Intramolecular and Intermolecular Hydrogen Bond Formation by Some orthoSubstituted Phenols: An Experimental and Theoretical Investigation.

Grzegorz Litwinienko, Gino A. DiLabio, Peter Mulder, Hans-Gert Korth, and

K. U. Ingold

Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; National Institute
for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton,
Alberta, Canada T6G 2M9; Institut für Organische Chemie, Universität Duisburg-Essen, D-45117 Essen,
Germany; National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada K1A OR6.

SUPPORTING MATERIAL

TABLE OF CONTENTS

Title page
Experimental details S-2
Table S1. Parameters used for calculation of the equilibrium constant $K_{\text {ArOH/S }}^{S}$ for HB S-6complex formation between DMSO and methoxyphenols.
Table S2. Values $K_{A}^{H_{i}}, \log K_{A}^{H_{i}}$, and α_{2}^{H} for methoxyphenols calculated from IR S-10
measurements of HB complex formation with DMSO
Table S3. Parameters used for calculation of the equilibrium constant $K_{\text {ArOH/S }}^{S}$ for HB S-13complex formation between DMSO and 2,4-dinitrophenol.
Table S4. Parameters used for calculation of the equilibrium constant $K_{\text {ArOH/S }}^{\mathrm{S}}$ for HB S-17complex formation between DMSO and 2-methoxymethylphenol.
Table S5. Parameters used for calculation of the equilibrium constant $K_{\text {ArOH/S }}$ for HB S-19complex formation between 4-F-phenol and 1,3-dinitrobenzene.
Table S6. Kinetic data for the reaction of dpph ${ }^{\bullet}$ with 2,4-dimethoxyphenol in heptane. S-20
Table S7. Kinetic data for the reaction of dpph ${ }^{\bullet}$ with 2,4,6-trimethoxyphenol in heptane. S-20
Table S8. Kinetic data for the reaction of dpph ${ }^{\bullet}$ with 2-methoxymethylphenol in heptane. S-21
Figure S1. OH-stretching region of 2,6-dimethoxyphenol in CCl_{4} containing various S-6concentrations of DMSO.
Figure S2. OH-stretching region of 2,4-dimethoxyphenol in CCl4 containing various S-7concentrations of DMSO.
Figure S3. OH-stretching region of 2,4,6-trimethoxyphenol in CCl 4 containing various
Figure S4. Plots of $[\mathrm{ArOH}]_{0} /[\mathrm{ArOH}]_{\text {free }}$ vs. [DMSO] $]_{\text {free }}$ for 2,6-dimethoxyphenolS-8
Figure S5. Plots of $[\mathrm{ArOH}]_{0} /[\mathrm{ArOH}]_{\text {free }}$ vs. [DMSO] $]_{\text {free }}$ for 2,4-dimethoxyphenol S-8

Figure S6. Plots of $[\mathrm{ArOH}]_{o} /[\mathrm{ArOH}]_{\text {free }}$ vs. [DMSO] $]_{\text {free }}$ for 2,4,6-trimethoxyphenol
Figure $\mathbf{S 7}$. OH-stretching region of 2-nitrophenol in CCl_{4} containing various concentrations of DMSO.

Figure S8. OH -stretching region of 2,6-dinitrophenol in CCl_{4} containing various concentrations of DMSO.
Figure S9. OH-stretching region of 2,4-nitro phenol in CCl_{4}.
Figure S10. OH-stretching region of 2,4-dinitrophenol in CCl_{4} containing various concentrations of DMSO.

Figure S11 Plots of $[\mathrm{ArOH}]_{0} /[\mathrm{ArOH}]_{\text {free }}$ vs. [DMSO $]_{\text {free }}$ for $2,4-$ di- NO_{2}-phenol in CCl_{4} S-12 containing various concentrations of DMSO.
Figure S12. OH -stretching region of 2,4,6-trinitrophenol in CCl_{4} containing various concentrations of THF.

Figure S13. OH-stretching region of 2,4,6-trinitrophenol in CCl_{4} containing various concentrations of DMSO.
Figure S14. OH-stretching region of 2,4-diformylphenol in CCl_{4} containing various concentrations of DMSO.
Figure $\mathbf{S 1 5}$. OH-stretching region of 2-hydroxyacetophenone in CCl_{4} containing various concentrations of DMSO.
Figure S16. OH-stretching region of 7-hydroxyindanone in CCl_{4} containing various concentrations of DMSO.
Figure S17. OH-stretching region of 2-formylphenol in CCl_{4} containing various concentrations of DMSO.
Figure S18. OD-stretching band of O-deuterio 2-methoxymethylphenol (20.5 mM) in CCl_{4}.

