4a as 

a yellow solid (47.1 mg, 79%). 

Polymer 3.  Yield: 76% for P3a, 59% for P3b, and 56% for P3c.  1H NMR (CDCl3, 400 

MHz): δ 8.15-8.30 (br, 3,5-protons of 1-ethynyl-4-nitrobenzene group), 7.23-7.87 (br m, aromatic 

protons of the xanthene unit and the nitrobenzene group), 6.04-7.11 (br, aromatic protons of the 

cyclophane unit), 2.26-3.81 (br m, bridged ethylene protons of the cyclophane unit), 1.59-1.78 (br, 

-CH3), 1.20-1.49 (br, -t-Bu). 

Polymer 4.  Yield: 79% for P4a, 65% for P4b, and 50% for P4c.  1H NMR (CD2Cl2, 400 

MHz): δ 7.12-7.80 (br m, aromatic protons of the xanthene unit), 6.05-7.03 (br, aromatic protons of 

the cyclophane unit), 2.30-3.79 (br m, bridged ethylene protons of the cyclophane unit), 1.49-1.71 

(br, -CH3), 1.13-1.42 (br, -t-Bu). 

 

4-p-Nitrophenylethynyl-5-iodo-9,9-dimethylxanthene (S3).   

 

 

 

 

 

4-Nitrophenylacetylene (3) (59 mg, 0.40 mmol), 4,5-diiodo-9,9-dimethylxanthene (S2)6 (186 

mg, 0.40 mmol), Pd(PPh3)4 (23 mg, 0.02 mmol), and CuI (4 mg, 0.02 mmol) were placed in a 50 

mL Pyrex flask equipped with a magnetic stirrer and a reflux condenser.  The equipment was 
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purged with Ar, followed by adding THF (8.0 mL) and Et3N (8.0 mL).  The reaction was carried 

out at 50 °C for 24 h.  After cooling, the reaction mixture was diluted with Et2O and washed with 

NH3 aqueous solution, water and brine.  The organic layer was dried over Na2SO4.  And then, it 

was concentrated in vacuo to afford the crude product.  Then, it was purified by silica gel column 

chromatography (hexane/CHCl3 v/v = 2/1 as an eluent) to afford S3 as a colorless liquid (55 mg, 

0.13 mmol, 32%). 

Rf = 0.29 (hexane/CHCl3, v/v = 2/1).  1H NMR (CDCl3, 400 MHz): δ 8.23 (2H, d, J = 9.0 

Hz), 7.81 (2H, d, J = 9.0 Hz), 7.72 (1H, d, J = 7.8 Hz), 7.47 (1H, d, J = 7.8 Hz), 7.46 (1H, d, J = 7.8 

Hz), 7.41 (1H, d, J = 7.8 Hz), 7.13 (1H, t, J = 7.8 Hz), 6.88 (1H, t, J = 7.8 Hz), 1.63 (6H, s).  13C 

NMR (CDCl3, 100 MHz): δ 151.4, 149.2, 146.9, 137.6, 132.5, 131.5, 131.2, 130.7, 130.6, 127.1, 

126.2, 125.2, 123.6, 123.4, 111.0, 92.4, 90.8, 84.8, 34.8, 32.0.  HRMS (FAB): m/z calcd for 

C23H16NO2 (M+): 481.0175.  Found: 481.0160.  Anal. calcd for C23H16NO2: C 57.40; H 3.35; N 

2.91.  Found: C 57.55; H 3.49; N 2.92.  

 

Pseudo-p-bis(4-(p-nitrophenyl)ethynyl-9,9-dimethylxanthen-5-yl)[2.2]paracyclophane (5).   

 

 

 

 

 

 

 

The compound S3 (48 mg, 0.10 mmol), 1 (13 mg, 0.052 mmol), Pd(PPh3)4 (6.0 mg, 0.0052 

mmol), and CuI (1.0 mg, 0.0052 mmol) were placed in a 10 mL Pyrex tube equipped with a 

magnetic stirrer and a reflux condenser.  The equipment was purged with Ar, followed by adding 

THF (4.0 mL) and Et3N (2.0 mL).  The reaction was carried out at 50 °C for 24 h.  After cooling, 

the reaction mixture was diluted with CHCl3, and washed with NH3 aqueous solution, water and 

brine.  The organic layer was dried over Na2SO4.  And then, it was concentrated in vacuo.  The 

crude product was purified by silica gel column chromatography (hexane/CHCl3, v/v = 2/1 as an 

eluent) to afford 5 as a colorless solid (38 mg, 0.040 mmol, 39%). 
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Rf = 0.50 (hexane/CHCl3, v/v = 1/1).  Mp 262.8 °C (dec.). 1H NMR (CDCl3, 400 MHz): δ 

