Supporting Information

Inhibition of Subgenomic Hepatitis C Virus RNA Replication by Acridone Derivatives: Identification of an NS3 Helicase Inhibitor

Giuseppe Manfroni, ${ }^{\S}$ Jan Paeshuyse, ${ }^{7}$ Serena Massari, ${ }^{\S}$ Samantha Zanoli, ${ }^{\#}$ Barbara Gatto, ${ }^{\perp}$ Giovanni Maga, ${ }^{\#}$ Oriana Tabarrini, ${ }^{\S, *}$ Violetta Cecchetti, ${ }^{\S}$ Arnaldo Fravolini, ${ }^{\S}$ and Johan Neyts. ${ }^{¥ *}$
${ }^{\text {§ }}$ Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy,
${ }^{¥}$ Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium, \#Istituto di Genetica Molecolare, CNR-Pavia, Via Abbiategrasso, 207, 27100 Pavia, Italy and ${ }^{\perp}$ Dipartimento di Scienze Farmaceutiche, Università di Padova, Via Marzolo 5, 35131, Padova, Italy.

Table of contents

Experimental details corresponding to the synthesis and analytical data ofintermediates 49, 52-54, 56-59, 62-64, 66, 67, 71-73 and target compounds 7, 8, 10,$\mathbf{1 1}, \mathbf{1 3 - 1 5}, \mathbf{2 0 - 2 5}, 28,29,31,32,41$ and 42

Biological Protocols: HCV NS5B Assay S7
References S7
Elemental Analysis data for target compounds 7-35 and 39-47 S8

Experimental details corresponding to the synthesis and analytical data of intermediates 49, 52-54, 56-59, 62-64, 66, 67, 71-73 and target compounds 7, 8, 10, 11, 13-15, 20-25, 28, 29, 31, 32,41 and 42 and target compounds $7,8,10,11,13-15,20-25,28,29,31,32,41$ and 42 .

4-Chloro-2-[(3-methoxyphenyl)amino]-5-nitrobenzoic acid (49). Following the Ullman procedure of $\mathbf{5 0}$ and replacing the 3,4-dimethoxyaniline with 3-methoxyaniline, the title compound was obtained in 65% yield: $\mathrm{mp} 246-247{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.80-6.90$ $(\mathrm{m}, 3 \mathrm{H}$, aromatic CH$), 7.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 7.40(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $8.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6), 10.70$ (bs, 1H, NH), 14.01 (bs, 1H, COOH).

4-Chloro-2-[(3,5-dimethylphenyl)amino]-5-nitrobenzoic acid (52). Following the Ullman procedure of $\mathbf{5 0}$ and replacing the 3,4-dimethoxyaniline with 2,3-dimethylaniline, the title compound was obtained in 51% yield: mp 290-292 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.30$ (bs, $6 \mathrm{H}, \mathrm{CH}_{3}$), 6.80-7.00 (m, 4H, H-2', H-4', H-6 'and H-3), 8.60 (s, 1H, H-6), 10.20 (s, 1H, NH), 14.00 (bs, 1H, $\mathrm{COOH})$.

3-Chloro-2-nitro-9(10H)-acridinone (56). Following the cyclization procedure of $\mathbf{5 5}$ and starting from 51, ${ }^{1}$ the title compound was prepared in 65% yield: mp $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta 7.30$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.63 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.75 (s, 1H, H-4), 7.80-7.90 (m, 1H, H-6), 8.25 (d, $J=6.9,1 \mathrm{H}, \mathrm{H}-8), 8.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 12.5$ (bs, $1 \mathrm{H}, \mathrm{NH}$).

6-Chloro-1,3-dimethyl-7-nitro-9(10H)-acridinone (57). Following the cyclization procedure of 55 and starting from 52, the title compound was prepared in 30% yield: mp $298-300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.20$ and $2.60\left(\mathrm{~s}\right.$, each $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.70 e $6.90(\mathrm{bs}$, each $1 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4), 7.30(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-5$), 8.50 (s, 1H, H-8), 11.70 (bs, 1H, NH), 13,80.