Figure S19 Plots of $[\mathrm{ArOH}]_{0} /[\mathrm{ArOH}]_{\text {free }}$ vs. [DMSO] $]_{\text {free }}$ for 2-methoxymethylphenol in CCl_{4} containing various concentrations of DMSO.
Figure S20. Plots of $[\mathrm{ArOH}]_{0} /[\mathrm{ArOH}]_{\text {free }}$ vs. $[\mathrm{HBA}]_{\text {free }}$ for 4-fluorophenol in CCl_{4} containing various concentrations of 3,5-dinitrobenzene.
Figure S21. OH-stretching region of 2-methoxymethylphenol (20.5 mM) in CCl_{4}.
Figure S22. Example of LDBS partitioning..
Parameters used for calculation the ratio of free to internally H-bonded hydroxyl group in 2-methoxymethyl phenol

EXPERIMENTAL DETAILS
Synthesis of 2,4- dimethoxyphenol and 2,4,6-trimethoxyphenols. These phenols were prepared according to method described by Matsumoto et al. (Matsumoto M., Kobayashi H., Hotta Y. J. Org. Chem.1984, 49, 4741-4743): About 37 mmol of 2,4 - dimethoxybenzaldehyde (or 2,4,6trimethoxybenzaldehyde) was stirred with 48 mmol of $31 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in 30 mL methanol in the presence of $0.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$ under argon atmosphere at room temperature during 12 hours. Resulting 2,4-dimethoxyphenol (85% yield) and 2,4,6-trimethoxyphenol (78\%), respectively, were purified by column chromatography on SiO_{2}.
Synthesis of 2-methoxymethylphenol. Procedure described by De Jonge et al. (De Jonge, J.; Bibo, B. H. Rec. Trav. Chim. Pays-Bas 1955, 74, 1448-1452)was followed: 4 g of 2-hydroxybenzyl alcohol was heated in sealed ampoule with 20 mL of anhydrous methanol during 4 hours at $150^{\circ} \mathrm{C}$. After that time the excess of methanol was evaporated under reduced pressure and yellowish oil (3.95 g) was distilled under vacuum. Main fraction (colorless oil, 1.5 g) was analyzed by GC MS indicating 2-methoxymethylphenol. The oil was stored at $-80^{\circ} \mathrm{C}$ during two years to give single crystal.

Kinetic Measurements.

Solutions of dpph ${ }^{\bullet}$ and the phenol were prepared in nitrogen-purged solvents and were kept under nitrogen, with additional nitrogen-purging when necessary, until they were taken-up into the glass syringes of the stopped-flow apparatus with their gastight Teflon plungers. The decay of dpph ${ }^{\bullet}$ in the presence of a known concentration of phenols was followed at 517 nm on an Applied Photophysics Stopped-Flow Spectrophotometer, SX 18 MV equipped with a 150 W xenon lamp. All measurements were carried out at $23 \pm 2^{\circ} \mathrm{C}$ in heptane. The concentration of dpph ${ }^{\circ}$ was $(8.5 \pm 1.0) \times 10^{-5} \mathrm{M}$. Phenols were always used in large excess over [dpph`] These measuremenes lead to determination of first order rate constants, $k_{\text {expt }}$ for each phenol concentration. Bimolecular rate constants, $k^{5} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$, were calculated from the slopes of the linear plots of $k_{\text {exptl }}$ vs. phenol concentration: $k_{\text {exptl }}=k^{\mathrm{S}}[$ phenol $]+$ const

Infrared Measurements.