7.64-7.60 (6H, m), 7.47 (4H, d, J = 7.8 Hz; two overlapping doublet peaks), 7.42 (2H, d, J = 7.8 

Hz), 7.31-7.27 (4H, m), 7.22 (2H, t, J = 7.8 Hz), 7.11 (2H, t, J = 7.8 Hz), 6.94 (2H, d, J = 7.9 Hz), 

6.35 (2H, s), 6.28 (2H, d, J = 7.9 Hz), 3.67-3.61 (2H, m), 3.12-3.05 (2H, m), 2.79-2.72 (2H, m), 

2.68-2.61 (2H, m), 1.70 (6H, s), 1.68 (6H, s).  13C NMR (CDCl3, 100 MHz): δ 150.8, 149.8, 146.5, 

142.3, 139.3, 137.4, 133.0, 132.2, 132.1, 131.7, 130.5, 130.2, 130.1, 129.8, 127.3, 126.3, 124.6, 

123.5, 123.1, 112.3, 110.9, 94.0, 92.2, 90.3, 88.6, 34.3, 34.1, 33.7, 32.6, 32.2.  HRMS (FAB): m/z 

calcd for C66H46N2O6 (M+): 962.3356.  Found: 962.3363.  Anal. calcd for C66H46N2O6: C 82.31; 

H 4.81; N 2.91.  Found: C 82.00; H 4.98; N 2.93. 

 

1-Methoxy-2-p-nitrophenylethynylbenzene (7). 

 

 

 

 

 

4-Iodonitrobenzene (S4) (0.80 g, 3.2 mmol), 1-methoxy-2-trimethylsilylethynylbenzene (S5)7 

(0.33 g, 1.6 mmol), PdCl2(PPh3)2 (28 mg, 0.040 mmol), and CuI (7.6 mg, 0.040 mmol) were placed 

in a 50 mL Pyrex tube equipped with a magnetic stirrer and a reflux condenser.  The equipment 

was purged with Ar, followed by adding THF (3.0 mL) and Et3N (1.5 mL).  n-Bu4NF (1.6 mmol, 1 

M THF solution) was added by a syringe, and the reaction mixture was refluxed for 40 h.  After 

cooling, the reaction mixture was diluted with CHCl3, and washed with NH3 aqueous solution, 

water and brine.  The organic layer was dried over Na2SO4.  And then, it was concentrated in 

vacuo.  The crude product was purified by silica gel column chromatography (hexane/CHCl3, v/v 

= 1/1 as an eluent) to give a yellow solid.  And then, it was purified by recrystallization from 

hexane and CHCl3 to afford 7 as a yellow solid (62 mg, 0.24 mmol, 15%). 

Although it is reported that compound 7 was a yellow oil,5 it was obtained as a yellow solid.  
1H and 13C NMR spectra were almost matched with the literature’s values.5  

Rf = 0.20 (hexane/CHCl3, v/v = 1/1).  Mp 61.8–63.7 °C.  1H NMR (CDCl3, 400 MHz): δ 

8.21 (2H, d, J = 8.6 Hz), 7.68 (2H, d, J = 8.6 Hz), 7.51 (1H, d, J = 7.3 Hz), 7.38 (1H, t, J = 7.3 Hz), 
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6.98 (1H, d, J = 7.3 Hz), 6.93 (1H, d, J = 7.3 Hz), 3.94 (3H, s).  13C NMR (CDCl3, 100 MHz): δ 

160.2, 146.8, 133.8, 132.3, 130.9, 130.6, 123.6, 120.6, 111.3, 110.7, 91.5, 91.4, 55.8.  HRMS 

(FAB): m/z calcd for C15H11NO3 (M+): 253.0739.  Found: 253.0742.  Anal. calcd for C15H11NO3: 

C 71.14; H 4.38; N 5.53.  Found: C 70.96; H 4.53; N 5.48. 