3-Chloro-6-methoxy-10-methyl-2-nitro-9(10H)-acridinone (58) and 6-chloro-1-methoxy-10-methyl-7-nitro- $\mathbf{9}(\mathbf{1 0 H})$-acridinone (59). Following the cyclization procedure of $\mathbf{5 5}$ and starting from 49, two isomers 3-chloro-6-methoxy-2-nitro-9(10H)-acridinone (53) and 6-chloro-1-methoxy-7-nitro-9(10H)-acridinone (54), were obtained in 70% yield, and used as a crude mixture in the next step. Following the general procedure of N -alkylation of $\mathbf{6 0}$, starting from the mixture of 53 and $\mathbf{5 4}$, compounds 58 and 59 were obtained after column chromatography purification eluting with a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (100:0 to $98: 2$). Compound $\mathbf{5 8}$ was obtained in 38% yield followed by compound $\mathbf{5 9}$ obtained in 42% yield.
Compound 58: mp $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.05$ (dd, $J=2.05$ and $8.80 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.20(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 8.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.20(\mathrm{~d}, J=$ $8.80 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 8.80 (s, $1 \mathrm{H}, \mathrm{H}-1$).
Compound 59: mp> $300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.80$ (d, $J=8.3 \mathrm{~Hz}, \mathrm{H}-2), 7.25$ (d, $J=8.5 \mathrm{~Hz}, \mathrm{H}-4), 7.65$ (t, $J=8.9 \mathrm{~Hz}, \mathrm{H}-3$), 8.10 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), 8.80 (s, $1 \mathrm{H}, \mathrm{H}-8)$.

6-Chloro-1,3,10-trimethyl-7-nitro-9(10H)-acridinone (62). Following the general procedure of N -alkylation of $\mathbf{6 0}$ and staring from 57, the title compound was obtained in 75% yield: $\mathrm{mp}>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6} /$ TFA) $\delta 2.25$ e $2.50\left(\mathrm{~s}\right.$, each $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.75-6.80(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-2$ and $\mathrm{H}-4), 7.35$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), 8.60 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$).

6-Methoxy-10-methyl-2-nitro-3-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)-acridinone
Following the general procedure for coupling reaction of $\mathbf{6 5}$ and starting from 58, the title compound was obtained in 60% yield: $\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- d_{6}) δ 3.25-3.35 and 3.60$3.70\left(\mathrm{~m}\right.$, each 4 H , piperazine $\left.\mathrm{CH}_{2}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.60-6.70(\mathrm{~m}, 1 \mathrm{H}$,
pyridine CH), 6.65-6.75 (m, 2H, H-5, and H-7), 7.10-7.20 (m, 2H, H-4, and pyridine CH), 7.50$7.60(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH$), 8.10-8.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8$, and pyridine CH$), 8.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)$.

1-Methoxy-10-methyl-7-nitro-6-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)-acridinone

Following the general procedure for coupling reaction of $\mathbf{6 5}$ and starting from 59, the title compound was obtained in 36% yield: $\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- d_{6}) $\delta 3.00-3.30$ and 3.60$3.75\left(\mathrm{~m}\right.$, each 4 H , piperazine $\left.\mathrm{CH}_{2}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.60-6.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and pyridine CH), $6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 7.60-7.70 (m, 2H, pyridine CH), 8.10-8.20 (m, 1H, pyridine CH), $8.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$.

10-Methyl-2-nitro-3-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)-acridinone (66). Following the general procedure for coupling reaction of $\mathbf{6 5}$ and starting from 61, the title compound was obtained in 60% yield: mp $215-216{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.40-3.60$ and 3.70-3.90 (m, each 4 H , piperazine $\left.\mathrm{CH}_{2}\right), 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.85(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH$), 7.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), 7.15 (s, 1H, H-4), 7.45 (ddd, $J=5.5,7.6$ and $9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.75 (t, $J=8.3$ and $0.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), $7.85-7.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-6), 8.20(\mathrm{dd}, J=1.4$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), 8.35 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 8.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)$.