Experiments were done in CCl_{4} (or cyclohexane) with DMSO as HBAs and with a SHIMADZU FTIR 8201PC apparatus with a 1.03 mm (or 2.5 mm) CaF_{2} cell at ambient temperatures and a baseline correction was made using the same concentration of the HBA.
For α_{2}^{H} determination: he formation of intermolecular HB complex with HBA is described by:

$$
\mathrm{ArOH}_{\text {free }}+\mathrm{HBA}_{\text {free }} \rightleftharpoons \mathrm{ArOH}^{\rightleftharpoons} \mathrm{HBA}_{\text {intermolecular }}
$$

and the equilibrium constant is given by:

$$
\begin{equation*}
K^{\mathrm{i}}=\frac{[\mathrm{ArOH} \cdots \mathrm{HBA}]_{\text {intermolecular }}}{[\mathrm{ArOH}]_{\mathrm{free}}[\mathrm{HBA}]_{\mathrm{free}}} \tag{1}
\end{equation*}
$$

where $[A \mathrm{AHH}]_{\text {ree }}$ denotes the concentration of phenol molecules not participating in an intermolecular HB. Values of [ArOH $]_{\text {free }}$ were determined from the decrease
in the peak height of the internally hydrogen bonded OH The concentration of free phenols was determined by using a calibration curve. Equation 1 can be transformed to the form: $[\mathrm{ArOH}]_{0} /[\mathrm{ArOH}]_{\text {free }}=1+K^{i}[\mathrm{HBA}]_{\text {free }}$, where $[\mathrm{ArOH}]_{0}$ is the total concentration of phenol, and values of K^{i} were determined from the plots of the ratio $[\mathrm{ArOH}]_{0} /[\mathrm{ArOH}]_{\text {free }}$ versus $[\mathrm{HBA}]_{\text {free }}$. Values of α_{2}^{H} were calculated using the equations:

$$
\begin{array}{r}
\log K_{\mathrm{A}}^{\mathrm{H}_{\mathrm{i}}}=\left(\log K^{\mathrm{i}}-D_{\mathrm{B}}\right) / L_{\mathrm{B}} \\
\alpha_{2}^{H}=\left(\log K_{\mathrm{A}}^{\mathrm{H}_{\mathrm{i}}}+1.1\right) / 4.636 \tag{3}
\end{array}
$$

The Equations and D_{B} and L_{B} values are from work by Abraham et al.s' (J. Chem. Soc., Perkin Trans. 2 1989, 699-711).

Value β_{2}^{H} for 1,3-dinitrobenzene was calculated from the equation:

$$
\begin{equation*}
\beta_{2}^{H}=\left(\log K_{\mathrm{B}}^{\mathrm{H}}+1.1\right) / 4.636 \tag{4}
\end{equation*}
$$

where $\log K_{\mathrm{B}}^{\mathrm{H}}$ is connected to the experimental equilibrium constants K^{i} by the equation: $\log K^{\mathrm{i}}=L_{\mathrm{A}} \log K_{\mathrm{B}}^{\mathrm{H}}+D_{\mathrm{A}}$ (see Abraham et al. J. Chem. Soc., Perkin Trans. 2 1990, 521-529.). For the reference acid, 4-fluorophenol, $L_{A}=1.000$ and $D_{A}=0.000,{ }^{31}$ and hence $\log K_{B}^{\mathrm{H}}=\log K^{\mathrm{i}}$.

Table S1. Parameters used for calculation of the equilibrium constant $K_{\text {ArOH/S }}^{S}$ for HB complex formation between DMSO and phenols. $[\mathrm{ArOH}]_{\mathrm{o}}=$ total concentration of phenol, $[\mathrm{ArOH}]_{\text {free }}=$ concentration of non-hydrogen bonded phenol calculated from IR measurements, $[\mathrm{HB}]=[\mathrm{ArOH}]_{\circ}-[\mathrm{ArOH}]_{\text {free }},[\mathrm{DMSO}]_{\circ}=$ total concentration of $\mathrm{DMSO}^{2} \mathrm{CCl}_{4},[\mathrm{DMSO}]_{\text {free }}=$ concentration of free (i.e. nonhydrogen bonded) DMSO.