 
1H and 13C NMR spectra of 2, P3a, P4a, S3, 5 and 7 are shown in Figures S1–12. 
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NMR Spectra 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S1.  1H NMR spectrum of 2, 400 MHz, CDCl3. 
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Figure S2.  13C NMR spectrum of 2, 100 MHz, CDCl3. 
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Figure S3.  1H NMR spectrum of P3a, 400 MHz, CDCl3. 

 
Figure S4.  13C NMR spectrum of P3a, 100 MHz, CDCl3. 
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Figure S5.  1H NMR spectrum of P4a, 400 MHz, CD2Cl2. 

 
Figure S6.  13C NMR spectrum of P4a, 100 MHz, CD2Cl2. 
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Figure S7.  1H NMR spectrum of S3, 400 MHz, CDCl3. 

 
Figure S8.  13C NMR spectrum of S3, 100 MHz, CDCl3. 
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Figure S9.  1H NMR spectrum of 5, 400 MHz, CDCl3. 

 
Figure S10.  13C NMR spectrum of 5, 100 MHz, CDCl3. 
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Figure S1.  1H NMR spectrum of 7, 400 MHz, CDCl3. 

 
Figure S2.  13C NMR spectrum of 7, 100 MHz, CDCl3. 
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Figure S13.  UV–vis absorption spectra of polymers P3a-c in CHCl3 (1.0 × 10-5 M). 

 

 

 

 

 

 

 

 

 

Figure S14.  Emission spectra of polymers P3a-c excited at 333 nm in CHCl3 (1.0 × 10-5 M). 

 

 

 

 

 

 

 

 

 

Figure S15.  Concentration effect on fluorescence emission of polymer P3a in CHCl3. 
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Figure S16.  UV–vis absorption spectra of polymers P4a-c in CHCl3 (1.0 × 10-5 M). 

 

 

 

 

 

 

 

 

 

Figure S17.  Emission spectra of polymers P4a-c excited at 333 nm in CHCl3 (1.0 × 10-5 M). 

 

 

 

 

 

 

 

 

 

Figure S18.  Concentration effect on fluorescence emission of polymer P4a in CHCl3. 
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Figure S19.  UV–vis absorption spectrum of 1-methoxy-2-[(4-nitrophenyl)ethynyl]benzene 7 in 
CHCl3 (1.0 × 10-5 M).
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Figure S20.  Fluorescence emission spectra of P3a–c and P4a in CHCl3 (1.0 × 10–5 M) excited at 
333 nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S21.  Fluorescence emission spectra of P4a in CHCl3 (1.0 × 10–5 M) with 1, 10, and 100 
equivalents of nitrobenzene 6 excited at 333 nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S22.  Stern-Volmer plots of P3a–c (1.0 × 10-5 M/repeating unit) and P4a (1.0 × 10-5 
M/repeating unit) with nitrobenzene 6 in CHCl3.   
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Figure S23.  Fluorescence emission spectra of P4a in CHCl3 (1.0 × 10–5 M) with 1, 10, and 100 
equivalents of 1-methoxy-2-p-nitrophenylethynylbenzene (7) excited at 333 nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S24.  Stern-Volmer plots of P3a–c (1.0 × 10-5 M/repeating unit) and P4a (1.0 × 10-5 
M/repeating unit) with 1-methoxy-2-p-nitrophenylethynylbenzene (7) in CHCl3.   
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Figure S25.  Solvent effect on photoluminescence spectra of (A) P3a and (B) P4a excited at 333 nm. 
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Figure S26.  Fluorescence decay curves of (A) P3a–c and (B) P4a–c in CHCl3 excited at 337 nm (N2 

laser). 

 

Table S1. Summary of the optical data of P3a–c and P4a–c. 
Polymer Φa τ1 / ns τ2 / ns α1 α2 χ2 

P3a 0.03 0.90 3.2 0.191 0.007 1.02 
P3b 0.004 0.50 2.8 0.169 0.007 1.32 
P3c < 0.001 0.40 2.8 0.100 0.022 1.17 
P4a 0.20 1.1 3.4 0.107 0.011 1.06 
P4b 0.18 1.0 3.1 0.105 0.013 0.83 
P4c 0.20 1.1 3.5 0.093 0.017 1.05 

a Absolute fluorescence quantum efficiency in CHCl3 excited at 333 nm. 
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(A) (B) 

 

 

 

 

 

 

 

Figure S27.  TGA curves of (A) P3a and (B) P4a under N2 (10 °C/min). 

 

 

 

 

 

 

 

 

 

Figure S28.  DSC analysis of P4a (10 °C/min). 
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