1,3,10-trimethyl-7-nitro-6-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)-acridinone (67). Following the general procedure for coupling reaction of $\mathbf{6 5}$ and starting from 62, the title compound was obtained in 80% yield: mp $250-251{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.30$ and $2.80\left(\mathrm{~s}\right.$, each $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.30-3.45 and 3.60-3.75 (m , each 4 H , piperazine CH_{2}), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.60-6.75(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH), $6.80-7.10(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4$ and pyridine CH), $7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.50-7.70(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH), 8.10-8.25 ($\mathrm{m}, 1 \mathrm{H}$, pyridine CH), $8.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$.

2-Amino-6-methoxy-10-methyl-3-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)-acridinone

Following the reduction procedure of 9 and starting from 63, the title compound was obtained after crystallization by EtOH/DMF, in 36% yield as yellow solid: mp 266-267 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.10-3.20\left(\mathrm{~m}, 4 \mathrm{H}\right.$, piperazine $\left.\mathrm{CH}_{2}\right), 3.70-3.75\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{NCH}_{3}\right.$, and piperazine $\left.\mathrm{CH}_{2}\right), 3.95(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 6.60-6.85 (m, 4H, H-5, H-7, and pyridine CH), $7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.50-7.60(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH), $7.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 8.35(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH$)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

7-Amino-1-methoxy-10-methyl-6-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)-acridinone
Following the reduction procedure of $\mathbf{9}$ and starting from 64, the title compopund was obtained after purification by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 97: 3\right)$, in 23% yield as yellow solid: $\mathrm{mp}>300$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.00-3.15$ and 3.60-3.75 (m , each 4 H , piperazine CH_{2}), $3.80(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.00\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.60-6.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ and pyridine CH$), 6.85(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), $7.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.50-7.60(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ 3 , $\mathrm{H}-8$, and pyridine CH), $8.15(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH$)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Amino-10-methyl-3-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)-acridinone (10). Following the reduction procedure of 9 and starting from 66, the title compopund was obtained after purification by flash chromatography ($\mathrm{CHCl}_{3} / \mathrm{MeOH}, 97: 3$), in 25% yield as yellow solid: $\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.10-3.30$ and $3.60-3.80\left(\mathrm{~m}\right.$, each 4 H , piperazine $\left.\mathrm{CH}_{2}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$ $5.00\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.60-6.70(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH$), 6.85-6.95(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH$), 7.20-7.25(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-7$), $7.50-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-6$), $7.70-7.75$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5$ and pyridine CH), 8.15 (dd, $J=1.9$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), $8.25(\mathrm{dd}, J=2.1$ and $9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8)$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

7-Amino-1,3,10-trimethyl-6-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)-acridinone (11). Following the reduction procedure of 9 and starting from 67, the title compound was obtained after
purification by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 97: 3\right)$ followed by crystallization with EtOH , in 24% yield as yellow solid: mp $218-220{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.40$ and 2.80 (s, each 3 H , CH_{3}), 3.00-3.54 and 3.62-3.75 (m, each 4 H , piperazine CH_{2}), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.87$ (bs, 2 H , NH_{2}), 6.62-6.73 ($\mathrm{m}, 1 \mathrm{H}$, pyridine CH), $6.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH$)$, $7.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.45-7.65(\mathrm{~m}, 2 \mathrm{H}$, pyridine CH and $\mathrm{H}-8), 8.10-8.20(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Methoxy-10-methyl-7-nitro-1-propoxy-6-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)-acridinone
(71). Following the general procedure for O-alkylation of compound 70 and replacing the 1iodoethane with 1-iodopropane, the title compound was obtained in 91% yield: $\mathrm{mp} 284-285{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO d_{6}) $\delta 1.12\left(\mathrm{t}, J=7.13 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} C H_{3}\right), 1.78(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.25-3.40 and 3.70-3.76 (m, each 4H, piperazine CH_{2}), 3.80 and 3.90 (s, each 3 H , NCH_{3} and OCH_{3}), $4.02\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.45$ and $6.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, each 1 H , $\mathrm{H}-2$ and H-4), $6.70(\mathrm{dd}, J=2.0$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH$), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), $7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.63(\mathrm{ddd}, J=1.8,7.0$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), $8.18(\mathrm{dd}, J=1.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), $8.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$.