[ArOH$]_{0}$	[ArOH] $]_{\text {free }}$	[HB]	[DMSO]。	[DMSO] ${ }_{\text {free }}$	$[\mathrm{ArOH}]_{0} /[\mathrm{ArOH}]_{\text {free }}$
2,6-di-MeO-phenol + DMSO (band at $3554 \mathrm{~cm}^{-1}$)					
21.35	21.35	0.0	0.0	0.0	1.00
21.35	19.81	1.5	28.1	26.6	1.08
21.35	18.40	2.9	56.2	53.3	1.16
21.35	16.86	4.5	93.7	89.2	1.27
21.35	14.56	6.8	156.0	149.2	1.47
21.35	11.88	9.5	260.0	250.5	1.80
21.35	9.68	11.7	391.0	379.3	2.21
21.35	7.12	14.2	586.0	571.8	3.00
21.35	5.44	15.9	821.0	805.1	3.92
21.35	4.38	17.0	1094.0	1077.0	4.87
21.35	3.59	17.8	1406.0	1388.2	5.95
2,4-di-MeO-phenol + DMSO (band at $3566 \mathrm{~cm}^{-1}$)					
15.63	15.63	0.0	0.0	0.0	1.00
15.63	13.60	2.0	28.1	26.1	1.15
15.63	12.39	3.2	56.2	53.0	1.26
15.63	11.14	4.5	93.7	89.2	1.40
15.63	9.58	6.1	156.0	149.9	1.63
15.63	7.34	8.3	260.0	251.7	2.13
15.63	6.13	9.5	391.0	381.5	2.55
15.63	4.80	10.8	586.0	575.2	3.25
15.63	3.48	12.2	821.0	808.8	4.49
15.63	3.07	12.6	1094.0	1081.4	5.09
15.63	2.74	12.9	1406.0	1393.1	5.71
2,4-di-MeO-phenol + DMSO (band at $3566 \mathrm{~cm}^{-1}$)					
17.40	17.39	0.0	0.0	0.00	1.00
17.40	16.20	1.2	28.1	26.90	1.07
17.40	14.83	2.6	56.2	53.63	1.17
17.40	13.50	3.9	93.7	89.80	1.29
17.40	11.58	5.8	156.0	150.18	1.50
17.40	9.90	7.5	260.0	252.50	1.76
17.40	8.29	9.1	391.0	381.89	2.10

Continued on the next page

Table S1. Continue

[ArOH]	$[\mathrm{ArOH}]_{\text {free }}$	[HB]	[DMSO]。	[DMSO] ${ }_{\text {free }}$	$[\mathrm{ArOH}]_{\mathrm{o}} /[\mathrm{ArOH}]_{\text {free }}$
2,4,6-tri-MeO-phenol + DMSO (band at $3563 \mathrm{~cm}^{-1}$)					
13.56	13.56	0.0	0.0	0.0	1.00
13.56	12.99	0.6	28.1	27.5	1.04
13.56	12.03	1.5	56.2	54.7	1.13
13.56	11.12	2.4	93.7	91.3	1.22
13.56	9.89	3.7	156.0	152.3	1.37
13.56	7.85	5.7	260.0	254.3	1.73
13.56	6.30	7.3	391.0	383.7	2.15
13.56	5.06	8.5	586.0	577.5	2.68
13.56	4.19	9.4	821.0	811.6	3.24
13.56	3.81	9.8	1094.0	1084.2	3.56
13.56	3.08	10.5	1406.0	1395.5	4.41

Figure S1. OH-stretching region of 2,6-dimethoxyphenol in CCl_{4} containing various concentrations of DMSO.

Figure S2. OH-stretching region of 2,4-dimethoxyphenol in CCl4 containing various concentrations of DMSO (in mM).

Figure S3. OH-stretching region of 2,4,6-trimethoxyphenol in CCI4 containing various concentrations of DMSO (in mM).

Figure S4. Plots of $[\mathrm{ArOH}]_{o} /[\mathrm{ArOH}]_{\text {free }}$ vs. $[\mathrm{DMSO}]_{\text {free }}$ for 2,6-dimethoxyphenol (data from Table S1)

Figure S5. Plots of $[\mathrm{ArOH}]_{\mathrm{o}} /[\mathrm{ArOH}]_{\text {free }}$ vs. $[\mathrm{DMSO}]_{\text {free }}$ for 2,4-dimethoxyphenol (data from Table S1)

Figure S6. Plots of $[\mathrm{ArOH}]_{o} /[\mathrm{ArOH}]_{\text {free }}$ vs. [DMSO $]_{\text {free }}$ for 2,4,6-trimethoxyphenol (data from Table S1).

Table S2. Values $K_{A}^{H_{i}}, \log K_{A}^{H_{i}}$, and α_{2}^{H} for methoxyphenols calculated from IR measurements of HB complex formation with $\operatorname{DMSO}\left(L_{B}=1.24\right.$ and $\left.D_{B}=0.266\right)$.

phenol	$K_{A}^{H_{i}}$	$\log K_{A}^{H_{i}}$	α_{2}^{H}
2,6-dimethoxyphenol	3.630		0.24
2,4-dimethoxyphenol	2.700	0.29	
2,4-dimethoxyphenol	3.560	0.13	0.27
2,4,6-trimethoxyphenol	2.470	0.23	0.29

Figure S7. OH -stretching region of 2-nitrophenol in CCl_{4} containing various concentrations of DMSO(in mM).

Figure S8. OH-stretching region of 2,6-dinitrophenol in CCl_{4} containing various concentrations of DMSO(in mM).

Figure S9. OH-stretching region of 2,4-dinitro phenol in CCl_{4}. Concentration of phenol in mM units.

Figure S10. OH-stretching region of 2,4-dinitrophenol in CCl_{4} containing various concentrations of DMSO (in mM).

Table S3. Parameters used for calculation of the equilibrium constant $K_{\text {ArOH/S }}^{\text {s for }}$ HB complex formation between DMSO and 2,4-dinitrophenol. [ArOH $]_{0}=$ total concentration of phenol, $[\mathrm{ArOH}]_{\text {free }}=$ concentration of non-hydrogen bonded phenol calculated from IR measurements, $[\mathrm{HB}]=[\mathrm{ArOH}]_{0}-[\mathrm{ArOH}]_{\text {free }},[\mathrm{DMSO}]_{0}=$ total concentration of $\mathrm{DMSO}^{2} \mathrm{CCl}_{4},[\mathrm{DMSO}]_{\text {free }}=$ concentration of free (i.e. nonhydrogen bonded) DMSO.

[ArOH$]_{0}$	[ArOH$]_{\text {free }}$	[HB]	[DMSO]。	[DMSO] ${ }_{\text {free }}$	$[\mathrm{ArOH}]_{\mathrm{o}} /[\mathrm{ArOH}]_{\text {free }}$
2,4-di-NO ${ }_{2}$-phenol + DMSO					
7.21	7.21	0.0	0.0	0.00	1.00
7.21	6.62	0.6	28.1	27.51	1.09
7.21	5.94	1.3	56.2	54.93	1.21
7.21	5.27	1.9	93.7	91.76	1.37
7.21	4.26	3.0	156.0	153.05	1.69
7.21	3.14	4.1	260.0	255.93	2.29
2,4-di- NO_{2}-phenol + DMSO					
19.72	19.72	0.0	0.0	0.00	1.00
19.72	15.78	3.9	51.0	47.06	1.25
19.72	14.23	5.5	77.0	71.51	1.39
19.72	12.63	7.1	116.0	108.91	1.56
19.72	10.10	9.6	174.0	164.38	1.95
19.72	7.51	12.2	260.0	247.79	2.63
19.72	5.91	13.8	391.0	377.19	3.34

Figure S11 Plots of $[\mathrm{ArOH}]_{\mathrm{o}} /[\mathrm{ArOH}]_{\text {free }}$ vs. [DMSO] $]_{\text {free }}$ for $2,4-$ di- $_{\text {NO }}^{2}$-phenol in CCl_{4} containing various concentrations of DMSO.

From these two series of measurements two values of K were obtained: 5.11 and $6.40 \mathrm{M}^{-1}$, thus, the mean $\mathrm{K}=5.7 \mathrm{M}^{-1}$.

Figure S12. OH-stretching region of 2,4,6-trinitrophenol in CCl_{4} containing various concentrations of THF (in mM).

Figure S13. OH -stretching region of 2,4,6-trinitrophenol in CCl_{4} containing various concentrations of DMSO (in mM).

Figure S14. OH-stretching region of 2,4-diformylphenol in CCl_{4} containing various concentrations of DMSO (in mM).

Figure S15. OH-stretching region of 2-hydroxyacetophenone in CCl_{4} containing various concentrations of DMSO (in mM).

Figure S16. OH -stretching region of 7 -hydroxyindanone in CCl_{4} containing various concentrations of DMSO (in mM).

Figure S17. OH-stretching region of 2-formylphenol (salicylaldehyde) in CCl_{4} containing various concentrations of DMSO (in mM).