1-Isobutoxy-3-methoxy-10-methyl-7-nitro-6-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)-acridinone (72). Following the general procedure for O-alkylation of compound 70 and replacing the 1iodoethane with 2-methyl-1-iodopropane, the title compound was obtained after flash chromatography purification ($\mathrm{CHCl}_{3} / \mathrm{MeOH}, 99: 1$), in 45% yield: mp $294-296{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.08\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.10-2.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.15-3.27$ $\left(\mathrm{m}, 4 \mathrm{H}\right.$, piperazine $\left.\mathrm{CH}_{2}\right), 3.60-3.79\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{NCH}_{3}\right.$, piperazine CH_{2} and $\left.\mathrm{OCH} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.85(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OCH}_{3}$), 6.18 and $6.23(\mathrm{~d}, J=2.11 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4), 6.53-6.69(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5$ and pyridine CH), 7.44 (dt, $J=2.0$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), 8.14 (dd, $J=2.0$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), $8.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$.
(\{3-Methoxy-10-methyl-7-nitro-9-oxo-6-[4-(2-pyridinyl)-1-piperazinyl]-9,10-dihydro-1-
acridinyl\}oxy)acetic acid (73). Following the general procedure for O-alkylation of compound 70 and replacing the 1 -iodoethane with ethyl α-bromoacetate, the title compound was obtained after crystallization by EtOH/DMF (2:1) in 39% yield: mp $252-253^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.10-3.40$ and 3.65-3.70 (m, each 4 H , piperazine CH_{2}), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.90(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 6.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 6.60-6.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ and pyridine CH$), 6.85-7.00(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-5$ and pyridine CH), 7.50-7.65 (m, 1 H , pyridine CH), 8.10-8.20 (dd, $J=1.6$ and $4.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), 8.60 (s, 1H, H-8).

7-Amino-3-methoxy-10-methyl-1-propoxy-6-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)acridinone (13). Following the reduction procedure of 12 and starting from 71, the title compound was obtained after crystallized by EtOH/DMF, in 55% yield as yellow solid: mp $264-265{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.10\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.70-1.80 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.00-3.25 (m, 4 H , piperazine CH_{2}), 3.70-3.80 (m, 7 H , piperazine CH_{2} and NCH_{3}), 3.82-4.00 $\left(\mathrm{m}, 5 \mathrm{H}, \mathrm{OCH}_{3}\right.$ and OCH_{2}), $4.80\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.25$ and $6.55(\mathrm{~d}, J=1.60 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4), 6.65(\mathrm{dd}, J=1.9$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), $6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), $7.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.50-7.65$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-8$ and pyridine CH$), 8.20-8.35(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH$)$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