Figure S18. OD-stretching band of O-deuterio 2-methoxymethylphenol (20.5 mM) in CCl_{4}

Table S4. Parameters used for calculation of the equilibrium constant $K_{\text {ArOH/S }}$ for HB complex formation between DMSO and 2-methoxymethylphenol. $[\mathrm{ArOH}]_{\circ}=$ total concentration of phenol, $[\mathrm{ArOH}]_{\text {free }}=$ concentration of non-hydrogen bonded phenol calculated from IR measurements, $[\mathrm{HB}]=[\mathrm{ArOH}]_{\circ}-[\mathrm{ArOH}]_{\text {free }},[\mathrm{DMSO}]_{\circ}=$ total concentration of $\mathrm{DMSO}_{\text {in }} \mathrm{CCl}_{4},[\mathrm{DMSO}]_{\text {free }}=$ concentration of free (i.e. nonhydrogen bonded) DMSO.

$[\mathrm{ArOH}]_{0}$	$[\mathrm{ArOH}]_{\text {free }}$	$[\mathrm{HB}]$	$[\mathrm{DMSO}]_{0}$	$[\mathrm{DMSO}]_{\text {free }}$	$[\mathrm{ArOH}]_{0} /[\mathrm{ArOH}]_{\text {free }}$
0.359	0.359	0.0000	0.0	0.0	1.00
0.359	0.175	0.1836	15.0	14.8	2.05
0.359	0.123	0.2364	30.0	29.8	2.93
0.359	0.068	0.2906	50.0	49.7	5.25
0.359	0.042	0.3169	80.0	79.7	8.53

Figure S19 Plots of $[A r O H]_{o} /[A r O H]_{\text {free }}$ vs. [DMSO] ${ }_{\text {free }}$ for 2-methoxymethylphenol in CCl_{4} containing various concentrations of DMSO.
$\mathrm{L}_{\mathrm{B}}=1.24, \mathrm{D}_{\mathrm{B}}=\mathbf{0 . 2 6 6}, \mathrm{K}=95.7 \mathrm{M}-1, \log K_{A}^{H_{i}}=1.398, \alpha_{2}^{H}=0.53$

Table S5. Parameters used for calculation of the equilibrium constant $K_{\text {ArOH/S }}^{S}$ for HB complex formation between 4-F-phenol and 1,3-dinitrobenzene. $[\mathrm{ArOH}]_{0}=$ total concentration of 4-F-phenol , $[\mathrm{ArOH}]_{\text {free }}=$ concentration of non-hydrogen bonded phenol calculated from IR measurements, $[\mathrm{HB}]=[\mathrm{ArOH}]_{0}-[\mathrm{ArOH}]_{\text {free }}$, $[\mathrm{HBA}]_{\mathrm{o}}=$ total concentration of 1,3-dinitrobenzene in $\mathrm{CCl}_{4},[\mathrm{HBA}]_{\text {free }}=$ concentration of free (i.e. non-hydrogen bonded) 3,5-dinitrobenzene.

$[\mathrm{ArOH}]_{0}$	$[\mathrm{ArOH}]_{\text {free }}$	$[\mathrm{HB}]$	$[\mathrm{HBA}]_{0}$	$[\mathrm{HBA}]_{\text {free }}$	$[\mathrm{ArOH}]_{0} /[\mathrm{ArOH}]_{\text {free }}$
14.16	14.16				
14.16	14.12	0.00	0.0	0.00	1.000
14.16	14.13	0.04	9.9	9.84	1.003
14.16	13.85	0.03	14.8	14.80	1.002
14.16	13.65	0.31	22.2	21.93	1.022
14.16	13.46	0.51	31.1	30.64	1.037
14.16	13.25	0.70	41.5	40.82	1.052
14.16	12.89	1.27	55.4	54.45	1.069
14.16	12.43	1.73	71.2	69.91	1.099
14.16	12.05	2.11	114.4	89.79	1.139
				112.29	1.175
2.88	2.88	0.00	0.0	0.00	
2.88	2.88	0.00	9.9	9.89	1.00
2.88	2.84	0.04	14.8	14.79	1.00
2.88	2.80	0.08	22.2	22.16	1.01
2.88	2.75	0.13	31.1	31.01	1.03
2.88	2.68	0.20	41.5	41.33	1.05
2.88	2.60	0.28	55.4	55.08	1.07
2.88	2.48	0.40	71.2	70.78	1.11
2.88	2.42	0.46	91.5	91.06	1.16
2.88	2.30	0.58	114.4	113.82	1.19

Figure S20. Plots of $[\mathrm{ArOH}]_{o} /[\mathrm{ArOH}]_{\text {free }}$ vs. [HBA $]_{\text {reee }}$ for 4 -fluorophenol in CCl_{4} containing various concentrations of 1,3-dinitrobenzene.
$\mathrm{L}_{\mathrm{A}}=1.000, \mathrm{D}_{\mathrm{A}}=0.000, \mathrm{~K}=1.88 \mathrm{M}-1, \log K_{B}^{H_{i}}=0.259, \beta_{2}^{H}=0.30$ (after statistical correction $\beta_{2}^{H}=0.23$.

Table S6. Kinetic data for the reaction of dpph ${ }^{\bullet}$ with 2,4-dimethoxyphenol in heptane. Concentration [CU], pseudo-first-order rate constant $\mathrm{k}_{\mathrm{ex}}, \mathrm{R}^{2}$ for each data set The calculated mean bimolecular rate constant is denoted as ($\boldsymbol{k}^{\boldsymbol{s}} \pm$ absolute error).

$\begin{gathered} {[\mathrm{PhOH}] \times 10^{5}} \\ / \mathrm{M} \end{gathered}$	$\begin{aligned} & \mathrm{k}_{\mathrm{ex}} \\ & / \mathrm{s}-1 \end{aligned}$	$\underset{/ \mathrm{M}}{[\mathrm{PhOH}] \times 10^{5}}$	$\begin{aligned} & \mathrm{k}_{\mathrm{ex}} \\ & \mathrm{~s}-1 \\ & \hline \end{aligned}$
112.2	0.330	65.5	0.194
87.3	0.252	46.8	0.157
65.5	0.192	31.2	0.112
46.8	0.149	20.8	0.077
31.2	0.100	13.9	0.051
20.8	0.058	9.2	0.032
13.9	0.041	6.2	0.023
9.2	0.031	65.5	0.194
6.2	0.020		
112.2	0.330		
$\begin{aligned} & \mathbf{k}=291 \mathrm{M}^{-1} \mathrm{~s}^{-1} \\ & \Delta \mathbf{k}^{\mathrm{a}}=9\end{aligned}$		$\mathrm{k}=295 \mathrm{M}^{-1} \mathrm{~s}^{-1}$	
		$\Delta k^{\text {a }}=30$	
$\mathbf{R}^{2}=0.9979$		$\mathbf{R}^{2}=0.9859$	

$k^{s}=290 \pm \mathbf{3 0} \mathbf{M}^{-1} \mathbf{s}^{-1}$
Table S7. Kinetic data for the reaction of dpph ${ }^{\boldsymbol{*}}$ with 2,4,6-trimethoxyphenol in heptane. Symbols are the same as described in Table S5.

$\begin{gathered} {[\mathrm{PhOH}] \times 10^{5}} \\ / \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{ex}} \\ \mathrm{~s}-1 \end{gathered}$	$\begin{gathered} {[\mathrm{PhOH}] \times 10^{5}} \\ / \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{ex}} \\ \mathrm{ls}-1 \end{gathered}$	
121.6	0.405	121.6		0.368
94.6	0.354	94.6		0.298
70.9	0.276	70.9		0.230
50.7	0.212	50.7		0.178
33.8	0.146	33.8		0.117
20.3	0.100	22.5		0.082
12.2	0.042	15.0		0.055
7.3	0.033	10.0		0.037
$\begin{aligned} \mathbf{k} & =340 \mathrm{M}^{-1} \mathrm{~s}^{-1} \\ \Delta \mathbf{k}^{\mathrm{a}} & =30 \end{aligned}$		6.7		0.026
		$\mathrm{k}=300 \mathrm{M}^{-1} \mathrm{~s}^{-1}$		
		$\Delta k^{\text {a }}=12$		
$\mathbf{R}^{\mathbf{2}}=0.9845$		$\mathbf{R}^{\mathbf{2}}=0.9969$		

${ }^{a}$ calculated as the confidence interval of the slope for the 90% confidence level.
$k^{s}=320 \pm 20 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

Table S8. Kinetic data for the reaction of dpph ${ }^{\bullet}$ with 2-methoxymethylphenol in heptane. Symbols are the same as described in Table S5.