7-Amino-1-isobutoxy-3-methoxy-10-methyl-6-[4-(2-pyridinyl)-1-piperazinyl]-9(10H)acridinone (14). Following the reduction procedure of $\mathbf{1 2}$ and starting from 72, the title compound was obtained after crystallization by $\mathrm{EtOH} / \mathrm{DMF}$, in 32% yield as yellow solid: $\mathrm{mp} 245-247{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.17\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.22-2.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.17-3.23(\mathrm{~m}$, 4 H , piperazine CH_{2}), 3.70-3.79 ($\mathrm{m}, 7 \mathrm{H}$, piperazine CH_{2} and NCH_{3}), $3.84\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$,
$3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.24$ and $6.35(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ e H-4), 6.65-6.78 (m, 2H, pyridine CH), 6.93 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), 7.55 (ddd, $J=2.0,6.9$ and $8.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), 7.86 (s, 1H, H-8), 8.24 (dd, $J=1.2$ and $4.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH). Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(\{7-Amino-3-methoxy-10-methyl-9-oxo-6-[4-(2-pyridinyl)-1-piperazinyl]-9,10-dihydro-1acridinyl\}oxy)acetic acid (15). Following the reduction procedure of 12 and starting from 73, the title compopund was obtained after purification by reverse flash chromatography (dioxane $/ \mathrm{H}_{2} \mathrm{O}$, 99:1), in 17% yield as yellow solid: $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.00-3.25$ and 3.60-3.80 (m , each 4 H , piperazine CH_{2}), 3.90 and 4.00 (s , each $3 \mathrm{H}, \mathrm{NCH}_{3}$ and OCH_{3}), $4.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $5.20\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) 6.50(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-2), 6.55-6.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ and pyridine CH$), 6.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 1 H , pyridine CH), $7.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.50-7.70(\mathrm{~m}, 2 \mathrm{H}$, pyridine CH and $\mathrm{H}-8), 8.10-8.25(\mathrm{~m}, 1 \mathrm{H}$, pyridine CH$)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

7-Amino-1,3-dimethoxy-10-methyl-6-[4-(2-pyrimidinyl)-1-piperazinyl]-9(10H)-acridinone

(20). Following the same procedure as that used for the synthesis of 19 and replacing 1-(4pyridinyl)piperazine with 2-(1-piperazinyl)pyrimidine, the title compound was obtained after purification by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 93: 7\right)$, in 21% overall yield as a yellow solid: $\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta 3.00-3.10$ and 3.95-4.00 (m, each 4 H , piperazine CH_{2}), 3.75 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.80$ and $3.90\left(\mathrm{~s}\right.$, each $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.75\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.26$ and $6.55(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and H-4), $6.65(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyrimidine CH), $7.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ 8), 8.30-8.35 (m, 2H, pyrimidine CH). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

7-Amino-1,3-dimethoxy-10-methyl-6-\{4-[5-(trifluoromethyl)-2-pyridinyl]-1-piperazinyl\}$\mathbf{9 (1 0 H})$-acridinone (21). Following the same procedure as that used for the synthesis of $\mathbf{1 9}$ and replacing 1-(4-pyridinyl)piperazine with 1-[5-(trifluoromethyl)-2-pyridinyl]piperazine the title compound was obtained after purification by flash chromatography ($\mathrm{CHCl}_{3} / \mathrm{MeOH}, 95: 5$), in 20% overall yield as a yellow solid: $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta 3.00-3.15(\mathrm{~m}, 4 \mathrm{H}$, piperazine CH_{2}), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90-4.00\left(\mathrm{~m}, 7 \mathrm{H}\right.$, piperazine CH_{2} and $\left.\mathrm{OCH}_{3}\right), 4.90$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.25 and $6.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4), 7.00-7.10(\mathrm{~m}, 2 \mathrm{H}$, pyridine CH , and H-5), 7.50 (s, $1 \mathrm{H}, \mathrm{H}-8$), $7.80(\mathrm{dd}, J=2.5$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH), $8.45(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine CH). Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

7-Amino-1,3-dimethoxy-10-methyl-6-(4-phenyl-1-piperazinyl)-9(10H)-acridinone
Following the same procedure as that used for the synthesis of 19 and replacing 1-(4pyridinyl)piperazine with 1-phenylpiperazine, the title compound was obtained after purification by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 97: 3\right)$, in 39% overall yield as a yellow solid: mp 275-276 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.10-3.20$ and 3.30-3.40 (m, each 4 H , piperazine CH_{2}), $3.75(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), 3.80 and $3.90\left(\mathrm{~s}\right.$, each $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.25$ and $6.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, each 1 H , $\mathrm{H}-2$ and $\mathrm{H}-4), 6.70-6.85(\mathrm{~m}, 1 \mathrm{H}$, aromatic CH$), 6.90-7.10(\mathrm{~m}, 3 \mathrm{H}$, aromatic CH and $\mathrm{H}-5), 7.15-7.28$ (m, 2 H , aromatic CH), $7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

7-Amino-1,3-dimethoxy-10-methyl-6-[4-(1,3-thiazol-2-yl)-1-piperazinyl]-9(10H)-acridinone

 (23). Following the same procedure as that used for the synthesis of 19 and replacing 1-(4pyridinyl)piperazine with 1-(1,3-thiazol-2-yl)piperazine, the title compound was obtained after purification by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 93: 7\right)$, in 35% overall yield as a yellow solid: $\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.20-3.30\left(\mathrm{~m}, 4 \mathrm{H}\right.$, piperazine $\left.\mathrm{CH}_{2}\right)$, 3.60-3.70 $(\mathrm{m}, 7 \mathrm{H}$, piperazine CH_{2} and NCH_{3}), 3.80 and 3.90 (s, each $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.25 and $6.35(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4), 6.60(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$, thiazole CH), $6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.25(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$, thiazole CH), 7.80 (s, $1 \mathrm{H}, \mathrm{H}-8$). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.7-Amino-6-[4-(1,3-benzoxazol-2-yl)-1-piperazinyl]-1,3-dimethoxy-10-methyl-9(10H)-
acridinone (24). Following the same procedure as that used for the synthesis of 19 and replacing 1-(4-pyridinyl)piperazine with 2-(1-piperazinyl)-1,3-benzoxazole, ${ }^{2}$ the title compound was obtained after purification by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 93: 7\right)$, in 38% overall yield as a yellow solid: $\mathrm{mp} 284-286{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 3.00-3.25\left(\mathrm{~m}, 4 \mathrm{H}\right.$, piperazine CH_{2}), 3.65-3.80 (m, 7 H , piperazine CH_{2} and NCH_{3}), 3.90 and $4.00\left(\mathrm{~s}\right.$, each $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.95 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.25 and $6.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4), 6.85-7.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ and aromatic CH$), 7.10(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic CH), 7.25 and $7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, each 1 H , aromatic CH$), 7.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

7-Amino-1,3-dimethoxy-6-[4-(2-methoxyphenyl)-1-piperazinyl]-10-methyl-9(10H)-acridinone (25). Following the same procedure as that used for the synthesis of 19 and replacing 1-(4pyridinyl)piperazine with 1-(2-methoxyphenyl)piperazine, the title compound was obtained after purification by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 98: 2\right)$, in 10% overall yield as a yellow solid: $\mathrm{mp} 271-272{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)$ 3.27-3.35 (m, 8 H , piperazine $\left.\mathrm{CH}_{2}\right), 3.78,3.92$ and $3.95(\mathrm{~s}$, each $3 \mathrm{H}, \mathrm{OCH}_{3}$), $4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.26$ and $6.32(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and H-4), 6.837.20 (m, 5H, H-5 and aromatic H), 7.78 (s, 1H, H-8). Anal. ($\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$) C, H, N.

7-Amino-6-[4-(1,3-benzoxazol-2-yl)-1-piperazinyl]-1-hydroxy-3-methoxy-10-methyl-9(10H)acridinone (28) and 7 -amino-6-[4-(1,3-benzoxazol-2-yl)-1-piperazinyl]-1,3-dihydroxy-10-methyl- $9(\mathbf{1 0 H})$-acridinone (31). Following the de- O-methylation procedure of 27 and $\mathbf{3 0}$, and starting from 24, the title compounds were obtained after purification by flash chromatography ($\mathrm{CHCl}_{3} / \mathrm{MeOH}, 97: 3$). Compound $\mathbf{2 8}$ was obtained in 41% yield, followed by compound $\mathbf{3 1}$ in 14\% yield.
Compound 28: mp $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ 3.10-3.30 and 3.85-3.90 (m, each 4 H , piperazine CH_{2}), 3.80 and $4.05\left(\mathrm{~s}\right.$, each $3 \mathrm{H}, \mathrm{NCH}_{3}$ and OCH_{3}), $5.00\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.30$ and $6.60(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4), 7.00-7.15(\mathrm{~m}, 2 \mathrm{H}$, aromatic CH and $\mathrm{H}-5), 7.20(\mathrm{t}, J=6.2 \mathrm{~Hz}$, 1 H , aromatic CH), 7.35 and $7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, each 1 H , aromatic CH), $7.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 15.50(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH})$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
Compound 31: $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.70-3.00\left(\mathrm{~m}\right.$, each 4 H , piperazine CH_{2}), 3.50 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $5.00\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.00$ and $6.40(\mathrm{bs}$, each $1 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4), 7.00-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-$ 5 and aromatic CH), 7.40 and $7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, each 1 H , aromatic CH), $7.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 10.50$ and $15.00(\mathrm{~s}$, each $1 \mathrm{H}, \mathrm{OH})$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