[PhOH] /mM	$\begin{gathered} 10^{3} \times \mathrm{k}_{\mathrm{ex}} \\ / \mathrm{s}-1 \end{gathered}$	$\begin{gathered} {[\mathrm{PhOH}]} \\ / \mathrm{mM} \end{gathered}$	$\begin{gathered} 10^{3} \times \mathrm{k}_{\mathrm{ex}} \\ \mathrm{l}=-1 \\ \hline \end{gathered}$	$\begin{gathered} {[\mathrm{PhOH}]} \\ / \mathrm{mM} \end{gathered}$	$\begin{gathered} 10^{3} \times \mathrm{k}_{\mathrm{e}} \\ \mathrm{~s}-1 \\ \hline \end{gathered}$
17.3	2.20	20.7	1.13	22.9	1.17
13.4	2.01	16.1	0.93	17.8	1.00
10.1	1.85	12.5	0.77	13.4	0.78
7.2	1.75	9.4	0.58	9.5	0.60
4.8	1.70	7.1	0.45	6.4	0.45
3.2	1.52	5.0	0.35	4.2	0.31
2.1	1.38	3.6	0.25	2.8	0.22
$\begin{aligned} \mathbf{k} & =4.9 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-} \\ \Delta \mathbf{k}^{\mathrm{a}} & =0.8 \times 10^{-2} \end{aligned}$		2.4	0.18	$\begin{aligned} \mathbf{k} & =4.8 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1} \\ \Delta \mathbf{k}^{a} & =0.4 \times 10^{-2} \end{aligned}$	
		$\begin{aligned} \mathbf{k} & =5.2 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1} \\ \Delta \mathbf{k}^{a} & =0.3 \times 10^{-2} \end{aligned}$			
$\mathbf{R}^{\mathbf{2}}=0.9604$		$\mathbf{R}^{\mathbf{2}}=0.9958$		$\mathbf{R}^{\mathbf{2}}=0.9923$	

${ }^{a}$ calculated as the confidence interval of the slope for the 90% confidence level.
$k^{S}=(5.0 \pm 0.5) \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$

Figure S21. OH-stretching region of 2-methoxymethylphenol (20.5 mM) in CCl_{4}. Lower panel shows the same plot limited to the region $3500-3700 \mathrm{~cm}^{-1}$ with free OH stretching band.

FigureS22.
Example of LDBS partitioning. The atoms contained in the rectangle are assigned $6-311++G(2 d, 2 p)$ basis functions. The remaining atoms are represented by $6-31 \mathrm{G}(\mathrm{d})$ basis sets.

Parameters used for calculation the ratio of free to internally H-bonded hydroxyl group in 2-methoxymethyl phenol

Method 1- Peak intensity measurements in cyclohexane. Free OH band height after baseline substraction $=0.0366$ a.u. , concentration of free $\mathrm{OH}=0.277 \mathrm{mM}$ (calculated on phenol in cyclohexane) Total concentration of 2-methoxymethylphenol $=\mathbf{1 8 . 6} \mathbf{~ m M}$ \%free $\mathrm{OH}=0.277$ / 18.6 *100\%= 1.49 \%

Method 2- Peak intensity measurements in CCl_{4}.

Free OH band height after baseline substraction $=0.032 \mathrm{a} . \mathrm{u}$. , concentration of free $\mathrm{OH}=\mathbf{0 . 3 9 5} \mathbf{~ m M}$ (calculated on phenol in cyclohexane)
Total concentration of 2-methoxymethylphenol $=\mathbf{2 0 . 5} \mathbf{~ m M}$
\%free OH=0. 395 / 20.5 *100\%=1.92 \% (see Figure S21)
Free OH band height after baseline substraction $=0.0305$ a.u. , concentration of free $\mathrm{OH}=\mathbf{0 . 3 7 2} \mathbf{~ m M}$ (calculated on phenol in cyclohexane)
Total concentration of 2-methoxymethylphenol $=16.68 \mathrm{mM}$ \%free $\mathrm{OH}=0.370 / 16.68 * 100 \%=2.23 \%$

$$
\text { Mean value }=2.1 \% \text { of free } \mathrm{OH} \text { in } \mathrm{CCl}_{4}
$$

Method 3- Area ratio measurements in CCl_{4}.
(Area of free OH) /(Area of H-Bonded OH) *100\% = 0.72 / $37.16 * 100 \%=1.9 \%$