7-Amino-1-hydroxy-3,6-dimethoxy-10-methyl-9(10H)-acridinone (29) and 7-amino-1,3-dihydroxy-6-methoxy-10-methyl-9(10H)-acridinone (32). Following the de- O-methylation procedure of $\mathbf{2 7}$ and $\mathbf{3 0}$, and starting from 26, the title compounds were obtained after purification by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}, 95: 5\right)$. Compound $\mathbf{2 9}$ was obtained in 37% yield, followed by compound $\mathbf{3 2}$ in 10% yield.
Compound 29: mp 287-288 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.80$ (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 3.90 and 4.00 (s, each $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.00$ and $6.50(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and H-4), $7.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ 5), $7.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 15.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The qualitative analysis of NOESY spectra showed three relevant NOE cross-peaks: $3-\mathrm{OCH}_{3} / \mathrm{H}-2$; $3-\mathrm{OCH}_{3} / \mathrm{H}-4 ; 6-\mathrm{OCH}_{3} / \mathrm{H}-5$.
Compound 32: $\mathrm{mp}>300^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\delta 3.35$ and 4.00 (s, each $3 \mathrm{H}, \mathrm{NCH}_{3}$ and OCH_{3}), $5.00\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.90$ and $6.35(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and H-4), $7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$, $7.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 10.10$ and 15.70 (s, each $1 \mathrm{H}, \mathrm{OH}$). Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
The qualitative analysis of NOESY spectra showed one relevant NOE cross-peak: $6-\mathrm{OCH}_{3} / \mathrm{H}-5$.
7-Amino-6-chloro-1-hydroxy-3-methoxy-9(10H)-acridinone (41) and 7-Amino-6-chloro-1,3-dihydroxy- $\mathbf{9}(\mathbf{1 0 H})$-acridinone (42). Following the de- O-methylation procedure of 27 and 30, and
starting from 40, the title compounds were obtained after purification by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} / \mathrm{MeOH}, 98: 2: 0\right.$ to $97.5: 2: 0.5$). Compound 41 was obtained in 27% yield followed by 42 in 10% yield.
Compound 41: mp > $300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.05$ and $6.25(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, each $1 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4), 7.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 11.80(\mathrm{bs}, 1 \mathrm{H}$, NH), 14.20 (bs, $1 \mathrm{H}, \mathrm{OH}$). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
Compound 42: mp $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6} d_{6}\right) \delta 5.50\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.90$ and $6.10(\mathrm{bs}, 2 \mathrm{H}, \mathrm{H}-$ 2 and $\mathrm{H}-4$), $7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 11.50(\mathrm{bs}, 2 \mathrm{H}, \mathrm{OH}$ and NH$), 14.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Biological Protocols

HCV NS5B Assays. The cloned gene for HCV NS5B was kindly provided by Dr. Joachim Jaeger, Astbury Centre, RepliZyme Ltd, UK. Recombinant HCV NS5B was expressed in E. coli and purified by FPLC chromatography through DEAE and HyperD Heparin columns. Assays were performed as follows: NS5B ($25-50 \mathrm{nM}$) was incubated in a final volume of $25 \mu 1$ in the presence of 50 mM Tris-HCl pH8.0, 1 mM DTT, $0.25 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}, 2.5 \mu \mathrm{M}$ (3'-OH ends) of the RNA/RNA homopolymeric template $(\mathrm{rA})_{40}(\mathrm{rU})_{20}, 0.25 \mathrm{mM} \mathrm{MnCl}{ }_{2}$ and $\left.2 \mu \mathrm{M} \mathrm{[}{ }^{3} \mathrm{H}\right]-\mathrm{UTP}(37 \mathrm{Ci} / \mathrm{mmol})$. Samples were incubated 40 min at $25^{\circ} \mathrm{C} .20 \mu \mathrm{l}$ aliquots were spotted on DE-81 filters (Wathman) which were washed twice in $0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{HPO}_{4}$, once in water and once in acetone. Bound radioactivity was detected by liquid scintillation counter (Microbeta Trilux, Perkin-Elmer).

References

1. Cain, B. F.; Atwell, G. J. Potential Antitumor Agents. 20. Structure-Activity-Site Relationship for the 4'-(9-acridinylamino)alkanesulfonanilides. J. Med. Chem. 1976, 19, 1409-1416.
2. Kimura, T.; Katsube, T. Preparation of Aminoquinolone Derivatives as Anti-HIV Agents. EP 572259 A1. Chem. Abstr. 1994, 121, 57343.

Elemental Analysis data for target compounds 7-35 and 39-47

compd	calcd			found		
	C\%	H\%	N\%	C\%	H\%	N\%
7	69.38	6.06	16.86	68.08	6.17	16.92
8	69.38	6.06	16.86	69.28	5.85	16.66
9	67.40	6.11	15.72	67.65	6.32	15.81
10	71.67	6.01	18.17	71.38	6.05	18.10
11	72.61	6.58	16.94	72.95	6.66	16.86
12	67.95	6.36	15.24	67.91	6.30	14.91
13	68.48	6.60	14.79	68.28	6.51	14.76
14	68.97	6.82	14.36	68.69	6.76	14.16
15	63.79	5.56	14.31	63.75	5.49	14.28
16	66.81	5.84	16.23	67.09	6.02	16.28
17	67.95	6.36	15.24	68.05	6.39	15.22
18	69.44	7.03	13.96	69.38	6.98	13.89
19	67.40	6.11	15.72	67.36	6.01	15.69
20	64.56	5.87	18.82	64.51	5.81	18.79
21	60.81	5.10	11.10	61.01	5.01	11.07
22	70.25	6.35	12.60	70.23	6.31	12.56
23	61.18	5.58	15.51	61.07	5.52	15.48
24	66.79	5.61	14.42	66.59	5.59	14.40
25	68.34	6.37	11.81	68.31	6.32	11.92
26	64.96	5.77	8.91	65.03	5.71	8.88
27	69.75	6.09	13.01	69.73	6.12	13.08
28	66.23	5.34	14.85	66.41	5.39	14.89
29	63.99	5.37	9.33	64.21	5.49	9.05
30	69.21	5.81	13.45	69.18	5.78	13.39
31	65.63	5.07	15.31	65.28	4.98	15.51
32	62.93	4.93	9.79	63.12	5.21	9.59
33	66.95	5.62	12.49	66.64	5.58	12.39
34	68.48	6.60	14.79	68.38	6.53	14.69
35	69.75	6.09	13.01	69.73	6.05	12.98
39	64.08	6.18	7.47	64.05	6.10	7.39
40	59.12	4.30	9.19	60.01	4.27	9.08
41	57.84	3.81	9.64	57.65	4.03	9.55
42	56.43	3.28	10.13	56.33	3.21	10.22
43	64.78	6.31	15.11	64.65	6.28	15.15
44	68.71	6.97	16.69	68.59	6.76	16.76
45	68.88	6.26	13.39	68.93	6.34	13.35
46	68.30	5.98	13.85	68.21	6.05	13.77
47	68.77	6.20	14.85	68.87	6.18	15.01

